Quantifying and allocating mortality risk in defined-benefit pension schemes

Catherine Donnelly

Department of Actuarial Mathematics and Statistics, and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh

1 June 2012

Motivation

• Small defined-benefit pension schemes

- Mortality risk components:
 - Systematic risk distribution of deaths.
 - Idiosyncratic risk random fluctuations.

Outline

- Homogeneous pension scheme
- 2 Executive section
- Risk capital allocation

Homogeneous pension scheme

- N members all age 40.
- $Y_n := P.V. r.v.$ of £1 p.a. from age 65, for member n.
- P.V. r.v. of total liability

$$L_N = \sum_{n=1}^N Y_n.$$

• For example,

$$\mathbb{E}(L_N) = N \, v^{65-40}_{25} p_{40} \, \bar{a}_{65}.$$

Risk measure

$$Coefficient of variation = \frac{standard deviation of total liability}{expectation of total liability}$$

If Y_1, Y_2, \ldots, Y_N are independent, then

$$\operatorname{VCo}(L_N) = \frac{\operatorname{sd}(L_N)}{\mathbb{E}(L_N)} \to 0 \text{ as } N \to \infty.$$

Numerical results: deterministic mortality model (PMA92C10) and $\delta = 4\%$ p.a.

Stochastic mortality model

Stochastic mortality model r

$$age rating = \begin{cases} +r & \text{with probability 0.5,} \\ -r & \text{with probability 0.5.} \end{cases}$$

based on PMA92C10.

```
e.g. either everyone is PMA92C10 +1,
```

or everyone is PMA92C10
$$-1$$
.

Numerical results: $\delta = 4\%$ p.a.

Stochastic mortality model r

Here Y_1, Y_2, \ldots, Y_N are not independent, and

$$\operatorname{VCo}_r(L_N) \quad = \quad \frac{\operatorname{sd}_r(L_N)}{\mathbb{E}_r(L_N)} \quad \to \quad \frac{\sqrt{\operatorname{Cov}_r(Y_1,Y_2)}}{\mathbb{E}_r(Y_1)} \quad \text{as } N \to \infty.$$

Interpretation:

• Systematic risk measure:

$$\frac{\sqrt{\mathrm{Cov}_r(Y_1,Y_2)}}{\mathbb{E}_r(Y_1)}.$$

• Idiosyncratic risk measure:

$$\mathrm{VCo}_r(L_N) - \frac{\sqrt{\mathrm{Cov}_r(Y_1,Y_2)}}{\mathbb{E}_r(Y_1)}.$$

Summary of homogeneous pension scheme

1. Uncertainty about distribution of deaths \uparrow , then VCo(L_N) \uparrow .

Systematic risk: cannot eliminate by increasing number of members N

2. Number of members \downarrow , then VCo(L_N) ↑.

Idiosyncratic risk: reduce by increasing number of members N.

Pension scheme with executive section

As before except

- αN are executives.
- Executive benefit: £k p.a. from age 65.

e.g.
$$N = 100$$
, $\alpha = 5\%$, $k = 20$. Then

- 95 members receive £1 p.a. from age 65 (non-execs).
- 5 members receive £20 p.a. from age 65 (execs).

Numerical results: deterministic mortality model (PMA92C10), $\delta = 4\%$ p.a. and $\alpha = 5\%$.

Pension scheme with executive section

Setting

$$f(\alpha, k) = \frac{\alpha k^2 + 1 - \alpha}{(\alpha k + 1 - \alpha)^2},$$

we find

$$\begin{split} &\operatorname{VCo}_r(L_N) \\ = & \frac{1}{\mathbb{E}_r(Y_1)} \\ &\cdot \left(\frac{1}{N} f(\alpha, k) \left(\operatorname{Var}_r(Y_1) - \operatorname{Cov}_r(Y_1, Y_2) \right) + \operatorname{Cov}_r(Y_1, Y_2) \right)^{1/2}. \end{split}$$

Summary of pension scheme with executive section

1. Executive benefits \uparrow , then $VCo(L_N) \uparrow$.

Idiosyncratic risk: reduce by

- increasing number of members N, and
- decreasing executive benefit levels k.

Risk capital

- Risk capital: cushion against unexpected losses.
- "unexpected losses"... define as:
 - extreme quantile-type, e.g. $VaR_{99\%}(L_N)$, $ES_{99\%}(L_N)$?
 - interval around the mean, e.g. standard deviation, semi-standard deviation of L_N?
- We focus on standard deviation.

Risk capital definition

Risk capital :=
$$\mathrm{sd}_r(L_N)$$

Scheme 1: All members currently age 40.

- 195 members receive £1 000 p.a. from age 65 (non-execs).
- No executive members.

Basis: PMA92C10, interest rate 4% p.a.

- Expected liability is £869 500.
- Standard deviation of liability is £24500.
- Risk capital is £24 500.

Risk capital definition

Risk capital :=
$$\mathrm{sd}_r(L_N)$$

Scheme 2: All members currently age 40.

- 95 members receive £1 000 p.a. from age 65 (non-execs).
- 5 members receive £20 000 p.a. from age 65 (execs).

Basis: PMA92C10, interest rate 4% p.a.

- Expected liability is £869 500 (same as Example 1),
- BUT standard deviation of liability is £80 300.
- Risk capital is £80 300.

Risk capital allocation

Idea: find concentrations of risk by allocating risk capital.

Risk capital allocation problem:

For member n, find an amount π_n such that

$$\sum_{n=1}^{N} \pi_n = \text{Risk capital} = \text{sd}_r(L_N).$$

Ideas?

- Benefit-weighted allocation.
- Covariance principle.

Benefit-weighted allocation

Benefit-weighted allocation: allocate risk capital among members in proportion to benefit.

Scheme 1: All members currently age 40.

- 195 members receive £1 000 p.a. from age 65 (non-execs).
- No executive members.
- Risk capital is £24 500.

Benefit-weighted allocation: all members have identical allocation $\pi^{\rm non-exec}.$

Find: $\pi^{\text{non-exec}} = £126$.

Benefit-weighted allocation

Benefit-weighted allocation: allocate risk capital among members in proportion to benefit.

Scheme 2: All members currently age 40.

- 95 members receive £1 000 p.a. from age 65 (non-execs).
- 5 members receive £20 000 p.a. from age 65 (execs).
- Risk capital is £80 300.

Benefit-weighted allocation: $\pi^{\text{exec}} = 20\pi^{\text{non-exec}}$.

Find: $\pi^{\text{exec}} = £8236$ and $\pi^{\text{non-exec}} = £412$.

Benefit-weighted allocation

Is 5
$$\times$$
 £20 000 p.a. as risky as 100 \times £1 000 p.a?

Benefit-weighted allocation: Yes.

Scheme 1: 100 members allocated £126 \times 100 = £12600.

Percentage of risk capital = $\frac{12600}{24500}$ = 51%.

Scheme 2: 5 executives allocated £8 236 \times 5 = £41 200.

Percentage of risk capital = $\frac{41200}{80300}$ = 51%.

Covariance principle: if X_n is P.V. r.v. of benefit due to member n then

$$\pi_n = \frac{\operatorname{Cov}_r(X_n, L_N)}{\operatorname{sd}_r(L_N)}$$

is the risk capital allocated to member n.

Also called the Euler capital allocation principle.

Scheme 1: All members currently age 40.

- 195 members receive £1 000 p.a. from age 65 (non-execs).
- No executive members.
- Risk capital is £24 500.

All members in the scheme are identical.

Covariance principle: find: $\pi^{\text{non-exec}} = £126$.

Same as benefit-weighted allocation method.

Scheme 2: All members currently age 40.

- 95 members receive £1 000 p.a. from age 65 (non-execs).
- 5 members receive £20 000 p.a. from age 65 (execs).
- Risk capital is £80 300.

Covariance principle, find $\pi^{\text{exec}} = £15\,332$ and $\pi^{\text{non-exec}} = £38$.

Is 5
$$\times$$
 £20 000 p.a. as risky as 100 \times £1 000 p.a?

Covariance principle: No.

Scheme 1: 100 members allocated £126 \times 100 = £12600.

Percentage of risk capital = $\frac{12600}{24500}$ = 51%.

Scheme 2: 5 executives allocated £15 332 \times 5 = £76 700.

Percentage of risk capital = $\frac{76700}{80300}$ = 95%.

Comparing capital allocation methods

Which method reflects risk best?

Scheme 2: All members currently age 40.

- 95 members receive £1 000 p.a. from age 65 (non-execs).
- 5 members receive £20 000 p.a. from age 65 (execs).
- Risk capital is £80 300.
- Benefit-weighted allocation: executives allocated 51% of total risk capital.
- Covariance principle: executives allocated 95% of total risk capital.

Connection between capital allocation methods

Fix α , k.

Let $p^{\text{exec}} = \text{proportion of risk capital allocated to execs.}$

 Under covariance principle and a deterministic mortality model,

$$p^{\text{exec}} = \frac{\alpha k^2}{\alpha k^2 + 1 - \alpha}.$$

• Under benefit-weighted allocation and any mortality model,

$$p^{\text{exec}} = \frac{\alpha k}{\alpha k + 1 - \alpha}.$$

Capital allocation methods

Under covariance principle and a stochastic mortality model,

•

$$p^{\text{exec}} = \frac{\alpha k}{\alpha k + 1 - \alpha} + O\left(\frac{1}{N}\right).$$

- {exec systematic risk} = $k \times \{\text{non-exec systematic risk}\}.$
- {exec idiosyncratic risk} = $k \times \{\text{non-exec idiosyncratic risk}\} + k(k-1) \cdot O(\frac{1}{N}).$

As
$$N \to \infty$$
,

 p^{exec} (covariance, SMM) $\rightarrow p^{\text{exec}}$ (benefit-weighted, any mortality).

Numerical results: $\alpha = 5\%$, N = 100 and $\delta = 4\%$ p.a.

Numerical results: $\alpha = 5\%$, N = 500 and $\delta = 4\%$ p.a.

Numerical results: $\alpha = 5\%$, SMM(1) and $\delta = 4\%$ p.a.

Numerical results: k = 5, N = 100 and $\delta = 4\%$ p.a.

Numerical results: k = 5, N = 500 and $\delta = 4\%$ p.a.

Summary

- Quantify mortality risk.
- Can help us to understand risks better.
- Techniques exist to allocate risk.
- Measuring concentrations of risk can inform risk mitigation strategies.

Future work

- Study of different capital allocation techniques.
- Incorporate financial risks.
- Risk mitigation strategies.

Acknowledgements and references

Thanks to The Actuarial Professional for financial support to attend this conference.

More details:

C. Donnelly. *Quantifying mortality risk in small defined-benefit pension schemes.* Scandinavian Actuarial Journal, to appear. DOI: 10.1080/03461238.2011.635803.

Website: http://www.ma.hw.ac.uk/~cd134/