Institute
and Faculty
of Actuaries

Pensions Conference 2015

24-26 June
Hilton Hotel, Glasgow

MULTI-POPULATION MORTALITY MODELLING:

A Danish Case Study

Andrew Cairns

Heriot-Watt University,

and The Maxwell Institute, Edinburgh

Joint work with D. Blake, K. Dowd, M. Kallestrup-Lamb, C. Rosenskjold
Pensions Conference, Glasgow, June 2015

Plan

- Introduction and motivation for multi-population modelling
- Danish population data
- Modelling Danish sub-population mortality
- Applications

1. Motivation for multi-population modelling

A: Risk assessment

- Multi-country (e.g. consistent demographic projections)
- Males/Females (e.g. consistent demographic projections)
- Socio-economic subgroups (e.g. blue or white collar)
- Smokers/Non-smokers
- Annuities/Life insurance
- Limited data \Rightarrow learn from other populations
\rightarrow reserving calculations; diversification benefits

Motivation for multi-population modelling
 B: Risk management for pension plans and insurers

- Retain systematic mortality risk; versus:
- 'Over-the-counter' deals (e.g. longevity swap)
- Standardised mortality-linked securities
- linked to national mortality index
$-<100 \%$ risk reduction: basis risk

Multi-Population Challenges

- Data availability
- Data quality and depth
- Model complexity
- single population models can be complex
- 2-population versions are more complex
- multi-pop
- Multi-population modelling requires
- (fairly) simple single-population models
- simple dependencies between populations

2. A New Case Study and a New Model

- Sub-populations differ from national population
- socio-economic factors
- other factors
- Denmark
- High quality data on ALL residents
- 1981-2005 available (later data soon)
- Can subdivide population using covariates on the database

Danish Data

- What can we learn from Danish data that will inform us about other populations?
- Key covariates
- Wealth
- Income
- Affluence $=$ Wealth $+15 \times$ Income

Problem

- High income \Rightarrow "affluent" and low mortality BUT
- Low income \nRightarrow not affluent, high mortality
- High wealth \Rightarrow "affluent" and low mortality BUT
- Low wealth \nRightarrow not affluent, high mortality

Empirical solution: use a combination

- Affluence, $A=$ wealth $+K \times$ income
- $K=15$ seems to work well statistically as a predictor
- Low affluence, A, predicts poor mortality

Subdividing Data (after much experimentation!)

- Males resident in Denmark for the previous 12 months
- Divide population in year t
- into 10 equal sized Groups (approx)
- using affluence, A
- Individuals can change groups up to age 67
- Group allocations are locked down at age 67
(better than not locking down at age 67)

Crude death rates 2005

Males Crude m(t,x); 2005

Modelling the death rates, $m_{k}(t, x)$
$m^{(k)}(t, x)=$ pop. k death rate in year t at age x
Population k, year t, age x

$$
\log m^{(k)}(t, x)=\beta^{(k)}(x)+\kappa_{1}^{(k)}(t)+\kappa_{2}^{(k)}(t)(x-\bar{x})
$$

(Extended CBD with a non-parametric base table, $\beta^{(k)}(x)$)

- 10 groups, $k=1, \ldots, 10$ (low to high affluence)
- 21 years, $t=1985, \ldots, 2005$
- 40 ages, $x=55, \ldots, 94$

Model-Inferred Underlying Death Rates 2005

Males Crude m(t,x); 2005

Males CBD-X Fitted m(t,x); 2005

Modelling the death rates, $m_{k}(t, x)$

$$
\log m^{(k)}(t, x)=\beta^{(k)}(x)+\kappa_{1}^{(k)}(t)+\kappa_{2}^{(k)}(t)(x-\bar{x})
$$

- Model fits the 10 groups well without a cohort effect
- Non-parametric $\beta^{(k)}(x)$ is essential to preserve group rankings
- Rankings are evident in crude data
- "Bio-demographical reasonableness": more affluent \Rightarrow healthier

Model-Inferred Underlying Death Rates 2005

Males Crude m(t,x); 2005

Males CBD-X Fitted m(t,x); 2005

- Gap reduces from over $6 \times$ to $1.5 \times$
- $\operatorname{Or}+17$ years difference for Group 1, age $55 ;+11$ at 67 .
- Convergence \Rightarrow way ahead for modelling very high ages???

Life Expectancy for Groups 1 to 10

3. Applications

- Coherent forecasting
- Mortality
- Cohort survivorship
- Annuity risk measurement
- Hedging: customised versus index-linked hedges

Time series modelling

- $t \rightarrow t+1$: Allow for correlation
- between $\kappa_{1}^{(k)}(t+1)$ and $\kappa_{2}^{(k)}(t+1)$
- between groups $k=1, \ldots, 10$
- Medium/long term:
group specific period effects gravitate towards the national trend
\Rightarrow Bio-demographical reasonableness: groups should not diverge

Simulated Group versus Population Mortality, $q(t, x)$

As T increases: +1 year; +5 years; +25 years

- Scatterplots become more dispersed
- Shift down and to the left
- Correlation increasess

Forecast Correlations: Mortality Rates

Correlation Between Group $q(t, 75)$ and Total Population $q(t, 75)$

Forecast Correlations

- Deciles are quite narrow subgroups

More diversified e.g.

- Blue collar pension plan
\Rightarrow equal proportions of groups 2, 3, 4
- White collar pension plan
\Rightarrow equal proportions of groups $8,9,10$
- Mixed pension plan
\Rightarrow amounts proportional to $(0,0,1,2,3,4,5,6,7,8)$

Forecast Correlations: Mortality Rates

Correlation Between Group $q(t, 75)$ and Total Population $q(t, 75)$

Cohort Survivorship

What proportion of a group survive from age 65 at time 0 to time t ?

- $S_{X}(t, 65)$
- Groups 1 to 10 individually
- Blue collar plan
- White collar plan
- Mixed plan

Compare with the national population

Cohort Survivorship: Fan Charts

Group Survival Probabilities

Cohort Survivorship: Individual Scenarios

Group Survival Probabilities

Cohort Survivorship: Changing Population Mix

Groups 1 to 10 as a Proportion of the Total Population

Forecast Correlations: Cohort Survivorship

Correlation Between Group S(t,65) and Total Population S(t,65)

Forecast Correlations: Cohort Survivorship, 3 Plans

Correlation Between Group S(t,65) and Total Population S(t,65)

Comments

- Are the differences between groups shocking?
- Are the differences between groups surprising?
- www.ubble.co.uk
- What is your probability of survival for the next 5 years?
- Various health and lifestyle questions; sex and age
- Output: what is your effective age?
- e.g. "Typical" Research Actuary, male, aged 48 5 -year survival probability is:
the same as an "average" male aged 33
- Difference is consistent with Danish Males, Group 10 versus the average

Annuities from Age 65: Present Values (PV)

Group/Plan Mean P.V. Correlation with

National Population

National	13.03	1.000
Group 1	10.34	0.805
Group 10	14.95	0.849
Blue Collar	11.95	0.938
White Collar	14.55	0.947
Mixed	14.06	0.985

Annuities from Age 65: Present Values (PV)

What is the relevance of annuity correlations?

- Risk management of longevity risk
- Customised versus Index-linked hedges
- > 94% correlation means a well designed index-linked hedge can be very effective.
- Choice depends on
- Risk appetite (all schemes > 0!)
- Scheme size: accessibility of customised transactions
- Scheme size: small population risk

4. Summary

- Danish data allows insight into relative mortality dynamics between socio-economic sub-populations
- Conclusions for other countries likely to be similar
- Results allow us to explore many risk measurement and risk management applications

Working paper available soon.

E: A.J.G.Cairns@hw.ac.uk
W: www.macs.hw.ac.uk/~andrewc

