

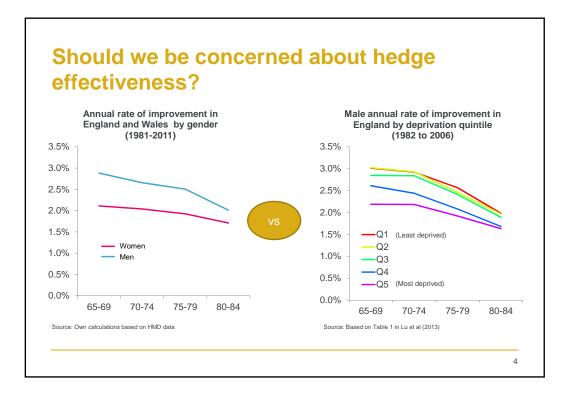
Towards an industry standard to assess Longevity Basis Risk

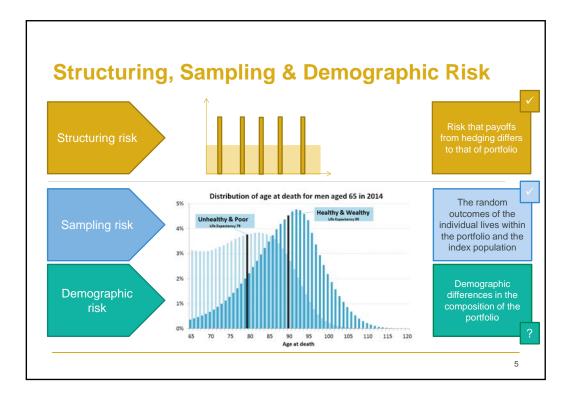
Steven Baxter, Hymans Robertson LLP Andres Villegas, Cass Business School

steven.baxter@hymans.co.uk

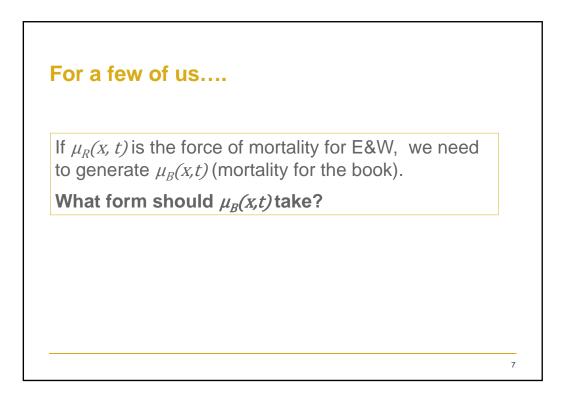
Andres.Villegas.1@cass.city.ac.uk

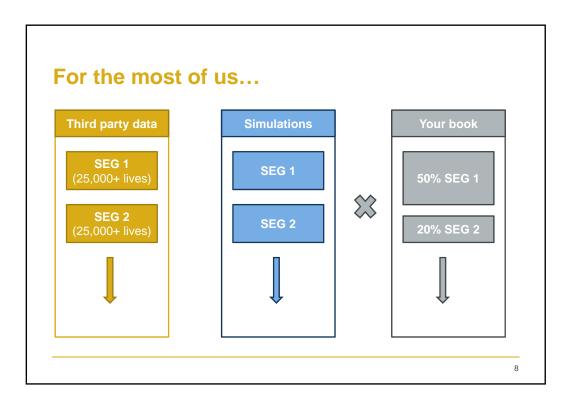

This presentation has been prepared for attendees at the Institute and Faculty of Actuaries Life Conference 2014.

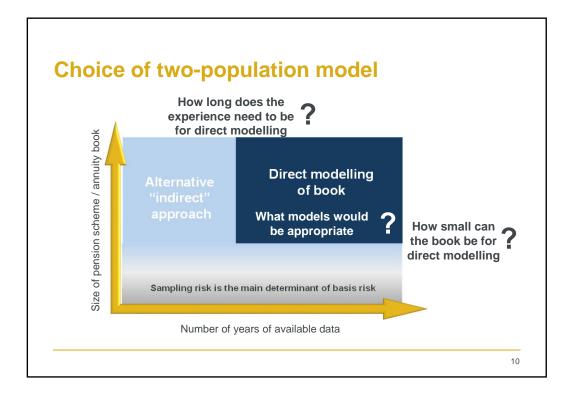

- It covers work produced by a joint team from Cass Business School' and Hymans Robertson LLP² in response to research commissioned by the Longevity Basis Risk Working Group of the Institute & Faculty of Actuaries and the Life & Longevity Markets Association.
- The work presented here is subject to peer review; the final version will be published at a Sessional Meeting on 8th December 2014.

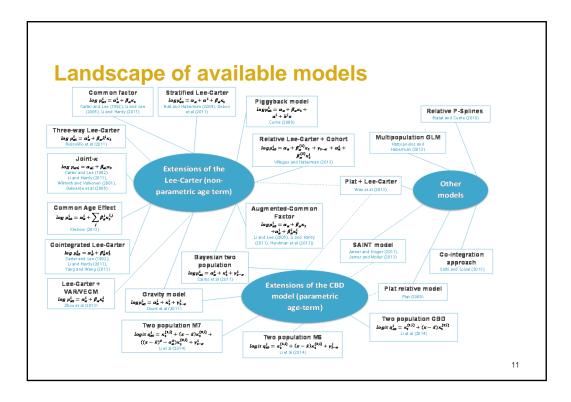

1 Prof Steven Haberman FIA, Prof Vladimir Kaishev, Dr Pietro Millossovich & Andres Villegas MACA 2 Steven Baxter FIA, Andrew Gaches FIA, Sveinn Gunnlaugsson GradStat, Mario Sison

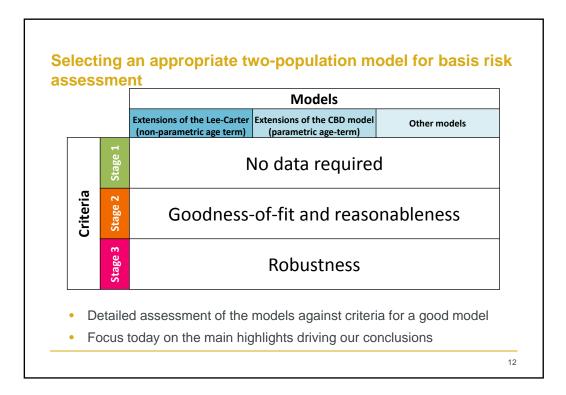
Aims of today's session

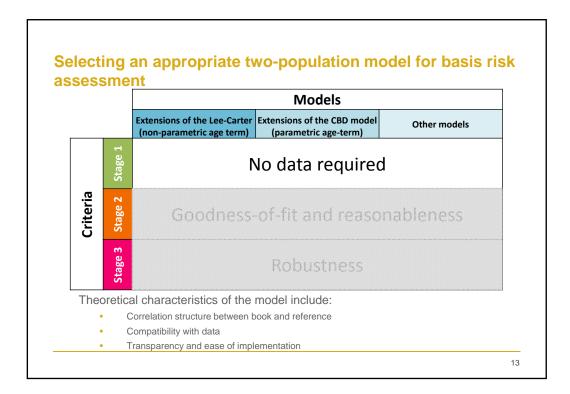

- 1. Introduce you to the Basis Risk problem
- 2. Give you a feel for the framework we have developed
- 3. Provide confidence in the framework
- Encourage you to attend our sessional meeting on 8th December 2014

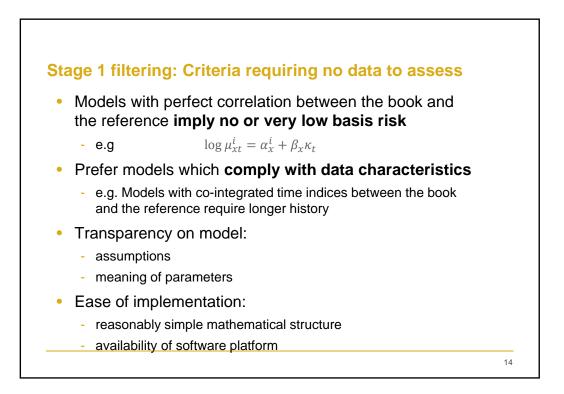


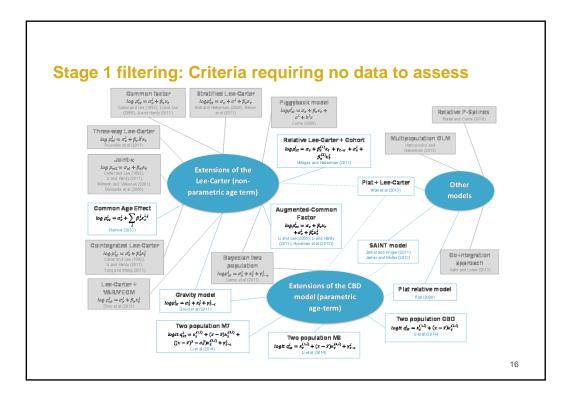


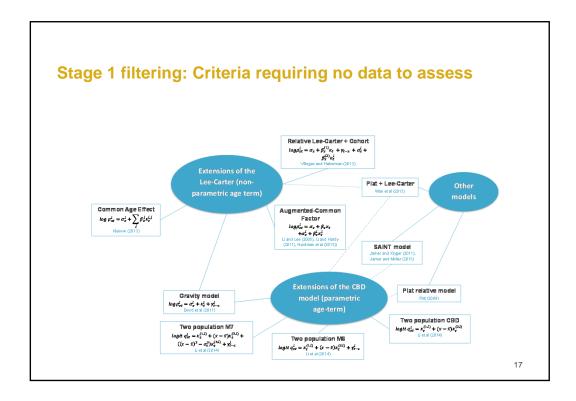


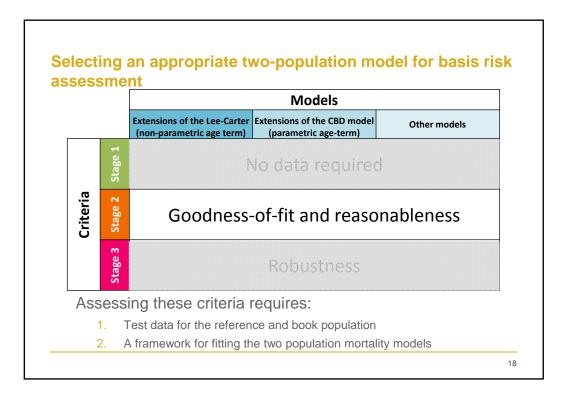


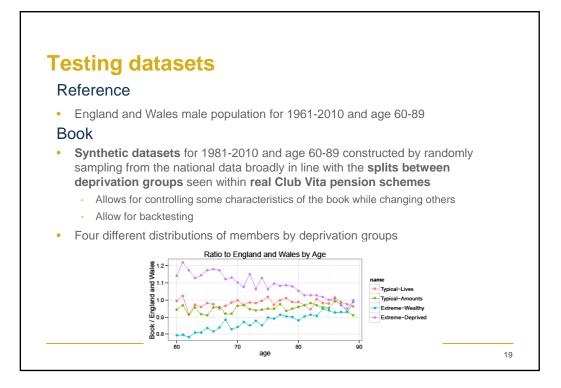


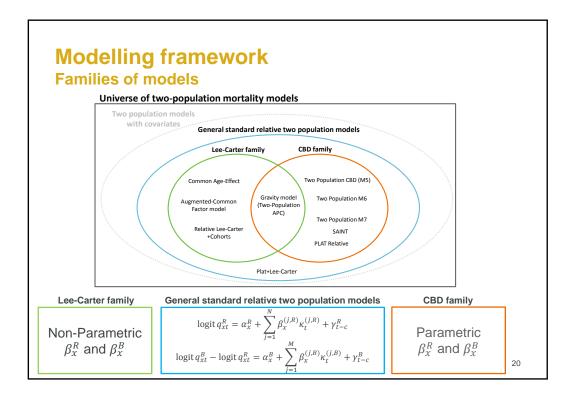


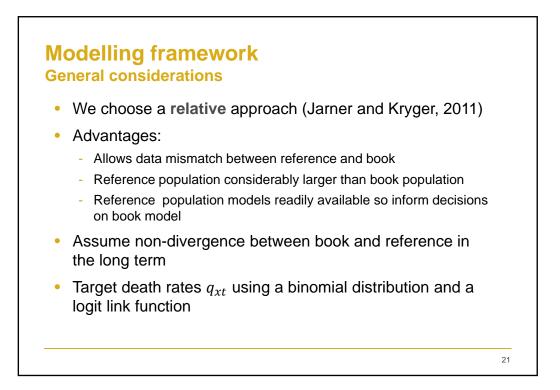


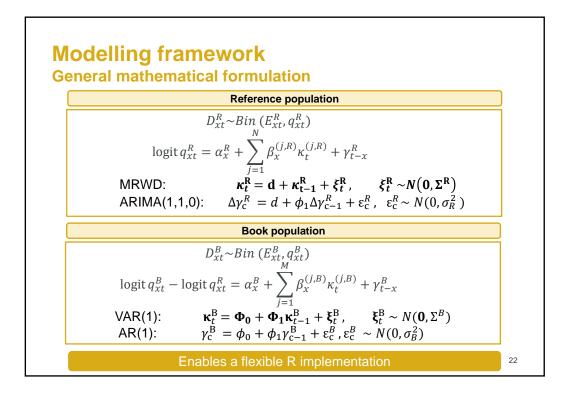


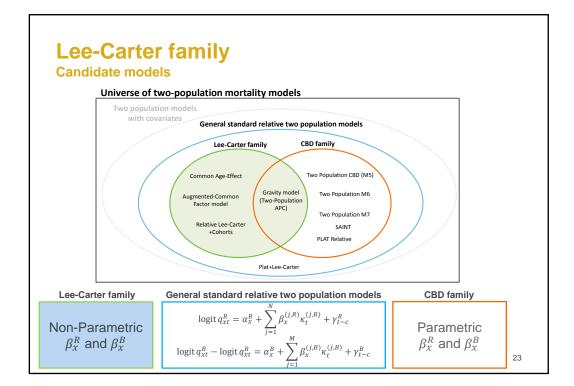


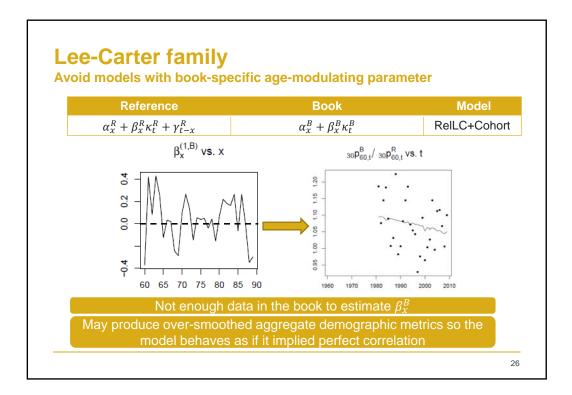

7

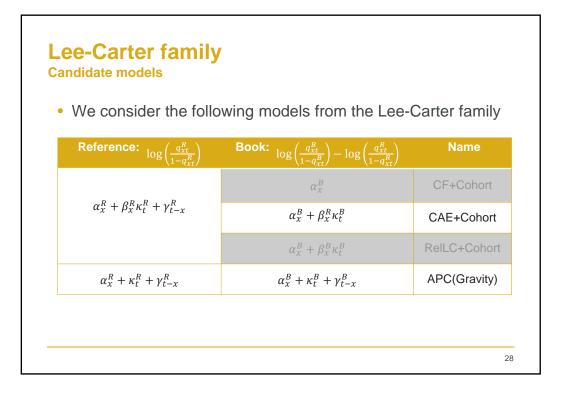


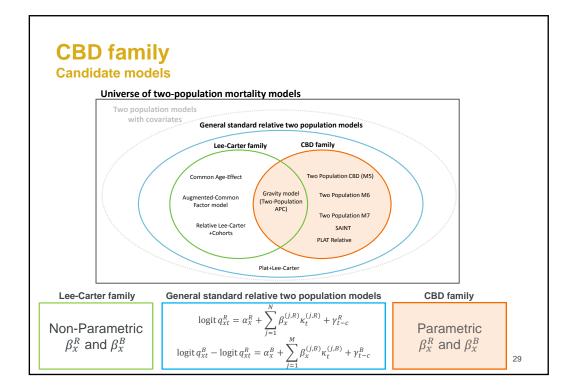






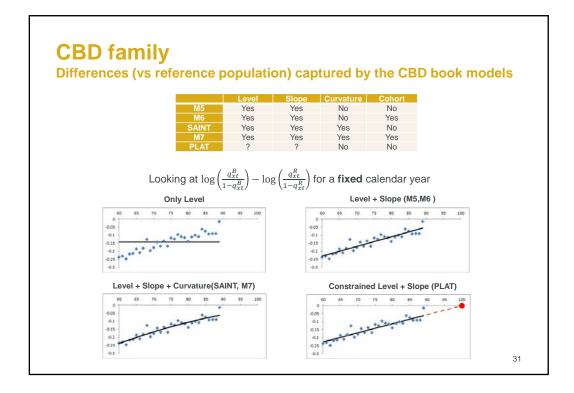


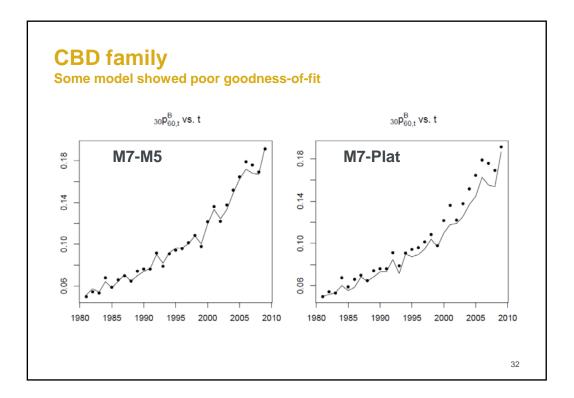



We consider the follo	owing models from the Lee-	Carter family
Reference: $\log\left(\frac{q_{xt}^R}{1-q_{xt}^R}\right)$	Book: $\log\left(\frac{q_{xt}^B}{1-q_{xt}^B}\right) - \log\left(\frac{q_{xt}^R}{1-q_{xt}^R}\right)$	Name
	$lpha_x^B$	CF+Cohort
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$\alpha^B_x + \beta^R_x \kappa^B_t$	CAE+Cohort
	$\alpha_x^B + \beta_x^B \kappa_t^B$	ReILC+Cohort
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC(Gravity)

We consider the follo	owing models from the Lee-	Carter family
Reference: $\log\left(\frac{q_{xt}^R}{1-q_{xt}^R}\right)$	Book: $\log\left(\frac{q_{xt}^B}{1-q_{xt}^B}\right) - \log\left(\frac{q_{xt}^R}{1-q_{xt}^R}\right)$	Name
	α_x^B	CF+Cohort
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$lpha_{\chi}^{B}+eta_{\chi}^{R}\kappa_{t}^{B}$	CAE+Cohort
	$\alpha_x^B + \beta_x^B \kappa_t^B$	RelLC+Cohor
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC(Gravity)

We consider the follo	owing models from the Lee-	Carter family
Reference: $\log\left(\frac{q_{\chi t}^R}{1-q_{\chi t}^R}\right)$	Book: $\log\left(\frac{q_{xt}^B}{1-q_{xt}^B}\right) - \log\left(\frac{q_{xt}^R}{1-q_{xt}^R}\right)$	Name
	$lpha_x^B$	CF+Cohort
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \beta_x^R \kappa_t^B$	CAE+Cohort
	$lpha_x^B + eta_x^B \kappa_t^B$	RelLC+Cohor
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC(Gravity)





CBD family	
Candidate models	

• We consider the following models from the parametric (CBD) family

Book: $\log\left(\frac{q_{Xt}^B}{1-q_{Xt}^B}\right) - \log\left(\frac{q_{Xt}^R}{1-q_{Xt}^R}\right)$	Name
$\alpha_x^B + \beta_x^R \kappa_t^B$	CAE+Cohort
$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC
$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	M7-M5
$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B$	M7-M6
$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)}$	M7-SAINT
$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3,B)} + \gamma_{t-x}^B$	M7-M7
$\frac{100 - x}{100 - \bar{x}} \kappa_t^{(1,B)}$	M7-PLAT
c	$\frac{\alpha_x^B + \beta_x^R \kappa_t^B}{\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B}$ $\frac{\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B}{\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}}$ $\frac{\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B}{\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)}}$ $\frac{\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)} + \gamma_{t-x}^B}{\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)} + \gamma_{t-x}^B}$

Candidate models		
• We consider the following mode	els from the parametric (CBD) fami	ly
Reference: $\log\left(\frac{q_{xx}^R}{1-q_{xy}^R}\right)$	Book: $\log\left(\frac{q_{xt}^B}{1-q_{yt}^B}\right) - \log\left(\frac{q_{xt}^B}{1-q_{yt}^B}\right)$	Name
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \beta_x^R \kappa_t^B$	CAE+Cohort
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	M7-M5
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B$	M7-M6
$\kappa_t^{(1,R)} + (x - \bar{x})\kappa_t^{(2,R)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,R)} + \gamma_{t-x}^R$	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3,B)}$	M7-SAINT
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)} + \gamma_{t-x}^B$	M7-M7
	$\frac{100-x}{100-x}\kappa_t^{(1,B)}$	M7-PLAT

CBD family
Candidate models

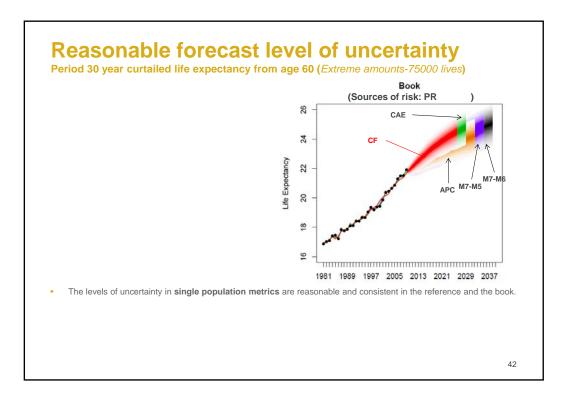
• We consider the following models from the parametric (CBD) family

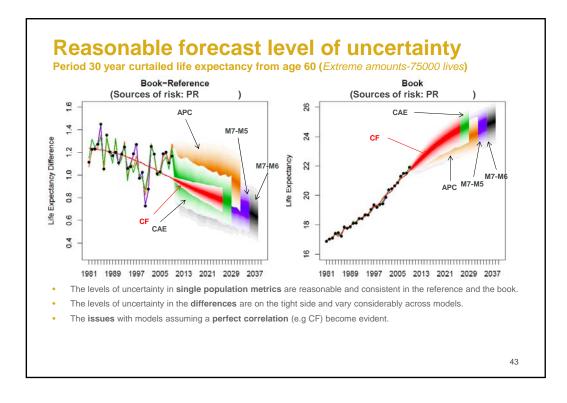
Reference: $\log\left(\frac{q_{xt}^{2}}{1-q_{xt}^{2}}\right)$	Book: $\log\left(\frac{q_{Xt}^B}{1-q_{Xt}^B}\right) - \log\left(\frac{q_{Xt}^R}{1-q_{Xt}^R}\right)$	Name
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \beta_x^R \kappa_t^B$	CAE+Cohort
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	M7-M5
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B$	M7-M6
$\kappa_t^{(1,R)} + (x - \bar{x})\kappa_t^{(2,R)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3,R)} + \gamma_{t-x}^R$	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)}$	M7-SAINT
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)} + \gamma_{t-x}^B$	M7-M7
	$\frac{100-x}{100-\bar{x}}\kappa_t^{(1,B)}$	M7-PLAT
		34

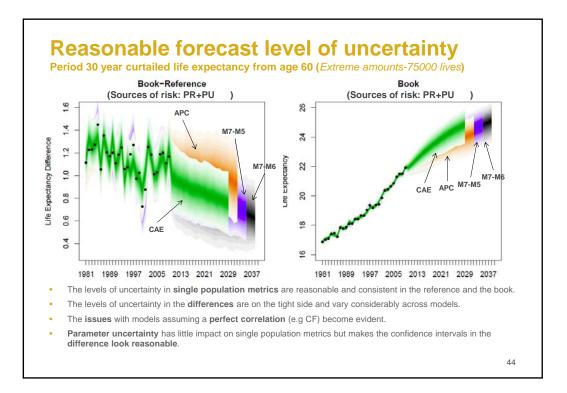
	Γ	BI	C Ranking (Bool	c part of the mod	del)
Model	Number of book parameters	Typical- Lives	Typical- Amounts	Extreme- Wealthy	Extreme- Deprived
CAE+Cohort	58	2	1	2	1
M7-M5	58	1	2	1	2
M7-SAINT	87	3	3	3	3
M7-M6	114	4	4	4	5
M7-M7	142	6	6	5	6
APC (Gravity)	114	5	5	6	4

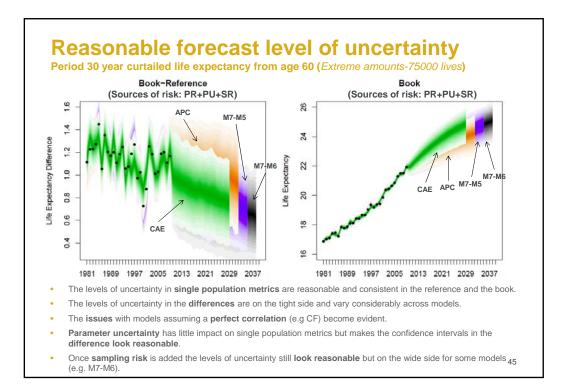
		BI	C Ranking (Book	part of the mod	lel)
Model	Number of book parameters	Typical- Lives	Typical- Amounts	Extreme- Wealthy	Extreme- Deprived
CAE+Cohort	58	2	1	2	1
Л7-M5	58	1	2	1	2
/17-SAINT	87	3	3	3	3
/17-M6	114	4	4	4	5
/17-M7	142	6	6	5	6
APC (Gravity)	114	5	5	6	4
 CAE+Coh parsimony 	ort and M7-M5 have	a good compi	omise between	goodness-of-fi	it and

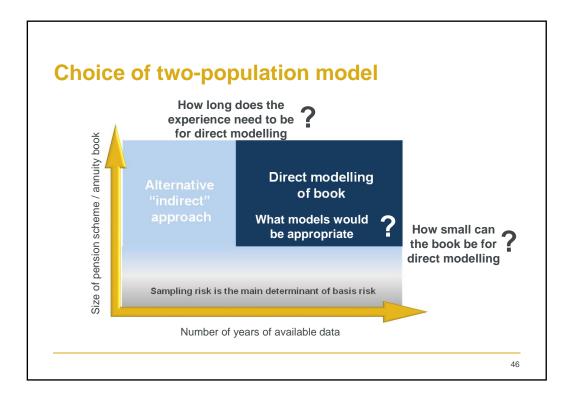
18

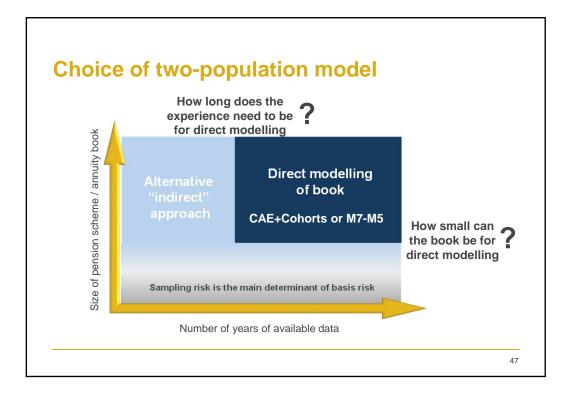

Model	Number of book	BIC Ranking (Book part of the model)			
	parameters	Typical- Lives	Typical- Amounts	Extreme- Wealthy	Extreme- Deprived
CAE+Cohort	58	2	1	2	1
M7-M5	58	1	2	1	2
17-SAINT	87	3	3	3	3
И7-M6	114	4	4	4	5
M7-M7	142	6	6	5	6
APC (Gravity)	114	5	5	6	4
parsimony	ort and M7-M5 have h a book-specific coh arsimony.	0		0	

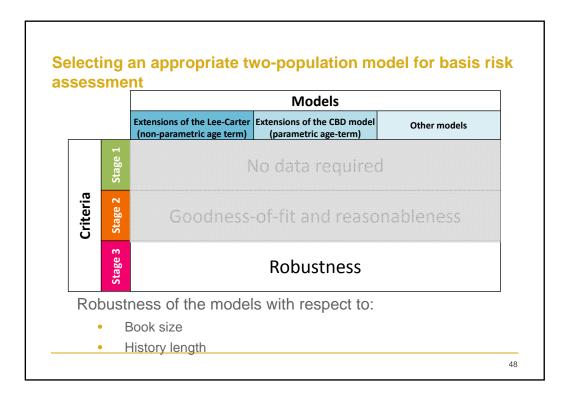

		BIC Ranking (Book part of the model)			
Model	Number of book parameters	Typical- Lives	Typical- Amounts	Extreme- Wealthy	Extreme- Deprived
CAE+Cohort	58	2	1	2	1
M7-M5	58	1	2	1	2
M7-SAINT	87	3	3	3	3
M7-M6	114	4	4	4	5
M7-M7	142	6	6	5	6
APC (Gravity)	114	5	5	6	4
parsimon	nort and M7-M5 have y ith a book-specific coh parsimony.	0 1		0	

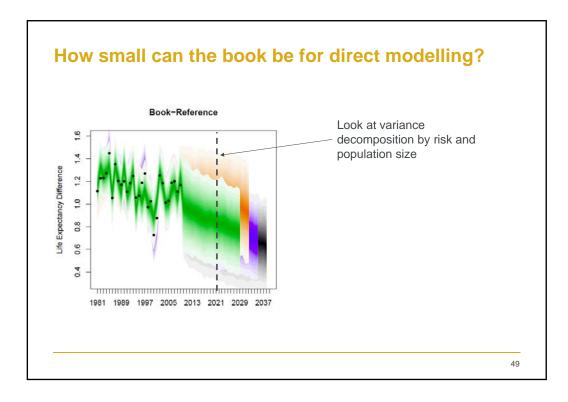

Candidate models		
We consider the following mode	els from the parametric (CBD) fami	ly
Reference: $\log\left(\frac{q_{xt}^R}{1-q_{xt}^R}\right)$	Book: $\log\left(\frac{q_{xt}^B}{1-q_{xt}^B}\right) - \log\left(\frac{q_{xt}^B}{1-q_{xt}^R}\right)$	Name
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$lpha_{\chi}^{B}+eta_{\chi}^{R}\kappa_{t}^{B}$	CAE+Cohort
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	M7-M5
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B$	M7-M6
$\kappa_t^{(1,R)} + (x - \bar{x})\kappa_t^{(2,R)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,R)} + \gamma_{t-x}^R$	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3,B)}$	M7-SAINT
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)} + \gamma_{t-x}^B$	M7-M7
	$\frac{100-x}{100-\bar{x}}\kappa_t^{(1,B)}$	M7-PLAT

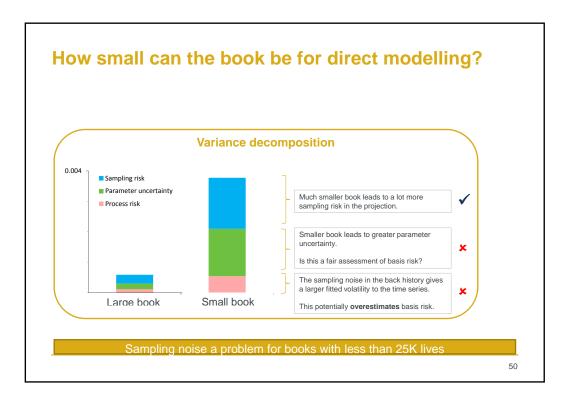

Candidate models		
• We consider the following mode	els from the parametric (CBD) fami	ly
Reference: $\log\left(\frac{q_{st}^R}{1-q_{st}^R}\right)$	Book: $\log\left(\frac{q_{x_t}^R}{1-q_{y_t}^R}\right) - \log\left(\frac{q_{x_t}^R}{1-q_{y_t}^R}\right)$	Name
$\alpha_x^R + \beta_x^R \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \beta_x^R \kappa_t^B$	CAE+Cohor
$\alpha_x^R + \kappa_t^R + \gamma_{t-x}^R$	$\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$	APC
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	M7-M5
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B$	M7-M6
$\kappa_t^{(1,R)} + (x-\bar{x})\kappa_t^{(2,R)} + \big((x-\bar{x})^2 - \sigma_x^2\big)\kappa_t^{(3,R)} + \gamma_{t-x}^R$	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3,B)}$	M7-SAINT
	$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3,B)} + \gamma_{t-x}^B$	M7-M7
	$\frac{100-x}{100-x}\kappa_t^{(1,B)}$	M7-PLAT

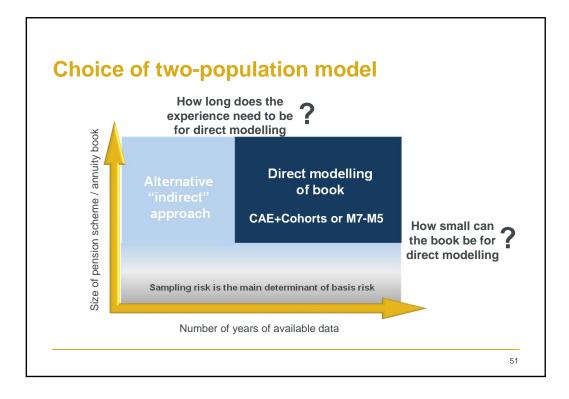

$\alpha_x^B + \beta_x^R \kappa_t^B$ $\alpha_x^B + \kappa_t^B + \gamma_{t-x}^B$ $\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	CAE+Cohort APC
	APC
$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)}$	
	M7-M5
$\kappa_t^{(1,B)} + (x - \bar{x})\kappa_t^{(2,B)} + \gamma_{t-x}^B$	M7-M6
for CAE+Cohorts and M7-M5) bas fit performance	ed on
0 1 1	
v levels	
	o single and two population metrics of uncertainty that are in line with

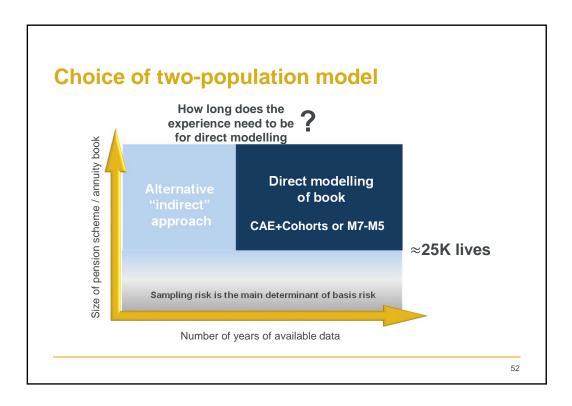


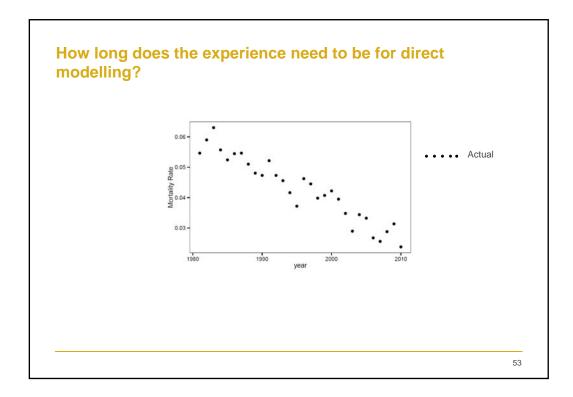


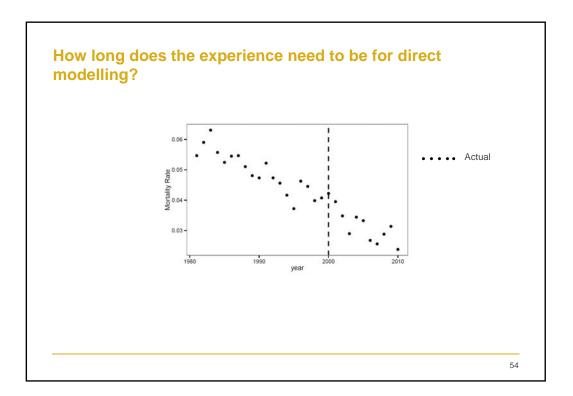


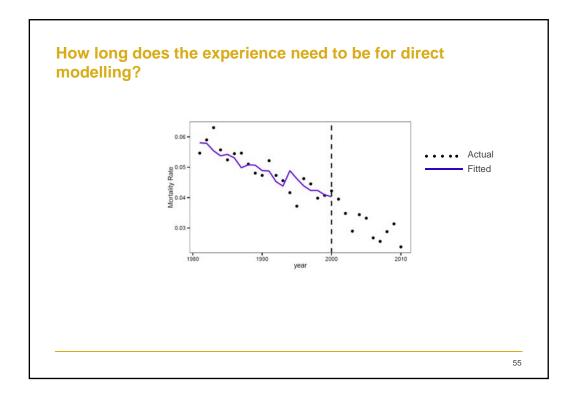


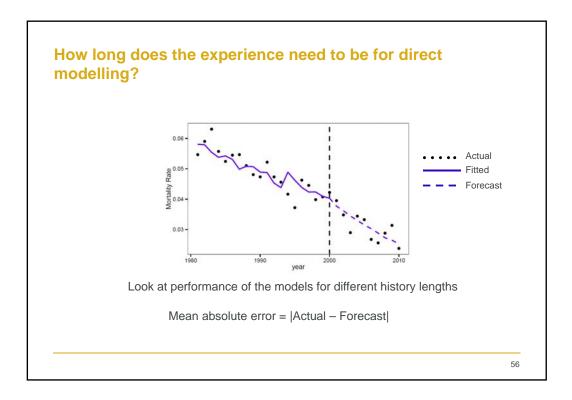


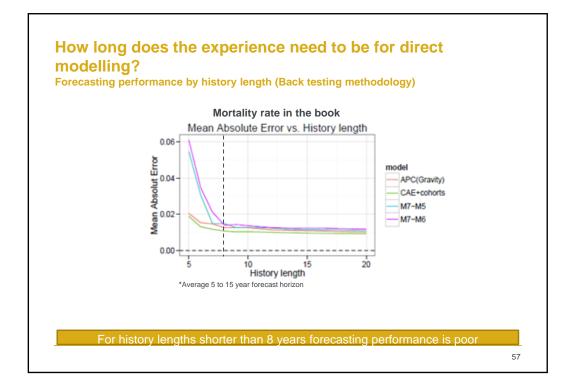


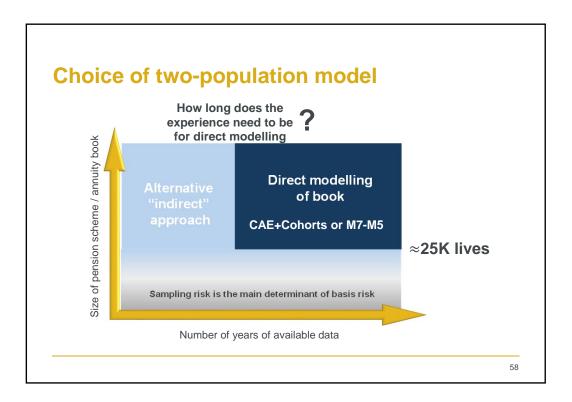


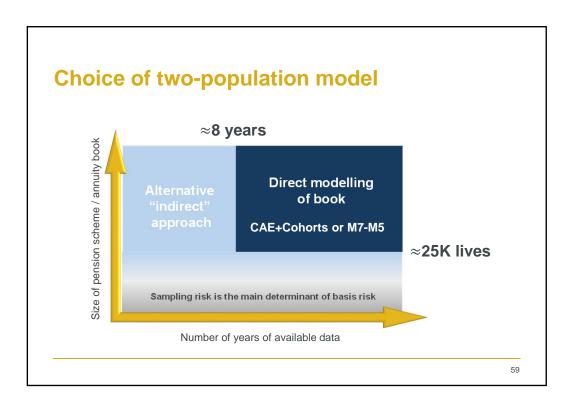


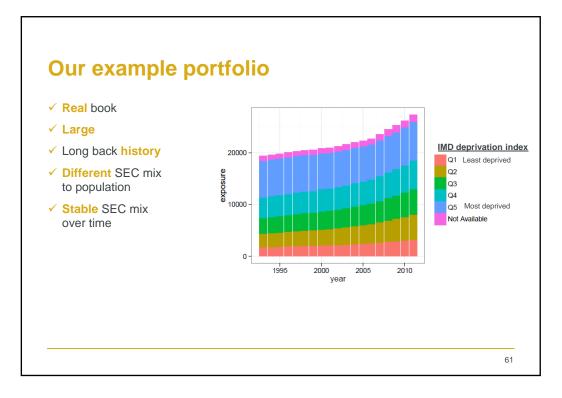


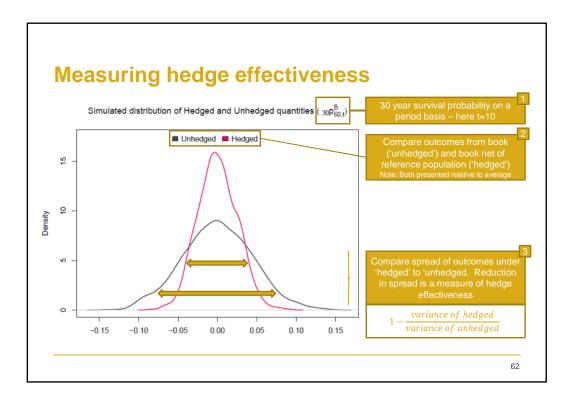


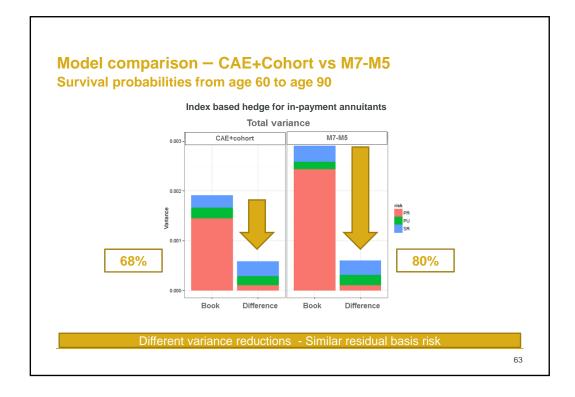


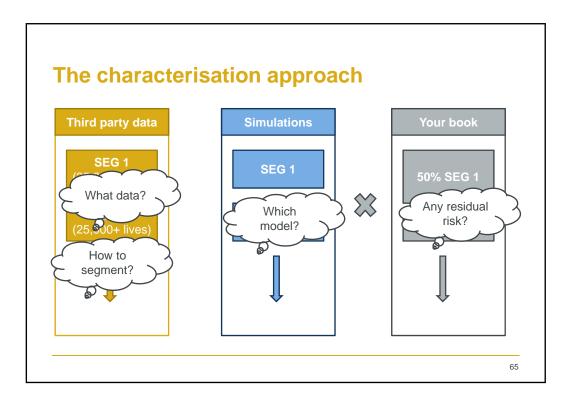


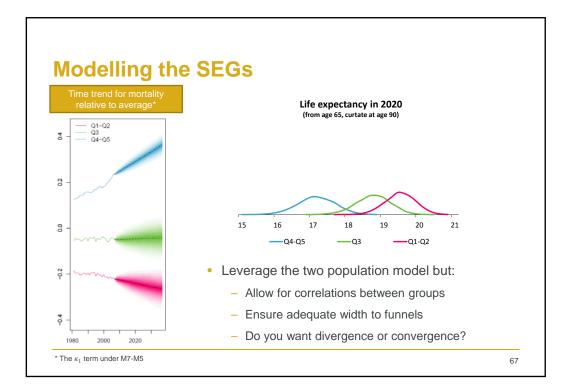


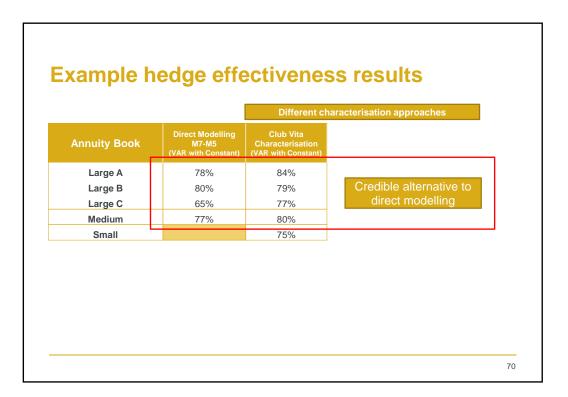


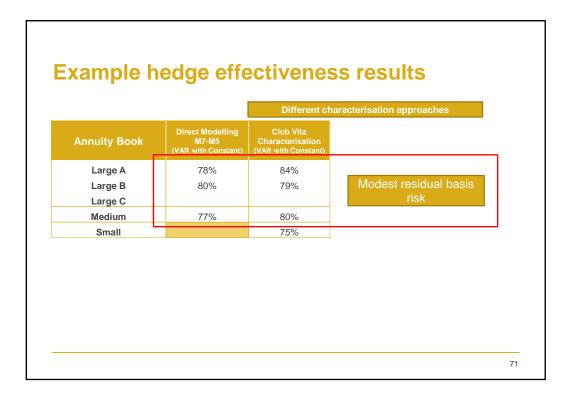


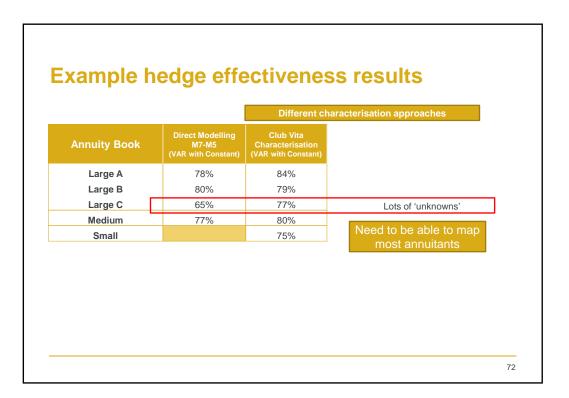


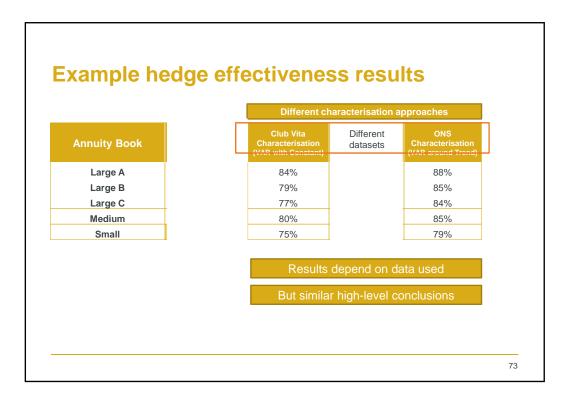


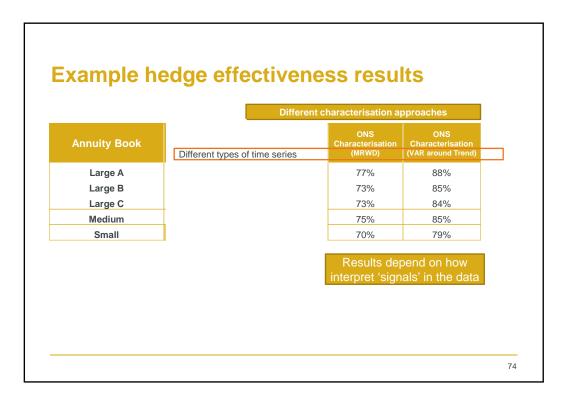





Wide range of potential data	Example with ONS data (men)						
sources:			D	eprivati	ion		
 ONS (segment by IMD) 	High (C	25)	Q4	Mid (Q3)		2	Low (Q1)
 CMI (segment by pension amount) 							
 Club Vita (multiple potential factors) 							
 Principles for creating SEGs: 	E	xampl	e with	Club \	/ita da	ta (me	en)
- 25,000+ lives		Deprivation					
 Capture differences in trends 			Q5	Q4	Q3	Q2	Q1
 Keep groups with very different baseline apart 	Dension	<5k					
	SU	5-10k					
 Widely usable 	e	0 TOK					

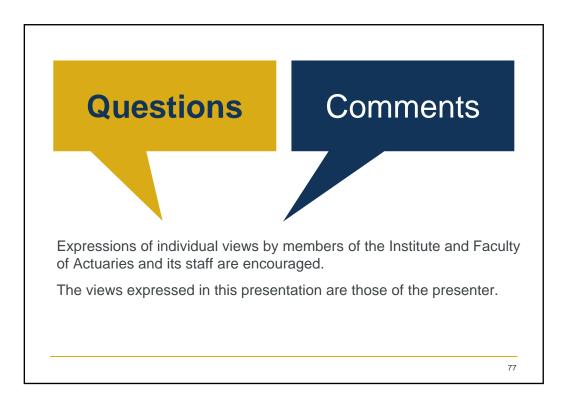


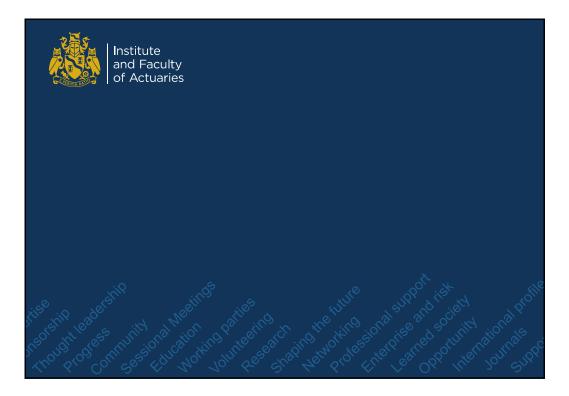

Annuity	Annual	Exposure period	IMD split	Club Vita	Commentary
book	exposure ¹		Low Mid High Unknown	Wealthy Middling Unhealthy Unknown	
Large A	28k	1993 2011 • • • • • • • • • • • • • • • • • • •			Single pension scheme Large enough to do direct modelling Long history
Large B	28k	1995 2007 1993 2013			Combined scheme ² Large enough to do direct modelling Medium history
Large C	28k	1997 2006 			Combined scheme ² Large enough to do direct modelling Medium history
Medium	20k	1997 2006 			Single pension scheme Borderline for direct modelling Medium history Wealthy
Small	12k	1993 2011 2013			Single pension scheme Too small for direct modelling Long history Very wealthy


Annuity Book	Direct Modelling M7-M5	Club Vita Characterisation	ONS Characterisation	ONS Characterisation
Annuly Book	(VAR with Constant)	(VAR with Constant)	(MRWD)	(VAR around Trend)
Large A	78%	84%	77%	88%
Large B	80%	79%	73%	85%
Large C	65%	77%	73%	84%
Medium	77%	80%	75%	85%
Small		75%	70%	79%
Medium		80%	75%	85%

Summing up

Today we have seen


- Highlighted importance of demographic risk
- Illustrated a direct modelling approach
 - Including how we have narrowed down the wide range of possible models to 'best of breed'
- Introduced a method for smaller books
- Shown that it is possible to assess riskreward trade-off of index-based swaps


On 8th December will also cover

- A decision framework:
 - When to use M7-M5 and when to use CAE+ Cohorts
 - Some other criteria we have glossed over today!
- Some key challenges faced in practice:
 - Men and women
 - Incorporating user (expert) judgement
 - The time series dilemma

We hope to see you at the sessional meeting on 8th December where we will launch the full framework.

76

