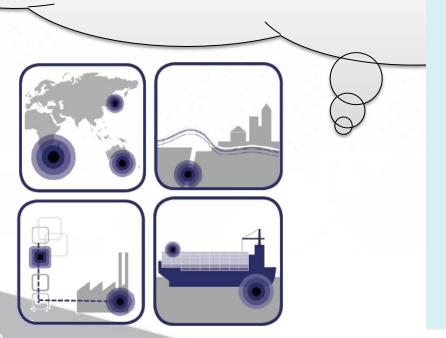


Risk Can Be Thought of as a Landscape of Multiple Perils, Each Having Different Magnitudes and Spatial Locations

*the larger the height of the column, the larger the hurricane risk

AIR Models Captured a Significant Percentage of the Total Insured Loss This Century

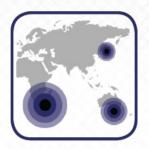

200-Year Industry Annual Aggregate Loss Across All Perils for Australia Consists of Large Modelled Risks but Non Modelled Risks Can Be Significant

Event	Catastrophe Number if declared	Date dd/mm/yy	Location	State	Original Cost (AUD\$)	2011 Normalised Cost (AUD\$)
Hail	CAT NSW 99/1	14/04/1999	Sydney	NSW	1,700,000,000	4,296,000,000
Cyclone Tracy	CAT 88	24/12/1974	Darwin	NT	200,000,000	4,090,000,000
Earthquake	Not available	28/12/1989	Newcastle	NSW	862,000,000	3,240,000,000
Cyclone, Wanda Flood	Not available	25/01/1974	Brisbane	QLD	68,000,000	2,645,000,000
Hail	Not available	18/01/1985	Brisbane	QLD	180,000,000	2,063,000,000
Severe Storm	CAT NSW 07/3	08/06/07- 10/06/07	Newcastle & Hunter Valley	NSW	1,480,000,000	1,742,000,000
Cyclone Leah	Not available	04/03/1973	Northern Australia	QLD/NT/WA	30,000,000	1,492,000,000
Bushfire Ash Wednesday	Not available	16/02/1983	Not available	VIC	138,000,000	1,489,000,000
Hail	Not available	18/03/1990	Sydney	NSW	319,000,000	1,297,000,000
Victorian fires	CAT 09/2 & 09/3	07/02/2009	VIC	VIC	1,070,000,000	1,266,000,000
Melbourne Storm	CAT102	06/03/2010	Melbourne	VIC	1,044,000,000	1,160,000,000
Perth Storm	CAT103	22/03/2010	Perth	WA	1,053,000,000	1,019,000,000
Cyclone Ada	Not available	18/01/1970	Bowen & Mackay	QLD	12,000,000	1,001,000,000

Source: http://www.insurancecouncil.com.au/industry-statistics-data/disaster-statistics/historical-disaster-statistics

The ABI Has Developed Explicit Guidance to Help Companies Understand and Manage Non-Modelled Risk

'Any potential source of non-life insurance loss that may arise [from] catastrophe events, but which is not explicitly covered by a company's use of existing catastrophe models'

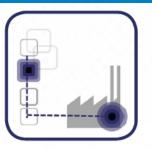


Association of British Insurers

NON-MODELLED RISKS

A guide to more complete catastrophe risk assessment for (re)insurers

Non-modelled regions/perils


Secondary perils and effects not covered by catastrophe models

Potential Sources of Non-Modelled Risk

Classes/lines of business not covered by catastrophe models

Coverages not considered by catastrophe models

Managing Non-Modelled Risk in Touchstone

Gaps, limitations, and assumptions

Understand your exposure data and model output

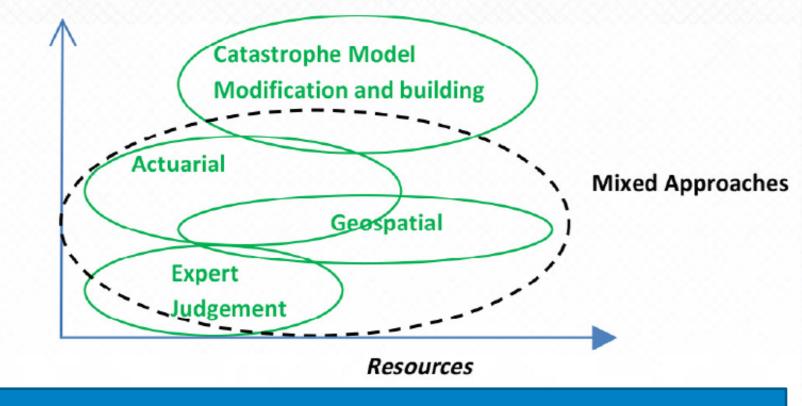
Where do I have exposure accumulation?

TOUCHSTONE

Materiality

Which tools are appropriate?

Quantify and evaluate non-modelled risk using appropriate analytical tools


Identify
potential
sources of
non-modelled
risk

Claims Based

Exposure Based

There Are a Range of Methods Available to Quantify Non-Modelled Risk

Complexity

Pick the method that is most appropriate for the type and materiality of the non-modelled risk the portfolio is exposed to.

Tools Currently Available in Touchstone to Identify, Evaluate, and Manage Non-Modelled Risk

Geospatial Module

Aggregate accumulation by:

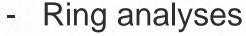
- ✓ Geographic Zones
- ✓ Event Footprints
- ✓ Hazard Footprints
- ✓ Concentric Ring
- ✓ Apply terms using the AIR Financial Model
- ✓ Apply damage ratios to ground-up calculations

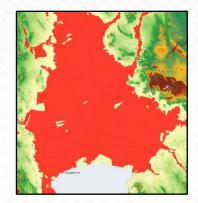
Loss Modification

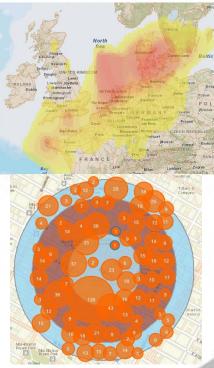
Apply ground-up loss modification by:

- ✓ Peril
- ✓ Geographic Region
- √ Coverage
- ✓ Line of Business
- ✓ Event Parameter

Future functionality:


- Modify damage functions
- Modify event severity
- Modify event frequency

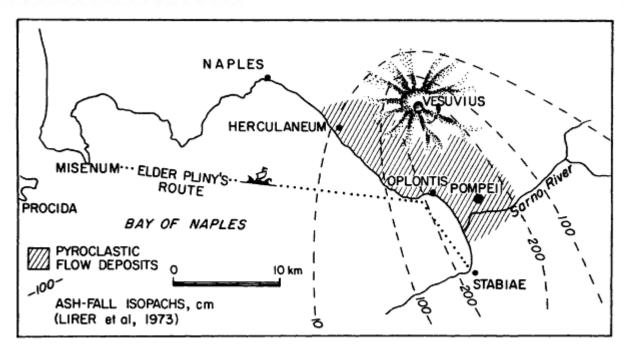

Geospatial Methods to Quantify Risk Can Take Multiple Forms


Accumulation within hazard files

- Boundary files which approximate the extent of the hazard to compute total exposed limit within a boundary, e.g., flood extents
- Realistic hazard footprints, <u>e.g.</u>, <u>estimating loss</u> <u>within wind footprints</u>

- Using ring analyses to estimate loss potential at specified locations, <u>e.g., terrorism rings</u>
- Using dynamic ring analyses to find regions with largest exposed limits
- Apply PMLs or damage ratios to exposure within a boundary to compute estimated *loss*, <u>e.g.</u>, <u>flood depth</u> <u>return period maps</u>

What Is Accumulation?

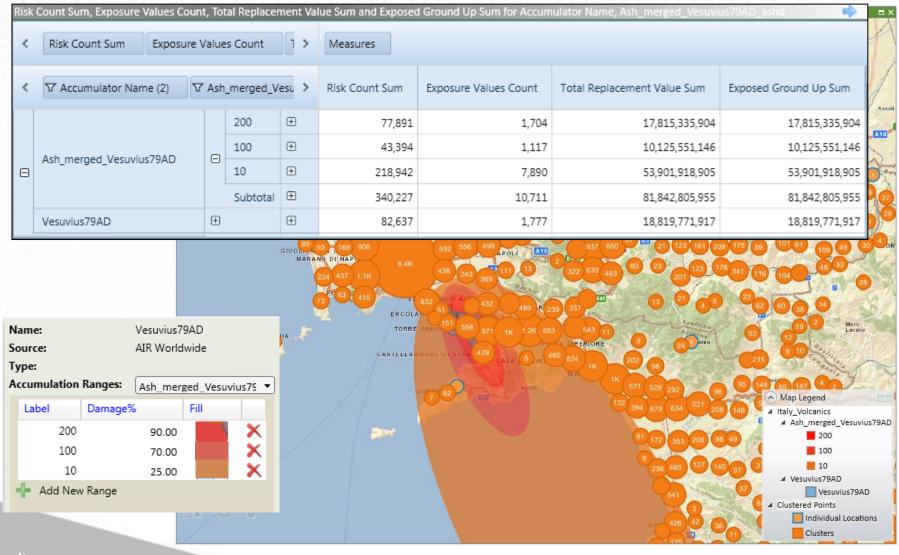

- Accumulation is the process whereby exposure is aggregated and a PML % is applied (this could be 100%) such that the total exposure within the aggregation region can be determined
- Sorting the total exposed limit by region/peril can give an idea of the materiality of non-modelled risks faced by an entity
- Touchstone®
 - Many examples in this presentation will use AIR's next generation modelling platform, Touchstone due its geospatial abilities
 - This is a catastrophe modelling software platform that can also import hazard data, do ring analyses and accumulate exposure

Footprints for Historical Events: A.D. 79 Vesuvius Eruption

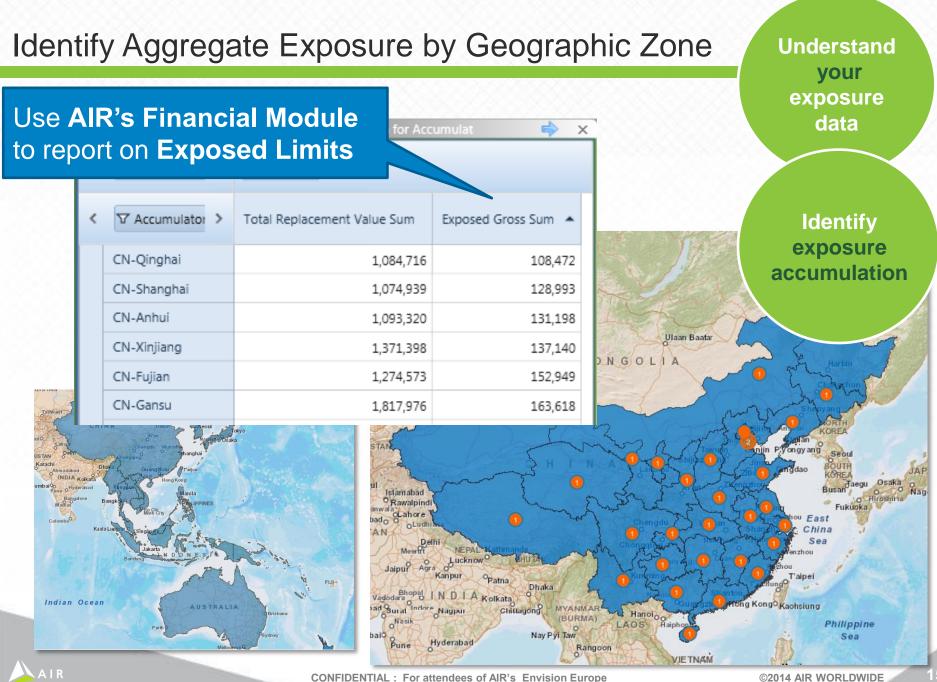
The Eruption of Vesuvius in A.D. 79: Reconstruction from Historical and Volcanological Evidence*

HARALDUR SIGURDSSON, STANFORD CASHDOLLAR AND STEPHEN R.J. SPARKS

GATE


Accretionary Lapilli

Ground Surge


Ill. 1. Map of the Vesuvius region and Bay of Naples, showing the extent of the area affected by pyroclastic flows during the eruption of A.D. 79. Broken lines are isopachs of the pumice fall during the Plinian phase

Determine an Estimate of Loss for a Historical Scenario

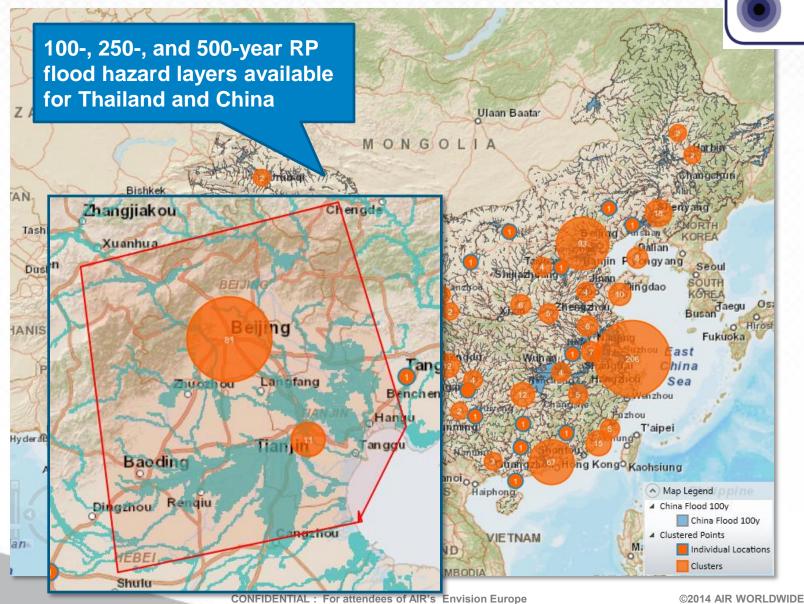
Asia Pacific Case Study MONGOLIA Indian Ocean

Identify Localised Areas of Highest Accumulation

Global ring placement:

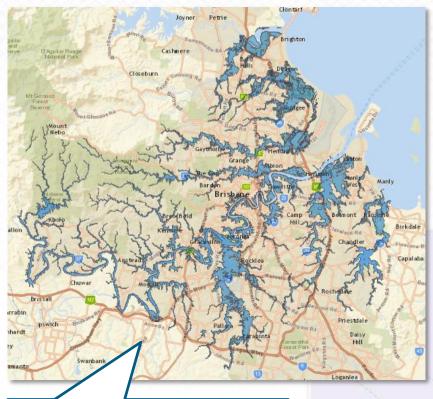
- ✓ User-specified
- ✓ Third-party provider (IHS)
- ✓ Portfolio TRV-based
- ✓ Grid-based
- ✓ Intelligent 'highest accumulation'

Understand your exposure data


Identify exposure accumulation

	Damage Ranges						
	Damage Band Info		Perspectives				
	ID	Radius 🔺	Damage Ratio	Ground Up	Gross	Total Replacement \	F
	1	200 Meters	100	727,024,047	726,982,592	727,024,047	
	2	400 Meters	25	442,407,848	441,457,669	1,769,631,392	
	3	500 Meters	10	44,441,289	43,997,216	444,412,885	
- 1							

Specify diameter of nested rings and damage ratio by peril



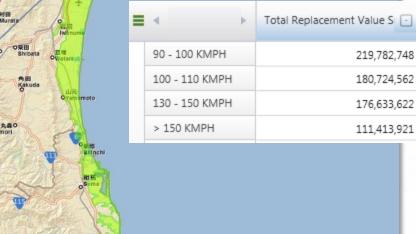
AIR-Provided Hazard Layers Can Be Used to Assess Non-Modelled Perils, Such as China Flood Risk

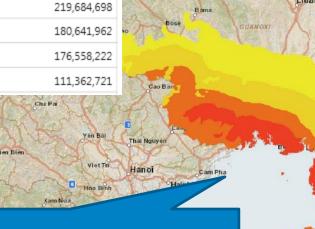
Third-Party Event Footprints and Hazard Layers Can Be Accumulated Against in Touchstone

100-year return period pluvial and fluvial extents for Malaysia

AIR-Provided ALERT Event Footprints Can Be Accumulated Against in Touchstone

Tohoku earthquake 2011 tsunami-inundation footprint


Accumulate exposure that falls within the earthquake and tsunami footprints

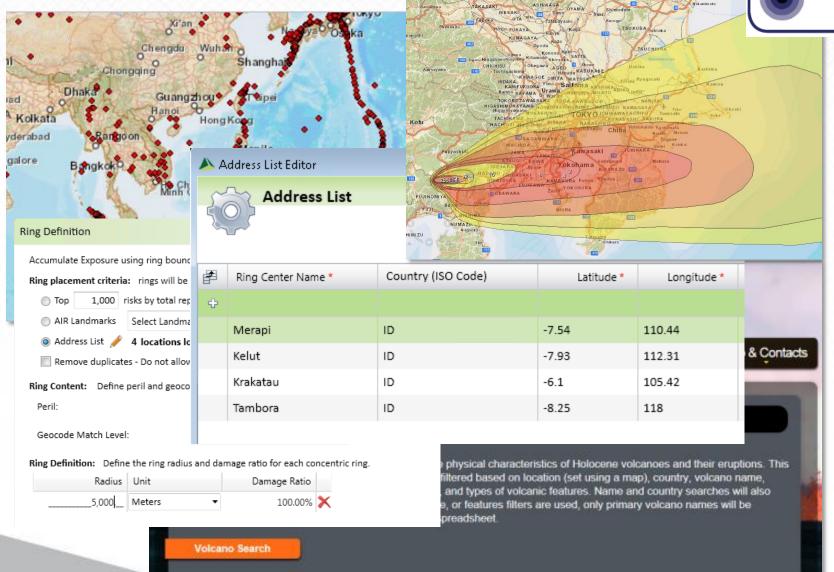


HUAICHENG

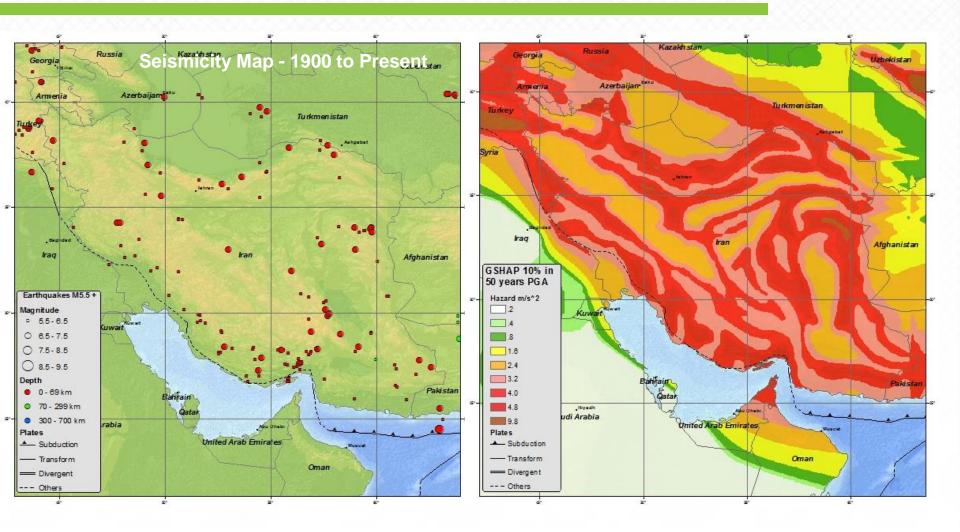
A Map Legend

Individual Location

Typhoon Rammasun 2014


Exposed Gross Sum >

Accumulate exposure by user-specified damage ratio and wind speed band


A I R

CONFIDENTIAL: For attendees of AIR's Envision Europe

Publicly Available Data Sets Can Be Used to Quantify Risk For Non-Modelled Regions and Perils

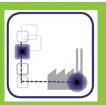
Seismicity and Intensity Information for Non-Modelled Regions Can Be Used for Simple Risk Quantification

Source: http://earthquake.usgs.gov/earthquakes/world/iran/seismicity.php

Source: http://earthquake.usgs.gov/earthquakes/world/iran/gshap.php

Distributing Aggregate Exposure for Non-Modelled Risk Quantification Can Be Informed Using Night Lights Data

Country	TIV
Italy	€2bn


Country	TIV
Rome	€0.5bn
Venice	€0.2bn
•••	

Source: http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=79765

Using Ground-Up Loss Modification to Account for Non-Modelled Coverages and Secondary Perils

Non-Modelled Coverages

- Most catastrophe models routinely cover physical damage and business interruption
- Additional coverages and or subterms may not be explicitly modelled

Potential additional coverages for commercial/industrial risks

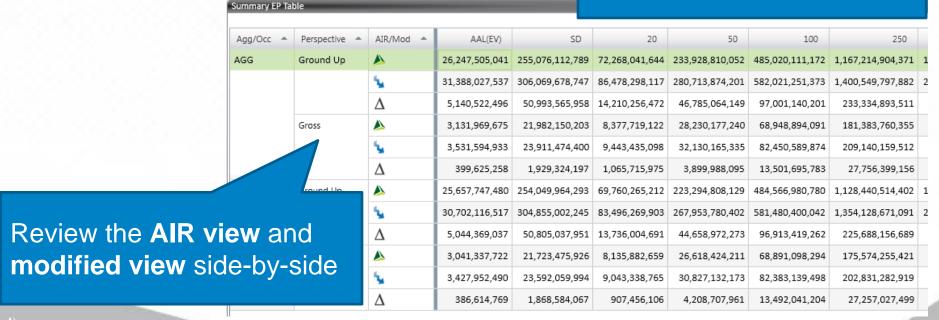
- ✓ Contingent business interruption
- ✓ Debris removal
- ✓ Pollution
- ✓ Machinery breakdown

Secondary Perils

- Primary event characteristics are captured in a catastrophe model
- Losses from resultant or secondary perils may not be represented

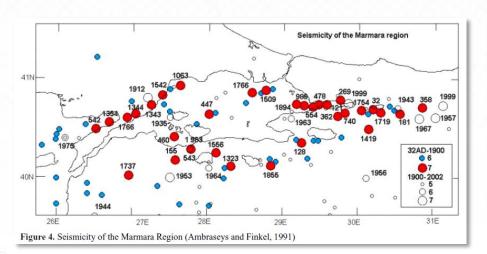
Potential secondary perils (varies by region and peril)

- ✓ Storm surge/tsunami
- ✓ Liquefaction
- ✓ Landslide/mudslide
- ✓ Loss adjustment expenses
- ✓ Demand surge


Applying a Ground-Up Loss Modification to Account for Storm Surge in Japan Typhoon Model

Apply loss modification by:

- ✓ Peril
- ✓ Geographic Region
- ✓ Coverage
- ✓ Line of Business
- ✓ Event Parameter


Adjust Losses by Event Parameters - Turkey Earthquake

- Insurance company would like to account for liquefaction risk in Turkey

IAEG2006 Paper number 392

The engineering geology of İstanbul, Turkey

ÖMER ÜNDÜL¹ & ATIYE TUĞRUL²

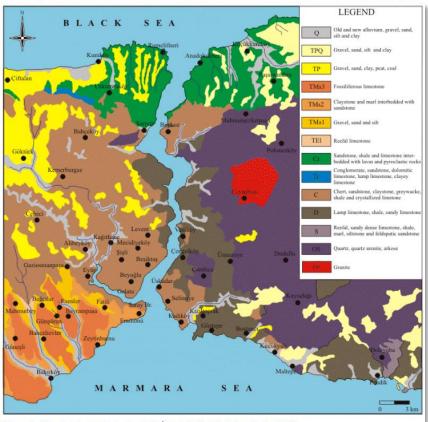
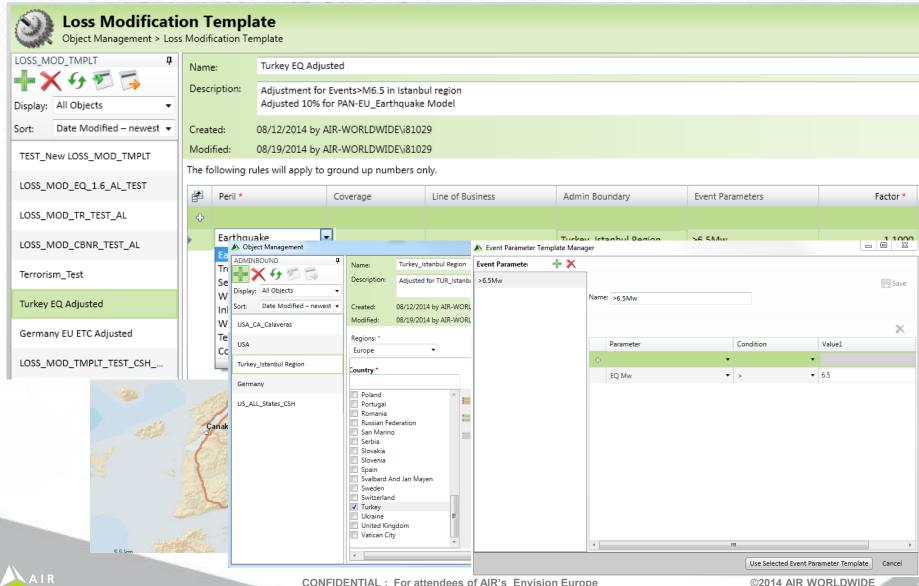



Figure 2. Map showing geological units in Istanbul (Modified from Ketin, 1991)

¹ İstanbul University. (e-mail: oundul@istanbul.edu.tr)

² İstanbul University. (e-mail: tugrul@istanbul.edu.tr)

Adjust Losses by Event Parameters - Turkey Earthquake

Summary

- Understanding the exposure data and model output you are working with and its gaps and assumptions is critical to tackling non-modelled risk
- Touchstone allows users to identify, manage, and quantify non-modelled risk on a global basis using the Geospatial Analytics module and loss modification factors

