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Abstract

In the light of the increasing importance of data in insurance and, as a con-
sequence, in the actuarial practice, this dissertation has a two-fold objective.
First of all, it should provide actuaries with an introduction to data science,
including basic concepts, terminology, data mining issues, performance mea-
sures, machine learning techniques and software. That is necessary as those
topics are definitely outside the typical toolkit of actuaries. Secondly, it
should suggest significant applications of data science to actuarial problems
(e.g., pricing, reserving, ratemaking, etc.). We will look at a number of case
studies, investigating the extent to which machine learning can enhance or
outperform more traditional approaches.
The dissertation is indeed structured to reach these two goals. While Chap-
ter 1 consists of an introduction to the main concepts of data science, Chap-
ters 2, 3 and 4 describe three different applications in actuarial practice
tackled with machine learning techniques. The details on those techniques
are outlined just before the applications themselves, in order to keep data
science and actuarial practice parallel all the way through the dissertation.
To pass on the message that data science can be relevant to any actuary
regardless of his/her specific field, the applications involve very different
topics. Chapter 2 focuses on marketing and customer behaviour in motor
insurance to highlight the importance of data preparation and unsupervised
learning. Chapter 3 describes the most common supervised learning tech-
niques as an alternative to regression models in a traditional non-life topic
like claim reserving. Finally, Chapter 4 illustrates an example of data sci-
ence application in life practice, that is, predicting lapse rates to improve
asset-liability-management models.
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Chapter 0

Background

The main goal of this project is to represent a systematic introduction to
data science for actuaries, leveraging some of those topics that could bene-
fit from it. The dissertation is structured as a data science handbook, but
the applications are purely actuarial. Obviously, the dissertation does not
account for each and every aspect of data science or actuarial science, but
it may be easily enhanced to include new algorithms and examples in the
future.
Similar works have been published in the last decade, trying to bridge be-
tween daily actuarial practice and more advanced techniques. One of the
very first examples is represented by Parodi (2009), where a large number
of risk evaluation techniques are introduced, and applied to actuarial topics.
To some extent, its structure is similar to that of this dissertation. On the
one hand, it is broader and goes beyond data science itself, introducing a
large range of computational methods. On the other hand, however, it is
limited to general insurance, which lends itself to advanced statistics in a
more natural way.
After the aforementioned work, an even higher level of detail is reached
in Frees et al. (2014) and Frees et al. (2016), respectively dealing with rel-
evant quantitative techniques in the actuarial field and a variety of appli-
cations from several papers. That is the result of a huge effort from many
researchers, providing a comprehensive view of quantitative actuarial science
in theory and practice. Frees et al. (2014) introduces regression models and
other parametric methods, which are then used in Frees et al. (2016). Even
if it is not strictly about data science and machine learning algorithms, it
has surely inspired this dissertation.
Wüthrich et al. (2018) represents a more recent attempt to connect data
science and actuarial practice. It introduces all the main machine learning
techniques with a remarkable level of detail, focusing on a variety of motor
insurance pricing applications. Once again, the presentation of the methods
is extremely comprehensive, but the applications are still limited to a very
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CHAPTER 0. BACKGROUND 6

specific field, that is, pricing in motor insurance. Of course, that represents
a typical actuarial topic where analytics can be successfully applied in its
several forms, but it is not the only one.
In the last years, researchers were not the only ones to produce these type of
works. Indeed, actuarial associations began to promote data science topics
in their working groups, reporting on the opportunities offered by machine
learning and big data to the actuarial world.
One of the first contributions was provided by the Belgian actuarial as-
sociation publishing IABE Information Paper (2015). Although it is quite
focused on the business perspective of big data rather than the quantitative
aspects of data science, it brings together a lot of interesting ideas on the
future of the actuarial profession in the era of data explosion. It covers
all the sectors involving actuarial activities, from life to non-life, from pric-
ing to reserving. Emphasizing business-related problems such as customer
management, claim reserving and policyholder behaviour, it has somehow
suggested the three applications we will present. At the same time, in spite
of its lack of quantitative analysis, it has inspired the conclusion to this dis-
sertation in the last chapter.
Another, more recent contribution is represented by IFoA (2018) published
by the Modelling, Analytics and Insights in Data working party of the Insti-
tute and Faculty of Actuaries. Even if it is much briefer than this disserta-
tion, it shares some of its goals, that is, introducing data science to actuaries
and applying machine learning to actuarial case studies. While the former
is reached by handling most of the concepts handled in this dissertation
as well, the latter is reached through different applications. In particular,
IFoA (2018) uses supervised learning for interest rate prediction, marine hull
pricing, catastrophe exposure management, and suicide rate estimations.
In IFoA (2018), the business perspective is still present and sometimes pre-
dominant, but the discussion encompasses many fundamental data science
ideas. Part of the concepts expressed in this dissertation are introduced
there as well, although from a high-level perspective and without the nec-
essary details to understand what is really behind each algorithm. Even if
the applications do not represent the heart of that work, they touch various
actuarial sectors just like we will do here, aiming to demonstrate the po-
tential of alternative techniques against traditional methods. Those aspects
make IFoA (2018) different to all the aforementioned works, raising interest
among actuaries from any background and sector.
In this dissertation, we aim to pick the best features from the cited works, in
order to build a comprehensive, detailed and actuary-oriented introduction
to data science. It is essentially structured to answer the following questions:

• What? That is: data, dataset partitions, performance measures,
software, supervised learning, unsupervised learning, algorithms, etc.
Some of those topics will be first presented in Chapter 1, especially
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concepts representing the foundations of data science, which will be
then useful throughout the dissertation. By contrast, the peculiarities
of algorithms will be covered in detail as soon as we will need them
for the actuarial applications of the central chapters, in order to bet-
ter connect machine learning technicalities and specific case studies.
Considerable effort will be devoted to maintain the typical structure
of data science manuals in terms of sequence of the topics.

• How? That is: actuarial applications for different sectors of the ac-
tuarial practice. More specifically, we will tackle three case studies:
customer management in Chapter 2, individual reserving in Chapter
3 and policyholder behaviour in Chapter 4. They will be respectively
handled by using unsupervised learning, supervised learning and en-
sembles (i.e., combinations of different methods). Data availability is
not the only reason why we choose those topics. First, we want to
tackle things that are potentially part of the daily actuarial practice
such as renewal rates, claim reserves or lapse probabilities. Second, we
want to tackle things involving different actuarial areas such as under-
writing, non-life business and life business. These two targets aim to
raise the interest of actuaries regardless of their specific background
and role in the industry.

• Why? That is: accuracy or inaccuracy, stability or instability, in-
terpretability or black-box effect, etc. Highlighting relevant reasons
to prefer data science over traditional approaches is crucial. As a
first step, Chapter 3 will demonstrate the importance of unsupervised
learning in data manipulation as well as its potential in detecting clus-
ters and improving accuracy. However, this will come at the cost of
increase in model complexity. Instead, Chapter 2 will show that more
flexible machine learning techniques such as decision trees may outper-
form regression models. Even if this is not a statement that holds in
general, it will provide actuaries with suitable alternative methods to
boost model performance. Actually, Chapter 4 will start illustrating
that those alternatives may miserably fail because of instability due
to data flaws, algorithmic issues or other problems. That will justify
the usage of ensembles: in particular, bagging trees will imply more
stability and outperformance over logistic regression.

This is just a first step to make data science methods relevant to the whole
actuarial world, in both academia and industry.



Chapter 1

Data Science Basics

As suggested by the title, this first chapter will represent a brief introduc-
tion to the main concepts used in data science. They encompass general
and soft notions (e.g., classification and prediction, supervised learning and
unsupervised learning, etc.) as well as more precise and technical definitions
(e.g., bias and variance, performance measures, etc.).

Chapter overview

The first part will provide the reader with an overview of the current role of
data science in business, describe the data mining process through its main
standards, and highlight the importance of data availability. Subsequently,
the second part will introduce some typical performance evaluation tools and
other criteria for model selection, define generalized linear models that are
relevant to actuarial practice, and list the most common machine learning
techniques.
Most of those concepts will be used throughout the dissertation on several
occasions, although they are not entirely part of the traditional actuarial
background. Therefore, the next pages aim to build the necessary foundation
for the following chapters.

1.1 Some terminology

When it comes with statistical methods, there are quite a lot of terms that
are spreading among actuaries nowadays. Nonetheless, actuaries are not
really statistical experts since their education is focused on statistics to the
extent they are effectively applicable to insurance. This first section aims
to introduce some basic concepts that will turn out to be useful throughout
the dissertation. However, it is not meant to be fully comprehensive, and it
can easily get out of date as new concepts come out. For our aims, however,
it should be enough.

8



CHAPTER 1. DATA SCIENCE BASICS 9

The very first concept to introduce is that related to data science. It denotes
the scientific field about the entire range of systems, processes and methods
used for data mining, that is,

the process of exploration and analysis, by automatic or semi-
automatic means, of large quantities of data in order to discover
meaningful patterns and rules

as defined in Berry et al. (1997). Therefore, data science is much more than
statistics. Among others, it covers data integration, data architecture, data
visualization, data engineering, data-driven business analysis and of course
the whole range of tools to mine data.
Some of these tools come from classical statistics, for instance, sampling
methods, confidence intervals, hypothesis tests and regression, just to men-
tion the major ones. To some extent, all of them are based on analytical
assumptions and mathematical formalization. It guarantees a strong, theo-
retical foundation to these tools, so that they may be used in any relevant
application.
Other tools lack such a theoretical strength, but gain much more flexibility
to recognize pattern in data. More specifically, they are structured to au-
tomatically adapt their input parameters in order to catch more and more
information from a given dataset. This is the reason why it is often said
that such tools “learn” from data. The statistical field that encompasses all
of them is called machine learning, the object of this dissertation.
In machine learning, two types of “learning” are usually mentioned:

• supervised learning, that is, learning about the relations between a
range of predictors (so-called explanatory variables in regression) and
a determined target (so-called response variable in regression);

• unsupervised learning, that is, learning about the relations between a
range of variables in order to group “similar” records.

In both the cases, the algorithm catches information, and uses it to interpret
new data. In supervised learning, it will use new data predictors to predict
the related target variable. In unsupervised learning, it will use new data
variables to assign new records in previously identified clusters. Given a
dataset, one may use supervised tools or unsupervised tools depending on
the goal - prediction for the former, segmentation for the latter - but there
is no difference in the data. Just remember that, in supervised learning, we
distinguish variables between a range of predictors and one single target,
while there is not such a distinction in unsupervised learning.
Nonetheless, a further distinction is relevant in supervised learning, depend-
ing on the nature of the target variable. A specific tool is used for

• classification if the target variable is categorical
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• prediction if the target variable is numerical

• forecasting if the target variable is a time series.

The great majority of machine learning tools can be adapted for both classi-
fication and prediction, while the tools for forecasting time series are usually
considered in isolation. In our analyses, we will only consider tools for clas-
sification and prediction such as decision trees and neural networks. The
map in Figure 1.1 shows the most common ones (sometimes, there is a lack
of uniformity in naming different tools among researchers, so one could find
various names for essentially the same tool). However, on a daily basis,
brand new algorithms or improvements to old tools are created by data sci-
entists to tackle specific problems, especially in the last years. Rather than
explaining all of them, we are going to focus on the most widely used.
Quite interesting is the relationship between machine learning and artificial
intelligence. The two concepts share something similar and tend to be con-
fused with each other, but are quite different in reality. Artificial intelligence
was born in the 1960s as a subfield of computer science with the main goal of
programming computers to perform human tasks (e.g., speaking, listening,
writing, translating and many more). Actually, some of them are so complex
that artificial intelligence needs specific machine learning tools. However,
the same tools could just be as successful in any other field, say, predicting
stock prices. At the same time, one might use non-learning tools in artificial
intelligence, if they are sufficient to replicate some human behaviours (for
example, imagine a very complex algorithm with some fixed parameters: it
will run always the same way, without learning anything from new data). In
reality, human beings are so complex that machine learning tools are consid-
ered a “must” in artificial intelligence. Contemporarily, artificial intelligence
is seen as a main goal for machine learning. This is the reason why they get
often confused.
Nonetheless, artificial intelligence is not the only field where machine learn-
ing techniques have been proven to be useful. A less “noble”, but more
practical field is business intelligence. Generally, the concept of business
intelligence comprises all the data processes, data technologies and data
insights aimed to the improvement of specific business activities and perfor-
mances. Forrester.com reports the following definition:

Business Intelligence is a set of methodologies, processes, archi-
tectures, and technologies that transform raw data into meaning-
ful and useful information used to enable more effective strategic,
tactical, and operational insights and decision-making.

If we compare this definition to that of data mining, it will be clear that
business intelligence is just data mining from a business perspective, in an
industry environment. As such, it also focuses on the practical aspect of
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Fig. 1.1: A map of machine learning techniques (see Brownlee (2013))

data mining, for instance, data visualization (e.g., reporting tools and exec-
utive dashboards), decision-making process and so on. While data mining
and machine learning are rather standardized concepts, business intelligence
features are quite customizable by industry. For example, a specific indus-
try professionals usually prefer certain machine learning tools or software,
because they have been already proven to be effective in that field. Here is
a list of actual, specific and successful examples of business intelligence:

• E-commerce companies need machine learning to draw data insights
about a number of daily issues, for instance, which products would
be preferred by which customers, which customers would go for which
promotions, which products would be purchased together or in a short
time-frame and so on (this is an example of market basket analysis,
introduced later in the dissertation);

• Social network developers use machine learning to analyse users emo-
tions after status updates (this is an example of sentiment analysis);

• Search engines such as Google and Yahoo cluster “similar” web pages
by using unsupervised learning techniques;

• E-mail spam filtering always rely on some simple machine learning
tools to detect spam;

• Financial institutions use machine learning to forecast the stock mar-
ket, and thus direct investment decisions;
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• Banks classify loan and mortgage applicants by different level of riski-
ness using the default probability predicted by some machine learning
tools;

• Healthcare industry relies on machine learning in several applications,
for instance, detecting patients who will likely develop a chronic dis-
ease, and predicting possible adverse drug reactions in patients;

• Transport companies use machine learning to forecast customer be-
haviour and thus real needing in transportation in order to reduce
costs;

• Automobile industry companies predict the failure or breakdown of
mechanical parts by using machine learning;

• Speech, image and text recognition are some of the most recent - and
successful - applications of machine learning in the field of information
technology.

This list is very far to be complete: actual machine learning applications
can be found in countless fields. But what should really surprise us is that
it is only the beginning. Data science has the potential to improve (e.g.,
increasing quality, reducing costs, etc.) each and every human activity. In
some cases, such an improvement will turn into disruption, so that the foun-
dations themselves of some fields will adapt to the new technologies. To
some extent, it could be similar to the recent digital revolution in terms of
capacity.
Of course, actuaries should align throughout the world, and this disserta-
tion is especially devoted to them. After the brief introduction to machine
learning in this chapter, we will present some practical, actuarial problems
that could be actually solved by new techniques. It will give the reader a
fair idea of their potential, and maybe he/she will find out other daily issues
that could be solved in the same way.

1.2 Standards for the data mining process

As we have just discussed, machine learning is only a little component of
the data mining process. At the same time, business intelligence usually
takes a different form depending on the industry it is applied; thus the
data mining process itself is quite prone to specific changes. Consequently,
in the last two decades, the needs for a standard data mining process in-
creased dramatically, so several data mining process models have been pro-
posed. According to Piatetsky (2002), Piatetsky (2004), Piatetsky (2007)
and Piatetsky (2014), the most widely recognized as a standard framework is
the Cross Industry Standard Process for Data Mining (CRISP-DM). On the
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initiative of SPSS, Teradata, Daimler AG, NCR Corporation and OHRA,
the project started in 1996. Four years later, Chapman et al. (2000) was
published, a first guide on the data mining process.
CRISP-DM breaks the data mining process into the following six major
phases:

C1 Business understanding : identifying relevant business goals for the
data mining process, and structuring a project plan to design it in
order to meet them;

C2 Data understanding : collecting data, assessing data quality, detecting
some information through basic descriptive statistics or data visual-
ization, and drawing the first conclusions;

C3 Data preparation: preprocessing raw data through various preliminary
activities (e.g., data reduction, clustering, variable selection, variable
transformation, handling missing data, outliers and categorical vari-
ables and so on) in order to build the final dataset;

C4 Modelling : selecting a range of machine learning tools, setting them
to suit the dataset, and applying them to the business problem;

C5 Evaluation: collecting predictive performances from the different tools,
comparing them to pick the best model, and review the process to
identify issues and weaknesses;

C6 Deployment : communicating insights to the management, providing
documentation and executive reports, monitoring assumptions and
model, updating data on a regular basis and any other maintenance
activity.

The six phases and the main features of each phase are also illustrated in
Figure 1.2 and 1.3. In particular, notice that the sequence of the phases
is not meant to be strict, as illustrated by the arrows in Figure 1.2. For
instance, while building some algorithms in the modelling phase, it may
happen that we need further data transformation to adapt the dataset to
the actual algorithm. In such a case, we will get back to the data prepara-
tion phase to perform the necessary tasks, and then to the modelling phase
once again.
Although CRISP-DM is surely the most accepted standard, others are of-
ten cited. In particular, the Knowledge Discovery in Databases (KDD) de-
serves consideration as the ancestor of CRISP-DM. It was developed in 1996
and described in a series of sources (see Fayyad et al. in MIT Press (1996),
Fayyad et al. in AI Magazine (1996) and Fayyad et al. in KDD-96 (1996)).
The KDD process comprises five phases:
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Fig. 1.2: CRISP-DM reference model (see Chapman et al. (2000))

Fig. 1.3: Generic tasks (bold) and outputs (italic) of the CRISP-DM refer-
ence model (see Chapman et al. (2000))
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K1 Selection: selecting relevant variables from the dataset, in accordance
with the object of the analysis;

K2 Preprocessing : cleaning raw data to build the final dataset;

K3 Transformation: reducing data and transforming variables to make it
suitable for data mining;

K4 Data Mining : setting and using various machine learning tools to dis-
cover patterns in data in line with the object of the analysis;

K5 Interpretation/Evaluation: comparing predictive performances from
different tools in order to pick the best model, and interpreting the
results.

Another significant contribution to the standardization of the data mining
process came from SAS Institute in 2008. Its framework is called SEMMA,
from the initials of the five phases which it consists of:

S1 Sample: data sampling and partitioning;

S2 Explore: data visualization;

S3 Modify : variable selection and transformation;

S4 Model : application of various machine learning tools to provide the
desired outcome;

S5 Assess: comparison of different predictive performances from different
tools.

SAS Institute points out that SEMMA is not meant to design a generic
data mining methodology, rather it is just an internally developed frame-
work representing the foundation of their services. It is especially the case
of their data mining software, SAS Enterprise Miner, whose the main five
tabs are labelled by the names of the five SEMMA phases. Nonetheless,
Piatetsky (2002), Piatetsky (2004), Piatetsky (2007) and Piatetsky (2014)
reveal that SEMMA is often used as a general guidance for data mining in
industry - second only to CRISP-DM.
In Figure 1.4, we report a formal comparison between the phases of the
three aforementioned standards (see Azevedo et al. (2008)). Some of them
overlap with each other, but the table gives a fair indication of the reason
why CRISP-DM is the most suitable to be considered as the best practice
worldwide. Indeed, it is the only one including the business intelligence per-
spective in data mining, at the beginning (business understanding) as well
as at the end (deployment) of the process.
After each of our applications (in the final sections), we will explicitly re-
fer to all the CRISP-DM phases, except for the deployment, given that it
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CRISP-DM KDD SEMMA

Business understanding - -
Data understanding Selection Sample
Data understanding Preprocessing Explore
Data preparation Transformation Modify
Modelling Data Mining Model
Evaluation Interpretation/Evaluation Assess
Deployment - -

Fig. 1.4: Correspondences across CRISP-DM, KDD and SEMMA

is more related to the model management at enterprise level. Nonetheless,
since our scope is not purely technical, we need to go beyond data and data
mining. Finding a machine learning tool that provides us with valuable in-
sights is just a part of the work. Indeed, the ultimate question is: how does
it apply to the actuarial practice, and which is the impact on the insurance
business?

1.3 The role of data

Before going through any further detail about data science tools and applica-
tions, it should be clear to the reader that all those concepts are practically
useless without a reasonable amount of significant data. That is true in
classical statistics too, but “less fundamental”, in the sense that it only re-
quires data to fulfil some assumptions, while the existence itself of machine
learning actually relies on data.
Of course, the first problem is about gathering data. The actuarial applica-
tions that will be presented later were possible thanks to data availability.
Moreover, their outcomes may be slightly - if not even fundamentally - dif-
ferent if data changes. In other words, those applications are supposed to
provide actuaries with broad ideas to apply data science in their own field,
but they are not supposed to draw general conclusions on the related phe-
nomenons. Our analyses will be only empirical as the related datasets are
unique. Nevertheless, where possible, we will try to compare our outcomes
with the results of similar studies, in order to have an indication about their
validity.
If data is actually there, then the next question to pose is: is it reliable as
it is? Often, this is not the case, in the sense that it would need a consider-
able amount of data preparation and manipulation before machine learning
could actually step in. As we will see, our applications will also need that
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in several forms. In this phase, the most basic tasks include simple opera-
tions on data, for instance, various transformations such as log-conversion
or standardization, missing data handling, field selection, record filtering,
binarization of categorical variables, categorization of numerical variables
and so on. Sometimes, we could even need more complex techniques such as
clustering. Of course, each of those tasks need to be adapted to the specific
case, and it is not always clear how. Except for (very) few, common-sense
rules, one can hardly generalize data preparation. In data science, this is a
fundamental step though, so we will always dedicate part of our actuarial
applications to pure data preparation.
A last data issue regards the infrastructure. Even if data is there, and
has been properly prepared for further analysis, our infrastructure could be
inappropriate to handle it. This is not only due to data size (obviously,
big data requires more and more complex resources than small data), but
also data form. Structured data such as numbers and characters are rela-
tively easy to handle, but what about unstructured data such as e-mails,
audio files, photos and so on? Handling them requires much more effort and
knowledge. Although it could sound far from the tasks that actuaries face
on a daily basis (and actually these are not issues that we will encounter
throughout the dissertation), this type of data may increasingly represent
useful areas to explore as data science starts playing an important role in
actuarial practice.

1.4 Performance evaluation

Essentially, regression models are the preferred tools among actuaries for
two reasons. First, they can be easily communicated - a target variable is
just a regular function of various predictors, and the dependency is nicely
measured by a parameter. Second, they can be easily defended - under
specific assumptions, regression models return the best possible estimation.
That’s always true, regardless of how bad the results are.
As soon as such a theoretical framework is removed, we lose all the quanti-
tative measures related to it, e.g. confidence intervals, R2, p-values and so
on. Unfortunately, machine learning does not provide us with comparable
tools, that is, we need to find something else to evaluate model performance.

1.4.1 Training, validation, test

In supervised learning, we first get help from the data mining process it-
self. In the data preparation phase, indeed, the entire dataset is usually
partitioned into three parts:

• training dataset : it is used to build the model(s) we want to apply to
our specific classification or prediction problem;
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• validation dataset : it is used to evaluate the performance of the model(s)
we have just trained;

• test dataset (optional): it is meant to consist of some external data,
so it is used to provide an ultimate performance evaluation of the
model(s).

This partition represents the typical first step in data mining, as explained
in most of the data science sources (for instance, see Hastie et al. (2009)
and Shmueli et al. (2010)).
The training dataset is the most important one: if it is irrelevant for some
reasons, the model(s) will be somehow incomplete, and the related perfor-
mance evaluations from the validation data and the test data will be flawed.
Thus, it is usually the largest partition, in order to contain all the relevant
information. Once the training records have been selected and picked out,
the whole remaining dataset may be considered as the validation partition.
In other words, we do not necessarily need a test dataset if there are no rele-
vant features that differentiate test data from validation data. For instance,
we will use a test dataset for the case reserving application (see Chapter 3),
but no test dataset will be considered for the policyholder behaviour appli-
cation (see Chapter 4). All in all, the choice mainly depends on the specific
dataset.
As we said, the training dataset will build our model, that is, it will try to
“learn” as much as possible from the training records. For this reason, such
a model will be especially able to detect information from those records. But
what if we run the model on data which it did not learn from? Sometimes,
machine learning algorithms seem very powerful on training data, but show
weaknesses in predicting new data such as validation data. Generally, as
the complexity of an algorithm increases to catch all the information in the
training data, the algorithm starts overfitting the validation data. Since
it fully reflects the training dataset without distinguishing between “sig-
nal” and “noise”, the noisy component cause greater error in the validation
dataset. In fact, the typical consequence of overfitting is that, after some
unknown level of complexity, the prediction error on the validation dataset
stops decreasing and starts increasing (see Figure 1.5). As a consequence,
two questions are crucial when we need to evaluate the performance of a
given algorithm:

Q1 is the training performance similar enough to the validation perfor-
mance? If not, is it due to overfitting?

Q2 is the validation performance good enough for our purposes? Is it better
than that of other algorithms?

While the answer to Q1 provides us with an indication about the actual
predictive power of the model, the answer to Q2 allow us to make our
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Fig. 1.5: Training error versus validation error by model complexity (see
Nogueira (2016))

choice among a number of models - and it will be based on the validation
performance only. Actually, when it comes with model selection we are
barely interested in the training performance.
Dataset partitioning is a basic characteristic of the data mining process.
As such, it is applied regardless of the specific machine learning tools used,
including regression models. However, there are two reasons why this is
much less relevant in regression theory.
First of all, regression models are calibrated to guarantee the best fitting
rather than the best prediction. Although machine learning tools are trained
on the training data only, their complexity features are set to return the
lowest validation error. For instance, Figure 1.5 suggests to choose the model
with complexity corresponding to the vertical dashed line in the middle,
but the algorithm is still trained on the training data. On the contrary, a
regression model is entirely based on a single (training) dataset to fit it at
best, so there is no reason why it should also result in good predictions on
new data.
Additionally, regression models are rigidly defined on analytical assumptions
such as target variable distributions and link functions. Parameters are
thus calibrated based on those assumptions, rather than actual training
from data. This feature gives them a unique tendency to ignore noise in
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data. This is the reason why overfitting is seldom a problem in regression,
especially if explanatory variables have been preliminarily selected with a
proper selection algorithm.

1.4.2 Performance measures

In Subsection 1.4.1, we dealt with concepts such as training error and vali-
dation error. They are rather abstract concepts as long as we don’t define
them analytically. For instance, regression theory provides us with a natural
definition of error consistent with the underlying theory, the so-called sum
of the squared errors:

SSE :=
N∑
i=1

u2
i :=

N∑
i=1

(yi − ŷi)2 =
N∑
i=1

[
yi − f̂(xi, β̂)

]2
(1.1)

where N is the total number of records, and ui denotes the estimation error
defined as the difference between the actual value yi of the target variable
and the predicted value ŷi, which results from a predefined estimation func-
tion f̂ of the feature vector xi and the estimated parameter vector β̂ (notice
that it is exactly the error measure minimized in Subsection 1.6.1 to obtain
the parameter estimations β̂0, . . . , β̂n). By contrast, machine learning tools
do not rely on a common theory, so we get more flexibility in defining the
error measure in machine learning. In this section, we will describe the most
common measures in classification and prediction.
In classification problems, we want to estimate the probability of different
outcomes, that is, the possible classes of the target variable. Given the kth

class and the ith record, if pik and qik denote the related actual frequency
(which equals 1 if the ith record belongs to the kth class, otherwise 0) and
estimated probability respectively, then the likelihood of the dataset is

L(p, q) :=
N∏
i=1

m∏
k=1

qpikik (1.2)

which implies the following log-likelihood:

l(p, q) := lnL(p, q) =
N∑
i=1

m∑
k=1

pik ln qik =

N∑
i=1

ln qiki (1.3)

where ki denotes the actual class of the ith record. Maximizing the log-
likelihood (1.3) is equivalent to minimizing the so-called cross entropy

H(q) := −
N∑
i=1

ln qiki (1.4)
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Actual Predicted Class
Class 1 0

1 TP FN
0 FP TN

Fig. 1.6: Classification matrix for binary target variables

Actual Predicted Class
Class 1 2 . . . m− 1 m

1 T1 F1,2 . . . F1,m−1 F1,m

2 F2,1 T2
. . . F2,m−1 F2,m

...
...

. . .
. . .

. . .
...

m− 1 Fm−1,1 Fm−1,2
. . . Tm−1 Fm−1,m

m Fm,1 Fm,2 . . . Fm,m−1 Tm

Fig. 1.7: Classification matrix for categorical target variables

which is indeed the main performance measure in classification, although
not the only one.
In fact, the simplest tool for performance evaluation in classification prob-
lems is the classification matrix. Figure 1.6 illustrates a generic classification
matrix for a binary target variable, while Figure 1.7 illustrates a generic clas-
sification matrix for a categorical target variable. It gives a quick overview
of how many records are correctly or incorrectly classified. Indeed, in Fig-
ure 1.7, Tk denotes the number of actual records in the kth class that are
correctly classified in that class by the algorithm we are using. By contrast,
Fk,h denotes the number of actual records in the kth class that are incorrectly
classified in the hth class by the same algorithm. As shown in Figure 1.6,
they are often called true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) in binary classification. Finally, a main error
measure in classification is the misclassification error :

MEm :=

∑
i,j:i 6=j Fi,j

N
=

∑
i,j:i 6=j Fi,j∑

i,j:i 6=j Fi,j +
∑

i=j Ti
(1.5)

which, in binary classification, equals

ME2 =
F0,1 + F1,0

N
=

F0,1 + F1,0

F0,1 + F1,0 + T0 + T1
=

FP + FN

FP + FN + TN + TP
.

(1.6)
Even if the misclassification error is an overall measure for the performance
of an algorithm, there are others, class-specific measures. First, we may be
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interested in the misclassification error related to the generic class k:

MEm(k) :=

∑
j 6=k Fk,j∑

j 6=k Fk,j + Tk
, ∀k = 1, . . . ,m (1.7)

which, in binary classification, equals

ME2(1) =
F1,0

F1,0 + T1
=

FN

FN + TP
, ME2(0) =

F0,1

F0,1 + T0
=

FP

FP + TN
.

(1.8)
Parallel to error measures, we may consider accuracy measures as well. For
instance,

Am := 1−MEm =

∑
i=j Ti∑

i,j:i 6=j Fi,j +
∑

i=j Ti
(1.9)

is a natural definition for the overall accuracy of a classification algorithm,
and its binary version is

A2 = 1−ME2 =
TN + TP

FP + FN + TN + TP
. (1.10)

Also, the accuracy related to the generic class k is defined as

Am(k) := 1−MEm(k) =
Tk∑

j 6=k Fk,j + Tk
, ∀k = 1, . . . ,m (1.11)

and, in binary classification,

A2(1) = 1−ME2(1) =
TP

FN + TP
, A2(0) = 1−ME2(0) =

TN

FP + TN
(1.12)

which are called sensitivity and specificity respectively, and are two very
common measure in binary classification. Actually, when a target variable
is binary, one of the two categories is generally much more relevant than
the other one. This is also the reason why the class 1 is often referred to as
“success”, while the class 0 represents a “failure”. Whatever the application,
we are typically more concerned with the correct classification in class 1.
From our model, we ideally want to get

• low ME2(0), namely the complement of the specificity, that is, few
false positives

• high A2(1), namely the sensitivity, that is, numerous true positives

but here is a trade-off to consider. In effect, assume that 0,5 is the cut-
off value, that is, if the estimated probability of a record to be an actual
“success” is higher than 0,5, then it will be classified in class 1, otherwise
it will be classified in class 0. This choice will imply specific ME2(0) and
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Fig. 1.8: Example of ROC curve Fig. 1.9: Example of decile chart

A2(1). Now, assume we want to increase the sensitivity, in order to better
classify successes: for that purpose, we may decide to set the cut-off to 0,3.
This would surely increase the sensitivity since the records classified in class
1 would be more than before, but at the same time it would also worsen
classification in class 0, that is, increase in ME2(0). All in all, we may want
to try various cut-off values until we find one that balances ME2(0) and
A2(1).
More often, however, these two measures are used to plot the Receiver Op-
erating Characteristic curve, or ROC curve. It plots ME2(0) on the x-axis
and A2(1) on the y-axis varying by cut-off value from 0 to 1. An example
is shown in Figure 1.8. Better performance is reflected by curves that are
closer to the top left corner, that is, with an area under the curve (AUC)
as close as possible to 100%. In particular, the diagonal dashed curve in
Figure 1.8 represents the random model, that is, the model that estimates
the probability of success as the overall proportion of actual successes in
the dataset, regardless of the specific record (näıve rule). Its AUC is 50%,
the smallest possible. In theory, no classification algorithm should perform
worse than the random model, so the ROC curve will always lay above the
diagonal line in Figure 1.8, and the AUC will always lay between 50% and
100%.
The decile chart in Figure 1.9 is another useful tool for performance eval-
uation. When a classifier returns a probability of “success” and “failure”,
the records can be sorted by decreasing estimated probability of “success”.
In terms of classification, the list separates records classified as “successes”
and records classified as “failures”. If the classifier performs well, we should
also get most of the actual “successes” at the top, while most of the actual
“failures” stay at the bottom.
To evaluate the performance of the classifier, we consider the ten deciles -
the quantiles representing 10% of the (sorted) dataset - and count the num-
ber of true positive per decile. Since the records are sorted by estimated
probability, we expect true positives especially in the first deciles. For sake
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of simplicity, assume that in the first decile we get predicted “successes”
only (although it is quite common in practice, it may not occur if “suc-
cesses” are very rare or the model is very poor). Our classifier returns the
proportion p1 of true positives in the first decile. Such a proportion may
be compared to the proportion we would have got from the random model,
that is, the empirical proportion s of “successes” in the dataset. The ratio
p1
s provides an indication about the performance of the model in predicting

“successes” in the first decile of the distribution. Naturally, we can do the
same with the others deciles, computing the ten ratios p1

s , . . . ,
p10
s , which

correspond to the bars of the decile chart in Figure 1.9. For instance, the
first bar indicates a ratio around 2,3: the classifier performs 2,3 times better
than the random model. Since classifiers are generally constructed to pre-
dict “successes” rather than “failures”, the typical shape of a decile chart
decreases across the deciles. The classifier is more powerful in the top (more
interesting) deciles, while it fails in classifying “successes” hidden in some
bottom decile. This is the reason why we pay much more attention to the
first bars, whose ratios should be significantly greater than 1.
Notice that decile charts are useful for prediction of numerical variables too.
In this case, each bar is based on the ratio of the related decile mean to the
mean over the entire dataset. However, there is no equivalent of the ROC
curve or misclassification error. In numerical prediction, we can use a range
of accuracy measures that are function of the residuals ui := yi − ŷi. All
of them are analogue to the traditional sum of squared errors in (1.1), and
include the followings:

mean error :=
1

N

N∑
i=1

ui (1.13)

mean absolute error :=
1

N

N∑
i=1

|ui| (1.14)

mean relative error :=
1

N

N∑
i=1

∣∣∣∣∣uiyi
∣∣∣∣∣ (1.15)

mean squared error :=
1

N

N∑
i=1

u2
i =

SSE

N
(1.16)

root mean squared error :=

√√√√ 1

N

N∑
i=1

u2
i =

√
SSE

N
. (1.17)

as reported in Shmueli et al. (2010). Mean absolute error and mean squared
error (or equivalently root mean squared error) are the most widely used in
training algorithms and evaluating predictive performances. The former
(as well as the mean relative error) is indeed the most intuitive way to
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define the overall estimation error, while the latter (as well as the root mean
squared error) is supported by the regression theory as it is analytically
advantageous. By contrast, the mean error is seldom used, because it will
net errors that have opposite sign.
Finally, it is worth mentioning the cost adjustment that may be embedded in
performance measures, although we will not use them in our analyses. As we
have already discussed, the goal of a model is the prediction of “successes”
rather than “failures”. This does not mean that we are not interested in
false positives, but it means that we are prone to accept more of them if
it leads to significantly fewer false negatives. In classification, for instance,
we can express that by adjusting the cut-off manually. It is 0,5 by default,
but if we set it to 0,3 then we are implicitly assuming that we accept more
false positives in order to reduce false negatives. If an insurance company
is selling a new product, and we built a model that classify its customers
as “interested” and “uninterested”, the company will surely accept the risk
of contacting a higher number of potentially uninterested customers if it
materially increases the probability of capturing the interested ones. This
is due to the cost of the contact: if the contact is represented by a simple
mail, the cost is quite low, so the company is not really worried about false
positive, but it knows that each false negative costs the entire premium of
the product.
While the cut-off adjustment is heuristic and manual, the cost adjustment
on the performance measure is based on the estimated cost of an error. In
the previous example, the cost of false positive is the cost of a mail, whereas
the cost of a false negative is the missed premium. If these quantities are
known - say cFP and cFN - we define the misclassification cost

MC2(cFP , cFN ) :=
cFPFP + cFNFN

N
(1.18)

which is minimized instead of the misclassification error in (1.6). The for-
mula may be adapted for variables with m categories to replace the misclas-
sification error in (1.5):

MCm(ci,j) :=

∑
i,j:i 6=j ci,jFi,j

N
(1.19)

but it requires the evaluation of m(m−1) types of misclassification. Finally,
if the target variable is numerical, we can punctually weight the residuals.
For instance, the mean absolute error in (1.14) will be adjusted as follows:

mean absolute error(w1, . . . , wN ) :=
1

N

N∑
i=1

wi|ui|. (1.20)

Before concluding this section, it is worth highlighting the scope of all
the aforementioned performance measures. In traditional statistics, per-
formance measures such as the sum of squared errors are merely used as a
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target function to minimize, in order to guarantee the best possible fit in
regression models. In machine learning, by contrast, a performance mea-
sure is not only used as a target function in the training step, but also as
a validation tool to pick the best model. In analytics, there is no a priori
superior model, so we should always train a number of algorithms by min-
imizing some error function, and then choose the algorithm returning the
smallest validation error computed with the same error measure. We will
proceed this way throughout the dissertation.

1.4.3 Model selection criteria

In Subsection 1.4.2, we focused on the main reason why machine learning
tools are so useful: accuracy. Generally speaking, the accuracy of a model
is represented by its error on out-of-sample data, that is, the validation er-
ror. As we will see in our applications, machine learning algorithms tend
to outperform traditional parametric techniques. However, accuracy should
not be alone when it comes with comparing predictive models to select the
best one. Hastie et al. (2009) lists a number of general criteria that should
be taken into account when selecting a model over others. We will focus
on those criteria, although there may be reasons to ignore some of them or
enhance the list itself.
Accuracy being equal, stability is what makes the difference, especially in
machine learning. Stability may be quantitatively defined by the gap be-
tween the training error and the validation error, which is usually positive:
the larger the gap, the lower the stability. In general, the more an algorithm
is accurate, the less it is stable, in the sense that this accuracy may dis-
appear in predicting out-of-sample data. Once the algorithm is trained to
return the best accuracy, then it is tuned on the validation dataset in order
to avoid instability (i.e., overfitting), but maintaining a reasonable level of
accuracy as well. In any case, we will never be able to maximize accuracy
and stability at the same time, so a data scientist will always deal with a
accuracy-stability trade-off.
Beyond the measurable features of a predictive model, we have some formal
features as well. In practice, they are very important, although there is no
measure for them. First of all, flexibility is a quite desirable characteristic.
Generally speaking, a model is flexible if it is complex enough to capture
soft information and weak dependencies with minimal risk of instability and
overfitting. For instance, this is the case of polynomial regressions and neu-
ral networks, which allow for nonlinear relationships among variables. This
is not surprising, in light of the high number of parameters they depend on.
On the other hand, even if a model is flexible, there is however a way to
tune it in order to avoid instability. For instance, we can reduce the terms of
a polynomial regression as well as the hidden neurons of a neural network.
Nonetheless, flexibility is not only about the number of parameters within a
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Fig. 1.10: Flexibility-interpretability trade-off (see Hastie et al. (2009))

model, but it is also about applicability to both classification and regression,
or adaptability to both categorical and numerical variables - just to mention
a couple of examples.
Together with flexibility, an ideal model should be characterized by inter-
pretability too. A model is interpretable if one can easily explain its outcome
with minimal risk of misunderstanding it. In this case, regressions represent
the main example of highly interpretable models. Since they are based on
mere multiplicative parameters into some regular function (e.g., sums, logs,
etc.), result interpretation and communication will never be a problem. Un-
fortunately, high interpretability often means low flexibility and vice versa.
A linear regression is extremely simple to understand, but it is rarely flexible
enough to explain variance in a fairly complex dataset. On the other hand,
when flexibility is high, with structured functions and many parameters, it
is difficult to distinguish the various impacts. In some cases (e.g., neural
networks), you face the typical “black-box” effect, that is, you feel like the
model returns very accurate predictions, but you don’t know why and lose
control on them. To summarize, we face a further trade-off, the flexibility-
interpretability trade-off. In Figure 1.10, it is reported a representation of
such a trade-off, using some machine learning methods. In particular, we ob-
serve that regression-based models (i.e., least squares, generalized additive
models, Lasso, etc.) lay on the left - low flexibility and high interpretability
- whereas common machine learning tools such as bagging, boosting, and
support vector machines lay on the right - high flexibility and low inter-
pretability.
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To conclude the section, it is worth mentioning a last, broad feature of a good
predictive model: implementability. This is a rather soft concept that may
be defined as the effective applicability of the model in the light of necessary
data versus available data, computational tractability of the underlying al-
gorithm, IT infrastructure at disposal, and any other practical requirements.
As an example, clustering methods are some of the most common models
in machine learning, widely used in academia and industry. They may re-
quire the computation of a distance function - whatever it is - among all the
records in a dataset. If a dataset contains 100 thousands records (a fairly
large dataset, but no big data), we will nearly compute and save 5 billion
distances. In many commercial computers, this is impossible. Clustering
methods are quite attractive, but they may result in implementability is-
sues. More importantly, there may be problems in implementing a model
in a real business situation. Insurance industry is highly regulated, and ma-
chine learning tools may be problematic in the real world. This is a major
issue, perhaps the main issue for actuaries in business intelligence.

1.5 Statistics versus machine learning

So far, we gave a fair amount of information about machine learning and
analytics. Some concepts are similar - or even equivalent - to what tradi-
tional statistics encompass. For instance, the distinction between classifica-
tion, prediction and forecasting (see Section 1.1) can be done in statistical
methodology as well, e.g., logistic regressions classify, linear regressions pre-
dict, and autoregressive models forecast. Moreover, some of the performance
measures we introduced in Subsection 1.4.2 are broadly used in statistics as
well, for instance, the sum of squared errors in regression and the ROC curve
in classification.
Apparently, statistics and machine learning are quite similar, but, as stated
in Charpentier (2015a),

The goal for a statistician is to predict an interaction between
variables with some degree of certainty (we are never 100% cer-
tain about anything). Machine learners, on the other hand, want
to build algorithms that predict, classify, and cluster with the
most accuracy.

Actually, the goal changes everything, and makes machine learning deeply
different to statistics.
First, the theory. In traditional statistics, probabilistic assumptions lock
the model in a predefined framework in order to ensure useful asymptotic
properties and other theoretical advantages. For example, we know that
the estimator of the ordinary linear regression is the best possible estimator
under some assumptions, as we will recall later in this chapter. By contrast,
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any machine learning technique is based on an algorithm rather than an
underlying model. As long as the algorithm converges to an accurate esti-
mation of the target variable, we are not really interested in a theoretical
justification of the code behind the algorithm.
Second, the data. In traditional statistics, data gets less importance than
in machine learning because of the theoretical assumptions. Since statis-
tical models often assume some analytical form for the distribution of the
target variable, any deviation from that distribution is not even considered
in practice. If such a deviation is actually recognized in data, it will be
probably addressed by another separate model. A quite common example is
in actuarial pricing, where the outliers are excluded from a dataset in order
to let the regression work; those outliers are then treated separately. On
the other hand, machine learning algorithms may be tailored to meet data
features at best. The advantage is that they can potentially learn from any
type of dataset and predict any type of target variable, but the disadvan-
tage is that they are heavily dependent on data. This drawback is partially
solved by the usage of out-of-sample data - the validation data and/or the
test data - but it generally comes from the original population of data. In
other words, the validation of a machine learning algorithm is essentially a
validation conditioned to that data, but there is no reason to believe that the
same customized algorithm will work, for instance, with a analogue dataset
coming from a different source.
Third, the parameters. In traditional statistics, parameters mostly describe
distributions. For instance, the estimated parameters in linear regression can
be seen as features of the distribution of the real parameters. In machine
learning, it is not that easy. First and foremost, there are few pure nonpara-
metric methods which do not need any parameter. Most of the algorithms,
however, will include some structural parameters, or meta-parameters, that
is, parameters used to calibrate (rather than train) the algorithm. For in-
stance, the nearest neighbours algorithm is defined by one meta-parameter,
that is, the number of data points that lay within the neighbourhood of a
record. Other algorithms are considered semiparametric, in the sense that
they include both meta-parameters and real functional parameters. Neu-
ral networks can be considered semiparametric since their architecture is
based on weights (i.e., the parameters) estimated on the training dataset,
while the number of the hidden neurons or the learning rate (i.e., the
meta-parameters) should be properly predefined. To summarize, param-
eters are actually trained to optimize the predictive performance, whereas
meta-parameters are chosen depending on heuristic criteria.
Fourth, the estimation error. Consider the generic model

Y = φ(X) + ν (1.21)

where the explanatory variable X describes the target variable Y through
some deterministic function φ and zero-mean noise ν. If f estimates φ by an
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optimization algorithm that minimizes the quantity E[(Y − f(X))2], then

Ŷ = f(X) (1.22)

where f is a random variable, and the estimation error is

u2 := E[(Y − Ŷ )2] = E[(Y − f(X))2] =

= E[Y 2 + f(X)2 − 2Y f(X)] =

= E[Y 2] + E[f(X)2]− 2E[Y f(X)] =

= V ar(Y ) + V ar(f(X)) + E[Y ]2 + E[f(X)]2 − 2E[Y f(X)] =

= V ar(ν) + V ar(f(X)) + φ(X)2 + E[f(X)]2 − 2φ(X)E[f(X)] =

= V ar(ν)︸ ︷︷ ︸
noise

+V ar(f(X))︸ ︷︷ ︸
variance

+ (φ(X)− E[f(X)])2︸ ︷︷ ︸
bias

(1.23)

which is the so-called bias-variance decomposition. Bias refers to the sys-
tematic error due to the approximation of a real-world, complicated func-
tional form φ with a simpler functional form f . For instance, estimating
φ(X) = a + bX + cX2 through f(X) = α + βX will always introduce bias
because of the fundamental difference in shapes. Variance refers to the error
due to the randomness of the sample used to train the model and return
f . Since we will never use the entire population as training dataset, f is
a function of the training data, and it is a random variable with its own
variance. As a general rule, we can say that

• the higher the bias, the higher the potential of underfitting (i.e., miss-
ing signal)

• the higher the variance, the higher the potential of overfitting (i.e.,
capturing noise).

An ideal model should minimize both, in order to explain regularities in
the training dataset and generalize well in the validation dataset. However,
this is generally impossible since underfitting and overfitting are opposite
concept. This leads to a formal separation between high-bias low-variance
models and low-bias high-variance models. In traditional statistics, para-
metric methods such as linear regression or logistic regression with a limited
number of parameters seldom overfit: they are quite strong in terms of vari-
ance reduction, although their static functional assumptions increase the
bias. This is the reason why out-of-sample analysis with validation and test
data in less relevant in regression. In machine learning, on the other hand,
algorithms tend to be quite flexible, and flexibility generally implies better
fitting - low bias - but poor generalization - high variance. For instance, in
neural networks, the more the hidden neurons, the more the weights and pa-
rameters used in the architecture: that increases flexibility, but introduces a
major risk of overfitting. As a consequence, a machine learning algorithm is
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not only built to return more accurate estimations with lower bias, but also
to limit the increase in variance by testing the model on out-of-sample data.
All in all, we should choose a model able to reduce bias and limit variance
at the same time - the so-called bias-variance trade-off.

1.6 Machine learning tools

This section is supposed to provide the reader with a fair overview of the
data scientist toolkit. Starting from the classical generalized linear models
in Subsection 1.6.1, we will quickly go through the main machine learning
techniques (see Subsection 1.6.2) in data science, and the most widespread
software packages used to implement them (see Subsection 1.6.3). Even if
some of those topics will be further discussed later in the dissertation, it is
important to realize the great variety that characterizes data science.

1.6.1 A first example: GLMs

Regression techniques such as generalized linear models (GLMs) are by far
the most used fitting tools in industry. They rely on a unique combination
of theoretical solidity and practical interpretability, which makes them one
of the favourite tools among actuaries. For the same reasons, regression
models do not represent a powerful machine learning tool. Unfortunately,
the assumption set they require causes some rigidity that limits the ability
of learning from data. Nonetheless, since we are going to use two com-
mon GLMs such as logistic regression and gamma regression later on, it
is worth providing a brief description, revisiting and drawing on those of
De Jong et al. (2008).
Very generally, we can assume that the target variable y is a function of
some predictors, that is, the explanatory variables of the ith record:

yi := φ(xi1, . . . , xin), ∀i. (1.24)

If we can rely on an algorithm that estimates φ by building a new regular
function f , we will get an estimation of the target variable:

yi ' f(xi1, . . . , xin) + ui =⇒ ŷi = f̂(xi1, . . . , xin) (1.25)

where ui denotes the estimation error (notice the similarities between (3.3)
and (1.25)). Quite intuitively, the function f will be somehow estimated in
order to minimize the errors ui, or, more precisely, a proper combination
of them representing the overall error of the model. However, the shape
of f should be defined as an assumption. In multiple linear regression, for
instance, its shape is linear:

yi = β0 +

n∑
j=1

xijβj + ui =⇒ ŷi = β̂0 +

n∑
j=1

xij β̂j (1.26)
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where βj denotes the estimation parameter related to the jth predictor.
Remember that the linearity refers to the coefficients β0, . . . , βn rather than
to the predictors xi1, . . . , xin. In other terms, we can use the predictors as
they appear in the dataset as well as any transformation or interaction of
them, linear or nonlinear: in any case, the model will still be linear. Defining

y =

 y1

...
yN

 , X =

 1 x11 . . . x1n

...
...

. . .
...

1 xN1 . . . xNn

 , β =

 β0

...
βn

 , u =

 u1

...
uN


(1.27)

the model (1.26) may be also expressed in a matricial form:

y = Xβ + u =⇒ ŷ = Xβ̂. (1.28)

Beside the shape of f , the followings should hold too:

1. rank(X) = n

2. E[u] = 0

3. V ar[u] = σ2IN

where IN denotes the identity matrix of size N . In other words, the rank of
X is the maximum possible rank so that no redundant information is there
(assumption 1.), the random variables of the estimation error are null on
average (assumption 2.), and they are also independent and homoscedastic
with variance σ2 (assumption 3.). In particular, the assumption 2. directly
implies the followings:

2a. E[y] = E[y|X] = Xβ = ŷ

2b. V ar(y) = V ar(y|X) = σ2IN .

Once the assumptions have been verified, the vector of parameters β can be
estimated through the least squares method. It is based on the minimization
of the sum of squared error u2

i :

Q(β) :=
N∑
i=1

u2
i =

N∑
i=1

(yi − ŷi)2 = (y −Xβ)T (y −Xβ) =

= yTy − βTXTy − yTXβ + βTXTXβ =

= yTy − 2yTXβ + βTXTXβ (1.29)

which is a quadratic function, thus its minimum is necessarily its only sta-
tionary point, that is, the solution of the following system:

∂Q(β)

∂β
=

∂

∂β

(
yTy − 2yTXβ + βTXTXβ

)
= −2XTy + 2XTXβ = 0

(1.30)
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that is
β̂ = (XTX)−1XTy. (1.31)

Using the second equation of (1.28), we also get

ŷ = X(XTX)−1XTy (1.32)

and using the first equation of (1.28)

û = y − ŷ = y −X(XTX)−1XTy =
[
IN −X(XTX)−1XT

]
y. (1.33)

Actually, we got a model now: we are able to calculate ŷ by using β̂ in
the second equation of (1.28), as long as all the aforementioned assumptions
hold. However, the traditional multiple linear regression includes a further,
crucial assumption:

u ∼ N(0, σ2IN ) (1.34)

which implies
y ∼ N(Xβ, σ2IN ). (1.35)

Thanks to the normality of the vector u of the residuals, a whole range
of relevant statistics can be deduced from the model, including parameter
distributions, confidence interval and so on. Among others, for instance, it
can be easily proven that β̂ is normally distributed with mean β, and ŷ is
normally distributed with mean y.
Once the model has been defined, we want an effective way to evaluate its
performance. The theoretical framework helps us to define a rather intuitive
but rigorous tool for performance evaluation. First, the total deviance is
defined as

DT (y) :=

N∑
i=1

(yi − E[y])2 (1.36)

and it represents a measure of the information contained into the data. It
may be further manipulate as follows:

DT (y) =
N∑
i=1

(yi − ŷi + ŷi − E[y])2 =
N∑
i=1

(yi − ŷi)2 +
N∑
i=1

(ŷi − E[y])2 =:

=: DE(y) +DR(y) (1.37)

where the explained deviance DE(y) measures the information explained by
the model, while the residual deviance DR(y) measures the residual infor-
mation that the model could not detect. Naturally, the greater DE(y), the
smaller DR(y), the better the model. In fact, the coefficient of determina-
tion - known as R-squared and defined by the deviance measures - is the
most common performance evaluation tool for multiple linear regression:

R2(y) :=
DE(y)

DT (y)
= 1− DR(y)

DT (y)
(1.38)
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which is a value in [0, 1]. Once again, the greater DE(y), the greater R2(y),
the better the model, but the R2 has the additional advantage of the normal-
ization. In practice, it means that the R2 makes possible a fair performance
comparison among different models. However, it does not take into account
the simplicity of the model as measured by the number of explanatory vari-
ables. In other terms, we should still prefer a model with more variables
as long as the increase in R2 is sufficient to explain the greater complexity.
Therefore, statisticians often adjust the R2 as follows:

R2
adj(y) := 1− (1−R2(y))(N − 1)

N − n− 1
(1.39)

to penalize the R2 by the number of predictors.
Using (1.35), the model definition (1.28) may be written differently:

E[y] = Xβ =⇒ E[ŷ] = Xβ̂. (1.40)

which is a direct consequence of the normality assumed. However, if we
relax that assumption, it can be more generally assumed that there is a reg-
ular (i.e., invertible and derivable) link function g - different to the identity
function - mapping E[y] to Xβ:

g(E[y]) = Xβ (1.41)

or equivalently
E[y] = g−1(Xβ). (1.42)

The main reason why such a generalization is very useful in practice is that
g maps from some subset X ⊆ R to R, that is, g−1 transforms the linear
predictorXβ ∈ R to the target variable prediction in X. In fact, generalized
regression is able to handle target variables defined in a specific subset of R.
This is not possible in multiple linear regression, unless we operate a proper
transformation of the target variable itself (this is sometimes enough, but it
introduces transformation bias into the model). For instance, if the target
variable represents a positive amount, the quickest ways to use regression
are

• convert amounts to logarithmic amounts, predict the latter through
multiple linear regression, and convert the predictions back by using
the exponential function;

• choose a link function g : (0,+∞) → R, and predict the amounts
through the related generalized regression.

Actually, the choice of the link function is not direct, rather it is a conse-
quence of the distribution we assume for the target variable. This is possible
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since generalized regression assumes that such a distribution belongs to the
exponential family, whose density is:

fe(yi; θi, φ) := e
yiθi−c(θi)

φ
+h(yi,φ)

(1.43)

where θi denotes the canonical parameter varying by observation, while φ
denotes the dispersion parameter that is constant for all observations. In
other words, the distribution constraint is not completely eliminated, rather
it is “generalized” to a wider range of distributions - a distribution family.
When it comes with prediction of amounts, whose distributions are often
nonnegative and heavy-tailed, a common choice is the gamma distribution
(for instance, see Charpentier (2015b)), defined by a shape parameter ϕ > 0
and a scale parameter ϑi > 0:

fΓ(yi;ϑi, ϕ) :=
yϕ−1
i e

− yi
ϑi

ϑϕi Γ(ϕ)
. (1.44)

which can be easily rearranged as follows:

fΓ(yi;ϑi, ϕ) = e
− yi
ϑi
−ϕ lnϑi+(ϕ−1) ln yi−ln Γ(ϕ)

. (1.45)

If we define θi := − 1
ϕϑi

and φ := 1
ϕ , then

fΓ(yi;ϑi, ϕ) = e
yiθi
φ
− 1
φ

ln (− 1
ϕθi

)+( 1
φ
−1) ln yi−ln Γ( 1

φ
)

=

= e
yiθi
φ
− 1
φ

ln (− 1
θi

)+( 1
φ
−1) ln yi+ϕ lnϕ−ln Γ( 1

φ
)

=

= e
yiθi−ln (− 1

θi
)

φ
+( 1

φ
−1) ln yi− 1

φ
lnφ−ln Γ( 1

φ
)

(1.46)

which belongs to the exponential family in (1.43) with

c(θi) := ln

(
− 1

θi

)
, h(yi, φ) :=

(
1

φ
−1

)
ln yi−

1

φ
lnφ−ln Γ

(
1

φ

)
. (1.47)

This is important because it implies that

E[yi] =
dc(θi)

dθi
=

d

dθi
ln

(
− 1

θi

)
= − d

dθi
ln θi = − 1

θi
= ϕϑi(1.48)

V ar(yi) = φ
d2c(θi)

dθ2
i

= −φ d

dθi

1

θi
=

φ

θ2
i

= ϕϑ2
i . (1.49)

All in all, how should we define the link function starting from these consider-
ations? First, notice that the normal distribution belongs to the exponential
family too, because

fN (yi;µ, σ) =
1√

2πσ2
e−

(yi−µ)
2

2σ2 = . . . = e
yiµ−

µ2

2
σ2

− y2i
2σ2
−ln
√

2πσ2

(1.50)
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thus we should define θi := µ and c(θi) := c(µ) = µ2

2 , so that

E[yi] =
dc(µ)

dµ
= µ = θi. (1.51)

Actually, if the target variable is normally distributed, we will be back to
the multiple linear regression. In such a case, we may use (1.40) to write:

E[yi] = θi (1.52)

so a generalized regression model might be simply redefined as

E[yi] = g−1(θi). (1.53)

At the same time, if the target variable is gamma distributed, we also know
that E[yi] = ϕϑi and θi = − 1

ϕϑi
, so

g(ϕϑi) = − 1

ϕϑi
(1.54)

which implies

E[yi] = ϕϑi = g−1(xTi β) = −xTi β = −β0 −
n∑
j=1

βjxij . (1.55)

This is a somewhat natural choice, coming directly from the theory, thus it
is called canonical link function. For GLMs, it is always possible to define g
in a canonical way, that is, imposing (1.52), and this choice implies a range
of desirable features in our model. However, others link functions might be
rather used, and sometimes there are good reasons to.
Even if the gamma distribution is a common choice in the actuarial practice,
we should highlight that this is not the only one. First of all, we may choose
other asymmetric and nonnegative distributions from the exponential family
(e.g., inverse Gaussian) for the GLM. Moreover, we may use the so-called
Tweedie distributions (see Jørgensen (1987)), which represent a subfamily
of the exponential family, assuming

V ar(yi) = φE[yi]
p. (1.56)

where p is nonnegative. For p = 2, as an example, the first equation in
(1.48) implies

V ar(yi) = φ

(
− 1

θi

)2

=
φ

θ2
i

(1.57)

which matches the second equation in (1.48). In other words, the Tweedie
distribution with p = 2 is equivalent to the gamma distribution. Likewise,
we could easily prove that p = 0, p = 1 and p = 3 return the normal
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distribution, the Poisson distribution and the inverse Gaussian distribution.
For any other p > 1, we obtain new Tweedie distributions for our GLM.
Given that it includes a further degree of freedom, we may expect higher
accuracy.
Probabilities concern actuaries as much as amounts: they need a GLM to
cope with them too. Logistic regression is not really an “advanced” tool,
but it is worthwhile to describe it here since it represents the most used
tool to fit and predict probabilities such as surrender rates (for example, see
Cerchiara et al. (2009), Kiesenbauer (2012) and Kim (2010)). Obviously,
we should choose a link function g : (0, 1)→ R. This is quite straightforward
if assume that the target variable is distributed as a Bernoulli with parameter
pi. First, notice that the Bernoulli distribution is

fB(yi; pi) := pyii (1− pi)1−yi = eyi ln pi+(1−yi) ln(1−pi) =

= e
yi ln ( pi

1−pi
)+ln(1−pi) = e

yi ln ( pi
1−pi

)−[ ln ( pi
1−pi

)−ln pi] (1.58)

and if we define θi := ln ( pi
1−pi ) and φ := 1, then

fB(yi; θi) = e
yiθi−

[
θi−ln

(
1

1+e−θi

)]
(1.59)

which belongs to the exponential family in (1.43) with

c(θi) := θi − ln

(
1

1 + e−θi

)
, h(yi, φ) := 0. (1.60)

In particular, it implies that

E[yi] =
dc(θi)

dθi
=

d

dθi

[
θi − ln

(
1

1 + e−θi

)]
=

1

1 + e−θi
=

= pi (1.61)

V ar(yi) = φ
d2c(θi)

dθ2
i

=
d

dθi

1

1 + e−θi
=

e−θi

(1 + e−θi)2
=

= pi(1− pi) (1.62)

which is exactly what we expect from a Bernoulli distribution.
Using (1.52), the canonical link function of the logistic regression is such
that

g(pi) = ln

(
pi

1− pi

)
(1.63)

which defines the so-called logit function. In other words, the probability
equals

E[yi] = pi = g−1(xTi β) =
1

1 + e−x
T
i β

=
1

1 + e−β0−
∑n
j=1 βjxij

(1.64)
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defining the logistic function. Even if it represents the canonical link as well
as the most widely used choice, other link functions are still available (e.g.,
the probit, often used in econometrics, and the CLogLog, more common in
survival analysis).
Regardless of the underlying distribution of a GLM, we cannot use the or-
dinary least square method to estimate the vector β̂. Rather, we should use
the maximum likelihood estimation. For instance, the probability estimated
by the logistic regression equals:

p̂i := g−1(xTi β̂) =
1

1 + e−x
T
i β̂

=
1

1 + e−β̂0−
∑n
j=1 β̂jxij

. (1.65)

The quality of GLMs such as gamma regression and logistic regression can
be still assessed by using proper modified versions of the R2

adj in (1.39).
Nonetheless, there are other common quality measures such as the Akaike
Information Criterion (see Akaike (1973)) and the Bayesian Information
Criterion (see Schwarz (1978)):

AIC := 2n− 2 ln L̂ (1.66)

BIC := n lnN − 2 ln L̂ (1.67)

where L̂ is the maximum value of the likelihood function for the model. The
main problem of AIC and BIC is that they do not give any indication about
the absolute quality of the regression, while R2 does. AIC and BIC may be
used to compare regression models from the same dataset, accounting for
penalizations due to complexity (2n for AIC and n lnN for BIC), but they
do not reveal anything about the goodness of fit of one single model. All in
all, AIC and BIC may be used for model selection only.
Indeed, at the beginning of this subsection, we implicitly assumed to know
the range of explanatory variables x1, . . . , xn. Of course, we know the
explanatory variables in the dataset, but how should we select them as
x1, . . . , xn? Because of multicollinearity among potential explanatory vari-
ables, we cannot simply run the regression on all of them, and then select
only the most significant ones based on their p-values. Rather, we should
somehow select different sets of explanatory variables and run the related
regression: the model with the highest R2

adj or the lowest AIC or BIC will
be selected. The different sets of explanatory variables depend on the algo-
rithm used to select them. There are mainly three popular iterative search
algorithms.
In forward selection, we start with no predictors, and then add them one by
one. Each added predictor is that (among all predictors) with the largest
contribution to the goodness of fit on top of the predictors that are already
in it. The algorithm stops when the contribution of additional predictors is
not statistically significant.
In backward selection, we start with all predictors, and then eliminate the
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least useful one at each step according to statistical significance. The algo-
rithm stops when all the remaining predictors have significant contributions.
Finally, stepwise selection is like forward selection except that at each step
we consider dropping predictors that are no longer statistically significant,
as in backward selection. In all our applications where regressions are in-
volved, our data will be always regressed through stepwise selection.
To finally conclude the section, some practical remarks are to be highlighted.
Whatever the specific regression model, its assumptions make it theoreti-
cally strong, but VERY weak from a practical perspective. Actually, We
may condense them with the following, practical premises:

• no allowance for unanticipated relationships (i.e., high bias)

• no allowance for dependencies among predictors

• no allowance for outliers.

They somewhat simplify the original assumptions, but give a fair idea of
what those assumptions really mean, that is, we can hardly expect good
performance from regression methods when information is far to be regu-
lar. Data is generally affected by missing values, correlations, heavy tails,
asymmetries, nonlinearities and any other type of distortion. These are
the reasons why regressions do not always represent the best compromise,
whereas data-driven techniques may offer a further option.

1.6.2 Beyond regression

One of the goals of this dissertation is to provide actuaries with a practical
introduction of the most common machine learning methods, stepping out
the traditional regression framework. We will look more deeply into them
later, but this subsection will give an all-in overview, beyond the mere dis-
tinction between unsupervised and supervised learning.
A first, simple unsupervised learning method is the so-called association
rules, based on an algorithm, known as Apriori algorithm, taking advan-
tage of a priori likelihoods. Essentially, it uses the concept of conditional
probability to detect interesting and significant relations between variables
in large databases. Association rules will be discussed in Subsection 2.3.1.
More commonly, unsupervised learning is part of the data preparation pro-
cess before any prediction with supervised learning. In particular, it is
used for dimension reduction, which is a major issue when it comes with
huge amounts of data. It is not only about generic infrastructural problems
in handling it, but also computational limits of algorithms and/or an un-
favourable number of records in relation to the number of variables.
For instance, if we need to reduce the fields in a dataset, then principal com-
ponent analysis (PCA) for numerical variables and multiple correspondence
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analysis for categorical variables represent very common choices in data sci-
ence. Both of them take in input the original fields (more specifically, PCA
uses the covariance matrix, while multiple correspondence analysis uses the
contingency table) in order to generate new, uncorrelated variables reveal-
ing underlying relationships and supporting feature selection. In particular,
PCA will be discussed in Subsection 2.3.2.
Rather than “columns”, one could be interested in reduce “rows”, that is,
the records themselves. Broadly speaking, cluster analysis is what we need.
It encompasses a huge number of different methods and adaptations, so we
will only mention few of them. Although cluster analysis is a widely ac-
cepted approach in dimension reduction, its major drawback relates to the
fact that there is no “objectively” correct clustering algorithm. Traditional
algorithms are often adjusted to fit specific problems, while there is seldom
a mathematical reason to prefer one method over others. In addition, given
that there is no prediction accuracy as a performance reference (in fact,
there is no target variable to predict), clustering methods cannot be com-
pared with each other on such a basis. Most of the time, we should already
have an idea about the clusters we expect, and the best methods will be
those detecting them. To quote Estevill-Castro (2002)

Clustering is in the eye of the beholder.

Two of the most common clustering methods are hierarchical clustering
and K-means clustering, described in Subsection 2.3.3. Both of them are
distance-based algorithms, that is, they group records by using a predeter-
mined distance function that measures similarity. In spite of their simplicity,
these algorithms force the points into areas defined by convex boundaries
which do not represent the natural growth of clusters. Another drawback is
about the choice of the number of clusters, which is always up to the data
scientist and hardly suggested by the algorithms and their outcomes.
As a consequence, distribution-based algorithms are sometimes preferred for
their versatility, in spite of the complexity they introduce. For instance,
they encompass the Gaussian mixture models, which model the data with
a fixed number of Gaussian distributions, whose parameters are iteratively
optimized to better fit the dataset. Another, more versatile category of clus-
ter methods encompasses density-based algorithms such as DBSCAN (see
Ester et al. (1996)) and OPTICS (see Ankerst et al. (1999)), which group
data points accounting for a given density tolerance, so that only high-
density group of points are actually considered as clusters. In this way, only
significant clusters are returned, and outliers are automatically excluded.
The supervised learning world is even more diverse than that of unsuper-
vised learning. Traditionally, GLMs represent the first choice to actuaries.
If applied together with a variable selection algorithm such as stepwise, their
main strength is the robustness, that is, low variance and little overfitting.
However, this is not always the case. For instance, in a dataset where records
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are few as compared to the number of features, even GLMs are likely to over-
fit. To solve the problem, we may use regularized linear models (RLMs) in
order to avoid the excessive growth of the regression parameters. To do that,
we may properly adjust the objective function of GLMs. More specifically,
RLMs minimize the objective function defined by the usual sum of squared
errors plus the correction R(λ,β), that is, a predetermined penalty function
of the learning rate vector λ and the parameter vector β. Among the most
common choices for R(·, ·), it is worth mentioning the followings:

• Ridge regression: R(λ,β) := λ
∑

i β
2
i

• Lasso regression: R(λ,β) := λ
∑

i |βi|

• Elastic net : R(λ,β) := λ1
∑

i |βi|+ λ2
∑

i β
2
i .

As we said, RLMs can be useful in rather rare situations that make GLMs
unstable, but that is not the case in the actuarial applications of the next
chapters, so we will not look into them further.
Another common parametric method is the linear discriminant analysis
(LDA), which can be seen as a modification of PCA to solve classifica-
tion problems. LDA works by creating one or more linear combinations of
predictors, creating a new latent variable for each of them. The first vari-
able created, say v1, maximizes the differences between groups on v1. The
second variable, say v2, maximizes differences on v2, but also must not be
correlated with v1. The third variable, say v3, maximizes differences on v3,
but also must not be correlated with v1 and v2. This continues with the
requirement that the new variable should not be correlated with any of the
previous variables.
Just like RLMs represent a machine-learning-oriented modification to GLMs,
support vector machines (SVMs) represent a machine-learning-oriented mod-
ification to LDA. Indeed, LDA assumes a number of hypotheses - the same
as those of linear regression - in order to admit a single, analytical solution.
This makes LDA strong in theory, but rigid in practice. SVM enhances LDA
in two ways. First, it makes use of a “slack variable” that allows a certain
amount of overlap between the groups, in order to avoid the rigid inclusion
of any data point - even potential outliers - in one of them. Second, it makes
use of kernel functions in order to allow for non-linearities by transforming
the basic linear classifier to a non-linear classifier.
Moving away from parametric models such as GLM, RLM, LDA and SVM,
the first machine learning methods to mention include näıve Bayes and near-
est neighbours. The former is used for classification only, based on a proper
modification of the Bayes formula, while the latter may be used for both
classification and regression, based on a distance measure among records (a
sort of supervised version of distance-based clustering methods). They will
be introduced in Subsection 3.4.1 and 3.4.2 respectively.
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Compared to näıve Bayes and nearest neighbours, classification and regres-
sion trees (CARTs) are definitely more complex. Several algorithms are
proposed in literature, more or less common, but the idea stays the same,
that is, building a decision tree that can classify or predict a target variable.
Given that CARTs are fully non-parametric, they can potentially fit any
dataset without error, so they also need pruning techniques to avoid over-
fitting on out-of-sample data. However, the absence of parameters makes
them extremely flexible, and that is why they often outperform parametric
methods. We will extensively discuss CARTs in Subsection 3.4.3.
A trade-off between pure parametric methods and pure non-parametric
methods is represented by neural networks. Their structure is vaguely in-
spired to the biological neural networks into animal brains. Mathematically,
they are defined by underlying activation functions of several parameters
that interact with each other. While those functions are predetermined, the
parameters need to be trained with a proper optimization algorithm.
Originally, neural network researchers focused on artificial intelligence prob-
lems, that is, they tried to replicate the human brain behaviour. However,
little by little, the attention moved to other fields, where neural networks are
widely used today. They include computer vision, speech recognition, image
recognition, social network filtering, medical diagnosis and so on. As a con-
sequence, several structures of neural network have been created to tackle
specific tasks. In particular, we must mention artificial neural networks (the
basic model to classify or predict target variables), recurrent neural networks
(used to recognize patterns across “time” such as texts and speeches) and
convolutional neural networks (used to recognize patterns across “space”
such as images and videos). Notice that both convolutional and recurrent
neural networks are part of a broader family of machine learning methods,
called deep learning, which focuses on the interpretation of unstructured
data. Nonetheless, artificial neural networks are complex enough to solve
many actuarial problems, so they will be discussed in detail in Subsection
3.4.4, while other types of neural networks are beyond the scope of this dis-
sertation.
By definition, the most flexible machine learning methods are the so-called
ensembles, that is, combinations of two or more techniques. Combinations
may be totally arbitrary, as long as they are useful to solve specific problems,
improving the accuracy and/or reducing the variance of the underlying tech-
niques. However, some more general ensemble methods - those with stronger
theoretical foundations - are widely used by data scientists. They include
bagging, random forests and boosting, which are typically used to overcome
the CART instability by providing an alternative to the traditional pruning.
All of them will be presented in Section 4.4
Before concluding this subsection, it is worth pointing out a couple of re-
marks. First, the distinction between unsupervised and supervised does
make sense in most of the cases, but it should not be considered too rigidly.
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For instance, CARTs and CART ensembles are often used for data manip-
ulation tasks such as missing value handling or variable selection. In data
science, flexibility is everywhere, so any distinction should be taken lightly.
Moreover, as the reader can easily imagine, the aforementioned range of
methods is far from exhaustive. There exists a huge number of data-specific
or task-specific adjustments, adaptations and corrections to the techniques
we described so far. This is just another expression of the flexibility offered
by data science and machine learning.

1.6.3 Software

In the last years, a number of software houses and developers started de-
livering their proprietary data science packages. Some of them are rigidly
based on predefined algorithms, while others are flexible enough to allow
for customizations and enhancements. A comprehensive analysis of these
tools is beyond the scope of this dissertation, but a brief introduction of the
current trends will be useful to justify our software choices.
Figure 1.11 reports the most used tools in analytics by data scientists ac-
cording to the KDnuggets surveys in the years 2014-2016 (we included the
tools voted in 2016 by 5% respondents at least). Notice that a minor part
of the mentioned tools (e.g., Hadoop and Spark) are used for big data man-
agement rather than analytics and machine learning.
First, it is worth observing the overall increase in percentages during the
period. This is happening in parallel with the general rise in interest on
analytics and big data, which leads to the usage of more tools at the same
time. Very few tools (e.g., RapidMiner, KNIME, Weka and SAS EM) lost
users across the period.
While R strengthens its role as the preferred software among data scientists,
Python is rising as the object-oriented programming language for analytics.
On the other hand, two classical tools are consistently among the most
widely used, that is, SQL and MS Excel. The former is the most common
programming language for relational database manipulation, while the lat-
ter is the most common spreadsheet-based tool. In addition, it is worth
mentioning Tableau, the open-source tool used for data visualization.
In this dissertation, we will use both R and MS Excel. While the former
will be used for statistical analysis, the latter will be used for reporting. Al-
though this choice does not allow for the level of flexibility provided by other
tools (e.g., Python), we found it to be enough to prepare and manipulate
the datasets, launch the algorithms we need for our analyses, and gather the
related results.
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Fig. 1.11: Software poll results in 2014-2016 (see Piatetsky (2016))



Chapter 2

Customer Management
using Unsupervised Learning

Customer management is not only a relevant topic in insurance, but also
one of the most common and successful applications of data science in the
business world. As such, it is worth presenting it as first case study of data
science in our industry.

Actuarial context

At a first sight, customer management might not seem a typical actuarial
topic. It is instead part of technical assumptions when evaluating in-force
portfolio (e.g., renewal and lapse probability) as well as new business (e.g.,
purchase probability). Setting up actuarial assumptions involves reasonable-
ness, and acceptability is of prime importance. While assumptions such as
death rate, disability rate and salary increase have historically been object of
many studies, those related to customer management did not catch the same
interest. Perhaps, this was partially due to its irrational aspect preventing
the usage of analytical models, or the necessity of significant amount of data
to extract useful information. Nonetheless, these are exactly the reasons why
data science is so useful in predicting customer behaviour.

Chapter overview

In order to imitate the classic structure of data science manuals, this chap-
ter will focus on data handling with unsupervised learning. We will first
describe some of the most common tools (i.e., principal component analysis,
clustering techniques and associations rules), which will be then applied to
manipulate motor insurance data from the French market.
Nonetheless, unsupervised learning represents a preliminary step before the
extraction of more useful information from policyholder profiles. We will
deal with customer management from two different - though complementary
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- perspectives. Firstly, we will use association rules to select the profiles that
will most likely buy additional coverages besides the mandatory third-party
insurance. Secondly, the dataset will be clustered to predict annual churn
rates with logistic regression and get insights into key risk factors of motor
insurance renewals.
All in all, the chapter will highlight the importance of unsupervised learning
not only as a tool for data handling, but also as a potential performance
booster in supervised learning.

2.1 Introduction

Not surprisingly, getting and maintaining clients is a top priority for every
company trying to grow its business. In today’s highly competitive mar-
ketplace, it is extremely challenging for insurance companies to attract and
retain customers. Companies take a wide range of strategic actions to get
customers to buy and keep their services. The related economic value is
widely recognized: however, as active customer management strategies are
important for companies to get and retain loyal customers, the ability to
correctly determine the drivers of their choices is necessary. This issue actu-
ally concerns several markets besides insurance, and it has quickly become
one of the most common application fields for data science.
Customer attraction is broadly related to marketing. It is the primary goal
of any insurance company, not only for mere revenue reasons, but especially
because the insurance business itself can exist - and be profitable - if a port-
folio is large enough to allow for risk mutuality.
Companies always try to sell new business by proposing new products ei-
ther to current customers (i.e., policyholders that are already in portfolio,
and own other products) or potential customers: both of them are equally
difficult. New customer may already own products of other insurance com-
panies, so it can be extremely hard to pull them away, even with a material
reduction in price or a strong increase in quality. At the same time, selling
products to current customers may seem easier as they are more accessible,
but companies should be able to propose products that meet their actual
needs, or even their future ones.
In motor insurance, for example, companies face both the problems. On
one hand, third-party coverages are often mandatory in developed markets,
so there are new potential customers everywhere, looking for low-cost tar-
iffs rather than specific levels of quality. On the other hand, a number of
coverages can be offered together with the basic third-party guarantee, so
companies need to detect current customers that are available to customize
their products according to their needs.
The analysis of the features of a group of customers to detect potential
sale opportunities is called market basket analysis, which is a good starting
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point. However, as soon as new customers are successfully acquired, a new
problem arises: their retention. As reported in Figure 2.1, non-life business
in OECD countries is affected by relatively low annual levels of retention,
with an average around 72%, corresponding to the churn rate of 28%. Even
if this is a very general view which does not account for potential differ-
ences among branches and company size (in particular, churn rates of the
largest insurance companies must be much lower than those of the others),
it provides us with a realistic idea of the problem. Whereas the insurance
industry has the highest acquisition costs of any industry, it is clear that
higher customer retention rates are strong correlated with greater profits.
Hence, churn refers to the loss of a customer in general, but it also implies
that the profit vanishes.
Customer retention is linked to several business activities such as pricing,
marketing and claim management. For instance, an inefficient claim liqui-
dation process will probably lead to lower retention rates. These potential
sources of churn should be continuously monitored in order to discover the
fundamental drivers of retention, and, as a consequence, try to improve
industry processes. However, churn rates are not exclusively caused by in-
efficient practices. Rather, they depend on the customer profile as well,
that is, age, family, job and so on. Such features together with customer
historical data may suggest future behaviour. The question is, how much
information do the companies have access to? Do they have historical infor-
mation that can be understood as experimental data? Do they know their
customers satisfaction?
The insurance market is a free market where customers may decide which
company to become attached to. From the perspective of an insurer, this
is even more problematic when it comes with mandatory business such as
third-party motor insurance: the company must retain the policyholder as
long as he/she decides to change insurer.
Typically, a motor insurance policy lasts for one year and is renewed after
that period, if the risk insured still exists. As discussed, this renewal action
must be taken by the same policyholder, who has some time to decide if he
wants to switch or not to another company. In this regard, we could think
about two types of loyalty. According to McKinsey&Company (2012):

Loyal policyholders are not a monolithic group of satisfied cus-
tomers; a subset of loyalists do fit this description, but another
subset are identified by the survey as “loyal” in name only. That
is, they remain more out of inertia than out of satisfaction.
Members of this significant minority of “passive” loyalists can,
however, be dislodged and represent significant value hiding in
plain sight.

Beside hidden value, passive loyalists represent a source of hidden risk too.
As an example, assume some of them relate to high claim frequencies. The
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Fig. 2.1: Non-life retention in 2016 (OECD Insurance Indicators (2016))
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insurance company will start increasing their premiums, year after year, to
cover their claims as well as push them away and indirectly force the churn.
However, their inertia will make them stay longer, leading to further losses
for the company.
In parallel to customer attraction, customer retention should assume a top
role in non-life insurance, not only holding more and more customers: a
correct prediction of retention probabilities can also be useful in increasing
company profit.
As the first application-based chapter of this dissertation, the next sections
will play two roles. First, they should suggest - and, to some extent, prove -
the extreme relevance of data preparation in machine learning. This phase
will be supported by some unsupervised learning tools introduced in Section
2.3. Such tools are often used as data manipulation tools by data scientists:
rather than classifying or predicting, they operate on the dataset as a whole
for preparation, reduction or grouping purposes. The second, more practi-
cal goal involves market basket analysis using association rules, discussed
in Subsection 2.4.3, and churn rate estimation using logistic regression, dis-
cussed in Subsection 2.4.4. Beside logistic regression, we could obviously use
other machine learning tools for it, but they will be introduced in the next
chapters to be used for the related applications only.

2.2 Unsupervised learning in actuarial practice

Unsupervised learning encompasses any tool or algorithm which does not
focus on predicting target variables. For instance, it is often used to reduce
or group a dataset before further supervised learning analyses. From this
perspective, we can see unsupervised learning as a useful (if not even neces-
sary), preliminary step to support complex data manipulation. Obviously,
it may be also used for standalone analysis (e.g., market basket analysis),
although practical applications are less evident to actuaries.
Actually, the actuarial field is full of opportunities to build supervised learn-
ing models and predict target variables more accurately (two of those ex-
amples will be tackled in Chapter 3 and 4). As a consequence, according
to the actuarial tradition, a model should always provide an outcome, an
estimation. However, this is not the case with unsupervised learning, where
the distinction between input and output is less clear. Nonetheless, there
are already few common applications in the actuarial field, so it is worth
outlining a short overview on them.
Since years, financial market experts - including actuaries - build simula-
tion methods to forecast interest rate curves in the future. One of the most
common and intuitive approach is Monte Carlo simulation: first, we define a
stochastic model for the interest rate dynamics, and then simulate it through
a large number of random numbers (this is essentially what we will do in
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Fig. 2.2: Cumulative explained variance of the first five principal com-
ponents on the German, Japanese and US interest rate curves in 1995
(Jamshidian et al. (1997))

Chapter 4). Now, assume that each random number can equal one of n
predetermined values, while the stochastic model depends on k parameters
to describe the yield curve. Therefore, if we need the full distribution of the
future curves, we will have to simulate nk curves. For instance, if n = 5
and k = 10, we will get almost ten millions different curves! Even if Monte
Carlo never requires all the permutations, this example should show that the
more the parameters, the heavier the method and the more the simulations
needed to guarantee a reasonable accuracy.
On the other hand, many studies (e.g., Kahn (1989), Gulrajani et al. (1995),
Rebonato (1998), etc.) empirically proved that two or three factors can be
sufficient to explain the change in interest rates. For example, Figure 2.2
reports the PCA results for the yield curves in Germany, Japan and United
States in 1995 (see Jamshidian et al. (1997)). We can immediately notice
that the first three components explain a large amount of information, and
for the Japanese and the US curves, two components are sufficient to explain
more than 90% variability. This is the reason why many stochastic models
are defined by few parameters. However, predetermining a fixed number of
degrees of freedom is still a strong limitation.
PCA represents one of the most common methods to extract the funda-
mental components of yield curves. It provides us with the flexibility of
choosing the most proper number of components depending on our own ac-
curacy tolerance. This is not only the topic of a number of more or less recent
studies (e.g., Charpentier et al. (2010), Liu (2010), Lord et al. (2007) and
Schmidt (2011) as well as the aforecited Kahn (1989), Gulrajani et al. (1995)
and Rebonato (1998)), but also an approach widely accepted by regulatory
authorities worldwide. For instance, EIOPA used PCA to calibrate the in-
terest rate shocks in the standard formula (see EIOPA (2014)):

The calibration of the interest rate shocks in the standard formula
are based on the relative changes of the term structure of inter-
est rates using the following 4 datasets: EUR government zero
coupon term structures (1997 to 2009), GBP government zero
coupon term structures (1979 to 2009), and both Euro and GBP
LIBOR/swap rates (1997 to 2009). For each of the four indi-
vidual datasets, stress factors were assessed through a Principal
Component Analysis (PCA), according to their maturity. PCA
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is a tractable and easy- to- implement method for extracting mar-
ket risk factors. For each maturity, the mean of the results in
the four datasets was taken as a single stress factor.

More recently, the new European Directive on Packaged Retail Investment
and Insurance Products (PRIIPs) regulation explicitly requires PCA for
the simulation of the fund performance in the market risk assessment (see
PRIIP Regulation (2016), paragraph 23):

For curves, a principal component analysis (PCA) shall be per-
formed to ensure that the simulation of the movements of each
point on the curve over a long period results in a consistent curve.

Among unsupervised techniques, clustering is even more common than PCA
in actuarial practice and research. For instance, Pelessoni et al. (1998),
Sanche et al. (2006), Guo (2003) and Wüthrich (2016a) outline various clus-
tering applications in insurance, especially in general insurance, because this
is one of the fields characterized by the greatest variety and variability.
In fact, cluster analysis is often used to partition policyholders based on the
risk they represent: this is usually called ratemaking. There are a number
of reasons to perform ratemaking on an insurance portfolio before further
analyses. First of all, each cluster represents a specific group of policyholders
sharing common features: if such features are determined, the company may
customize its management and strategy according to them. Second, features
within each cluster are less volatile than those within the whole portfolio,
leading to more robust pricing and reserving. A last reason relates to the re-
duction of levels in rating factors, which are often very numerous in general
insurance: in other words, each cluster could suggest specific aggregations
of such levels in order to reduce dimensionality.
As an example, territorial clustering is already part of the ratemaking pro-
cess in motor insurance. Two relevant contributions on territorial cluster-
ing are represented by Yao (2008) (further discussed in Parodi (2009) and
Frees et al. (2014), among others) and Jennings (2008), published in the
same year (2008) by the Casualty Actuarial Society. In Yao (2008), the
author applies a number of clustering methods to compare the different
partitions returned, and improve the basic GLM-based pricing (Figure 2.3
shows one of the partition returned by the K-means method). The funda-
mental idea of Jennings (2008) is the same, but it focuses on US data.
As already discussed, unsupervised learning applications are less common in
the actuarial field. However, besides widespread instances such as interest
rate modelling with PCA and territorial ratemaking with clustering, other
applications that are already common in other industries (e.g., sentiment
analysis, text recognition, etc.) could start playing a role in the actuarial
practice very soon.
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Fig. 2.3: Example of territorial clustering using the K-means method on a
UK motor insurance portfolio (Yao (2008))

2.3 Fundamental unsupervised learning tools

Recalling what was explained in Section 1.1, unsupervised learning encom-
passes any type of tool which does not need a formal target variable. This
category encompasses, among others, association rules, PCA and clustering
techniques. They are all used for very different purposes, but none of them
predicts or classifies records.
In this section, we will introduce the aforementioned tools, explaining the
mechanisms as well as the purposes. After that, we will be ready to use them
as supporting tools for market basket analysis and churn rate estimation on
our motor insurance dataset.

2.3.1 Association rules

Association rule learning is a basic machine learning method to discover
strong rules between variables in large datasets. It has been introduced in
Agrawal et al. (1993) for the first time as a market basket analysis tool:
the authors look for stable and robust regularities between products bought
by single customers. In particular, they want to answer to the following
question:

Given that the customer bought a specific range of products,
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which is the probability that he/she will further buy one specific
item?

which is quite similar to what will be addressed in the application of this
chapter.
First of all, an association rule is any if-then statement between explanatory
variables in a database: if A (the antecedent) occurs, then B (the conse-
quent) occurs as well. Generally, A and B may represent a combination
of features rather than one single feature. However, we will always assume
that for A only, not for B.
Of course, some rules will be strong, while others will be weak. The most
intuitive measures of the robustness of one specific rule is its a priori likeli-
hood. This is the reason why association rules are often generated by the so-
called apriori algorithm, originally proposed in Agrawal et al. (1993). Let’s
consider a dataset with categorical variables x1, . . . , xn, where each of them
is defined by a given number of categories, say k1, . . . , kn. For instance, the
categories of xi will be denoted by xi,1, . . . , xi,ki .
In the first step, we pick a specific consequent, say xn,1, and then start
keeping track of all the records with that category. The antecedent(s) may
vary among all the other variables, so we count all the records including the
aforementioned consequent and any combination of the remaining features.
For instance, we count the records including xn,1 as well as x1,1, . . . , xn−1,1,
so their proportion on the whole dataset defines the support of the following
rule:

x1,1, . . . , xn−1,1 =⇒ xn,1. (2.1)

More generally, the support can be defined as follows:

support := P (antecedent, consequent). (2.2)

As such, the greater the support, the stronger the association rule, so that
is the first discriminant to detect significant rules. By setting a minimum
support level, we can exclude all the rules whose support is lower. This is
not only important as a primary way to pick rules, but also a way to reduce
computational complexity. Indeed, if we really had to consider each and
every possible rule, it would lead to an extremely high number of operations.
In particular, if ki ≡ k for each i, the number of single-consequent rules is

kn
n−1∑
i=1

(
n− 1

i

)
(2.3)

and, as an example, if the dataset has only five binary variables (n = 5 and
k = 2), the possible association rules are 480!
However, the support threshold can partially fix the problem. First, notice
that the support depends on the features appearing in that rule regardless
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of their role, either antecedent or consequent. For instance, the support of
the rule in (2.1) is the same as the support of

x2,1, . . . , xn,1 =⇒ x1,1. (2.4)

As a consequence, if the support of (2.1) is below the support threshold, the
support of (2.4) and that of any other affine rule will be below it. Therefore,
we can immediately exclude all those rules from the analysis without even
checking them. This means that the number of rules in (2.3) leads to the
evaluation of kn supports only. In the dataset of five binary variables, it
means 32 evaluations rather than 480.
Moreover, the number of significant rules is further reduced by another re-
mark. Assume that the support of

x1,1 =⇒ xn,1 (2.5)

is below the threshold. Then we can immediately exclude all the rules in-
cluding x1,1 and xn,1 such as those in (2.1) and (2.4).
With that in mind, the algorithm repeats the search of association rules
varying the consequent features: first xn,1, then xn,2 and so on. When
all the significant xn-consequent rules are detected, the algorithm sets a
new consequent, say xn−1, and restarts the search for all of its categories.
When all the variables have been parsed, the algorithm stops and returns a
list of rules, each with a number of antecedents and one single consequent.
Nonetheless, if we knew that only some variables are to be considered as
consequent, then we can limit the algorithm to them in order to make it
even faster by avoiding useless operations.
The support threshold provides a criterium to get the list of rules “sup-
ported” by a sufficient proportion of records. However, not all of them are
actually strong. Since any rule is defined by antecedent and consequent, we
are interested in the proportion of records showing the consequent feature
given that they show the antecedent feature(s). This is called confidence of
the rule:

confidence := P (antecedent | consequent) =
P (antecedent, consequent)

P (antecedent)
(2.6)

that is the conditional probability of the consequent given the antecedent.
If the support level is around 80%, but the confidence level is relatively low,
say 50%, we can still say that the rule is statistically significant since it
considers 80% of the available records, but the antecedent implies the con-
sequent only half the time. In other words, we cannot state that the former
actually implies the latter, and the rule turns out to be very weak. This is
not the case if the confidence reaches higher values such as 90%: at those
levels, the rule can be considered quite strong.
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However, the confidence level is not necessarily the best measure of a rule’s
strength. To make it evident, let’s consider the extreme example of inde-
pendence between antecedent and consequent. In this case, the confidence
in (2.6) is reduced to P (consequent), which may be quite high if the conse-
quent feature is frequent although there is no association by definition.
To fix this issue, we can use P (consequent) as a benchmark confidence, that
is, the minimum acceptable confidence level for a rule should be P (consequent).
In other terms, we can define a new measure, the lift ratio, which encom-
passes both the confidence and the benchmark confidence:

lift ratio :=
confidence

benchmark confidence
=

P (antecedent, consequent)

P (antecedent)P (consequent)
(2.7)

which indicates some usefulness to the rule if it is greater than 1, although
it is not enough to state that the rule is actually strong. The greater the lift
ratio, the stronger the association.

2.3.2 Principal component analysis (PCA)

PCA represents not only one of the most popular multivariate statistical
techniques, but also the oldest one. Indeed, its origin can be traced back
to Pearson (1901), if not even Cauchy (1829) or Jordan (1874). However,
the modern formalization has been introduced in Hotelling (1933) together
with the concept of “principal component” as a dimension reduction tool.
Generally speaking, information is affected by some level of correlation
among variables. These dependencies make data partially redundant, so
there should be room for variable reduction. That is the goal of PCA:
exploiting this room to extract new, independent variables - the principal
components - to replace the original ones. The number of principal com-
ponents will always be the same as the number of original variables, but
we may choose a subset of them in order to reduce the size of the dataset
while keeping a reasonable amount of information. Therefore, the greater
the (linear) correlations, the greater the PCA benefit. If the data does not
show any correlation, PCA will return the original dataset itself.
First of all, let N be the number of data points and n the number of vari-
ables, which should be numerical and standardized. Let’s represent such a
data matrix with X and the related covariance matrix with ΣX . Given that
any covariance matrix is positive semi-definite (i.e., there exists a matrix A
such that ΣX = AAT ), ΣX can be “eigen-decomposed”, as we will explain.
Recall that an eigenvector of ΣX is defined as the vector u that satisfies the
following equation:

ΣXu = λu (2.8)

for some λ, which is called the eigenvalue associated to u. Notice that if u
is an eigenvector, then any vector au, for any constant a, is an eigenvector
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as well. In order to avoid those sort of redundancies, eigenvectors are always
normalized in practice, that is, transformed so that their norm is 1 (i.e., uTu
= 1). In this way, it can be proven that ΣX admits exactly n eigenvectors
and n related eigenvalues. Moreover, if we define U as the matrix of such
(column) eigenvectors and Λ as the diagonal matrix of such eigenvalues, we
can use (2.8) to write

ΣXU = ΛU (2.9)

or
ΣX = UΛU−1 (2.10)

which represents the eigen-decomposition of ΣX .
Positive semi-definite matrices like ΣX not only admit such a decomposition,
but the eigenvalues are all distinct and nonnegative, implying the orthogo-
nality of the eigenvectors. Then, the eigenvector matrix U is orthogonal as
well, that is

U−1 = UT (2.11)

and (2.10) becomes
ΣX = UΛUT (2.12)

which represents the diagonalization of ΣX . In practice, (2.12) expresses
the transformation of the original covariance matrix ΣX to a new covariance
matrix Λ which is diagonal, that is, includes variances only. In fact, such a
transformation condensed the information on the diagonal of the covariance
matrix, moving it from the correlation components.
So far we converted the covariance matrix to a variance matrix, but that is
not enough, because we should transform the dataset itself accordingly. In
practice, we need to transform the data points so that their new covariance
matrix is diagonal. More specifically, let’s find the matrix P such that the
covariance matrix of the new dataset Y := PX equals Λ. Notice that, if
we use (2.12) and define P := UT , then the covariance matrix of the new
dataset is

ΣY =
1

N
Y Y T =

1

N
(PX)(PX)T =

1

N
PXXTP T =

= P
( 1

N
XXT

)
P T = PΣXP

T = P (UΛUT )P T =

= (PU)Λ(UTP T ) = (UTU)Λ(UTU) =

= (U−1U)Λ(U−1U) =

= Λ (2.13)

which is exactly our aforementioned goal.
All in all, the matrix that transforms the data points is the transpose of the
matrix that zeroised the correlation components in the original covariance
matrix. Once we have built the matrix U by using the eigenvectors of ΣX ,
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the new dataset is easily defined by UTX, whose (co)variance matrix is Λ.
As a consequence, each eigenvalue on the diagonal of Λ equals the variance
explained by the related principal component, while there is no information
brought by correlations since the principal components are independent by
construction.
The final step is straightforward: we only need to pick those principal com-
ponents that explain most of the variance altogether (e.g., more than 80%
or 90%, depending on the specific application). In this way, the new dataset
still inherits most of the original information, but it is condensed in less,
independent variables.
However, we should always take into account two fundamental drawbacks of
PCA. First, the basic algorithm described so far extracts principal compo-
nents based on the linear dependencies among the original variables, while
any nonlinear relationship is completely ignored. Secondly, the principal
components turn out to be a linear combination of the original variables,
and, as such, they lose any practical interpretation. Nonetheless, several
enhancements to the standard PCA have been proposed, for instance, the
singular-value decomposition (SVD), which implements a generalization of
the eigen-decomposition to directly transforms the dataset regardless of its
covariance matrix.

2.3.3 Cluster analysis

While PCA is a tool to group variables (the “columns”), cluster analysis is a
tool to group records (the “rows”). Obviously, records are grouped accord-
ing to their similarities: similar records are more likely to be grouped than
different record. Therefore, any clustering method is first based on the dis-
tance measure used to evaluate how close two records are. The most popular
choice is represented by the Euclidean distance: given the vectors of features
for two different records, say xi = (xi1, . . . , xin) and xj = (xj1, . . . , xjn), the
Euclidean distance between them is defined as follows:

d(xi,xj) :=
√

(xi − xj)T (xi − xj) =

√√√√ n∑
k=1

(xik − xjk)2, ∀i, j. (2.14)

Notice that the Euclidean distance is highly influenced by the scale of each
variable, so we should always cluster a previously standardized dataset, oth-
erwise we may obtain very flawed results.
Although that is the most widely used distance, it has some drawbacks. For
instance, it is very sensitive to outliers: we could remove them or use a more
robust distance such as the Manhattan distance:

dM (xi,xj) := |xi − xj |T1 =

n∑
k=1

|xik − xjk|, ∀i, j. (2.15)
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where 1 denotes the n-dimensional vector (1, . . . , 1). The Euclidean distance
also ignores correlations among variables, and it turns out to be a relevant
problem when some of them are strongly correlated. That is the reason why
a correlation-based distance may be more convenient. For example, if ρij
denotes the correlation coefficient of xi and xj , then we can simply define
the distance dρ(xi,xj) := 1− ρ2

ij . However, given the covariance matrix Σ,
there is a more rigorous way to define a correlation-based distance:

dΣ(xi,xj) :=
√

(xi − xj)TΣ−1(xi − xj), ∀i, j (2.16)

which is called Mahalanobis distance.
Beside the distance between records, cluster analysis requires the choice of
a distance measure between clusters, which are instead group of records.
Given two distinct clusters X and Y encompassing the records x1, . . . ,xm
and y1, . . . ,yp respectively, we can define the following distances between
them:

single linkage := min
i,j

d(xi,yj) (2.17)

complete linkage := max
i,j

d(xi,yj) (2.18)

average linkage :=
1

mp

∑
i,j

d(xi,yj) (2.19)

centroid linkage := d

(
1

m

m∑
k=1

xik,
1

p

p∑
k=1

yjk

)
(2.20)

where we use the Euclidean distance d defined in 2.14. Using distance mea-
sures, clustering algorithms can properly group records and merge clusters.
Moreover, there is a further approach called Ward’s method that is not really
based on the concept of distance. Instead, it takes advantage of the decom-
position of the total variance in a dataset between the within variance (i.e.,
the variance “within” each single cluster) and the between variance (i.e.,
the variance “between” different clusters). Such a decomposition can be
expressed as follows:

K∑
j=1

Nj∑
i=1

(xij − x)2 =
K∑
j=1

Nj∑
i=1

(xij − xj)2

︸ ︷︷ ︸
within variance

+
K∑
j=1

Nj(xj − x)2

︸ ︷︷ ︸
between variance

. (2.21)

where K is the number of clusters, Nj the number of records in the jth

cluster, xj the average over the jth cluster and x the average over the whole
dataset. In fact, while distance-based clustering generates clusters by min-
imizing distances among records, the Ward’s method generates clusters by
minimizing variances within clusters. Notice that, since the total variance
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is constant by definition, then the smaller the within variances, the greater
the between variances. This is reasonable: if little information is exchanged
among records within clusters, most of it will be necessarily exchanged out-
side, that is, between clusters.
Once we have chosen the measure or the rule to group records, we can
choose the clustering method. Generally speaking, data scientists distin-
guish between two fundamental types of clustering: hierarchical clustering
and non-hierarchical clustering. In this subsection, we will introduce the
two most common algorithms for both.
Hierarchical clustering is especially known in its agglomerative version, merg-
ing close clusters together (hierarchical clustering can be divisive as well,
separating distant clusters instead, but it is less common). The algorithm
starts with N trivial clusters, one for each data point. In the first step,
all the distances among clusters are calculated, and the two closest clus-
ters are merged (in the case of the Ward’s method, the clusters merged are
those leading to the smallest increase in within variance). The second step
is analogous: the distances are recalculated, and the two closest clusters
are merged (once again, the Ward’s method merges the clusters trying to
keep the within variance as small as possible). Going on with further steps,
the number of clusters will progressively decrease until all the records are
grouped under one single cluster. Then the algorithm stops.
As we can easily figure out, the process creates a cluster hierarchy, start-
ing from the smallest clusters (i.e., the records themselves) to the biggest
ones, and finally the whole dataset. As such, we can easily keep track of
the clusters generated at each step. That can be done with a dendrogram, a
treelike diagram that illustrates the whole cluster hierarchy. In Figure 2.4,
we reported an example of it. Each vertical segment represents a cluster;
in particular, the short segments at the very bottom represents the single
records, that is, the initial clusters. The length of those segments reflects
the distance between the clusters. Therefore, the horizontal segments de-
note the merge of two clusters in the related step. Heuristically speaking, we
can expect that any dendrogram tends to flatten as the number of clusters
increase, in the sense that the distances between the larger clusters on the
top side will be probably greater than the distances between the smaller
clusters on the bottom side.
Furthermore, dendrograms provide a useful view to select clusters. Any
horizontal line on the graph represents a specific choice. In Figure 2.4, for
example, the horizontal red line leads to the selection of the four clusters
inside the red squares.
In its simplicity, hierarchical clustering can be seen as the most natural way
to generate clusters: the closer the clusters, the earlier their aggregation.
However, the major drawback of this approach is the computation of

(
N
2

)
distances in the first step, which are also updated at each subsequent step.
For instance, if the first two records are aggregated at the end of the first
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Fig. 2.4: Example of dendrogram

step, then the algorithm will calculate the new N−2 distances for the second
step. Analogously, if the third record is also aggregated at the end of the
second step, then the algorithm will calculate the new N − 3 distances for
the third step and so on. All in all, the process requires

(
N
2

)
+ (N−2)(N−1)

2
operations at least, which may be very expensive for large datasets. That is
especially true since

(
N
2

)
distances need to be allocated in the CPU: this is

often infeasible.
For such reasons, non-hierarchical clustering might be a preferred approach,
because it does not pose computational issues. In fact, it does not build
any full hierarchy over the dataset, so much less information needs to be
allocated.
The most common non-hierarchical method is the K-means algorithm. First,
the algorithm needs some initial conditions, that is, an integer K denoting
the number of clusters to generate, and a set of K records representing the
initial clusters (and the related centroids). In the first step, each record
is assigned to the closest initial cluster, in order to generate a first set of
K clusters, and the centroids are recalculated. In the second step, each
record is reassigned to the closes cluster among those coming from the pre-
vious step, and the centroids are recalculated once again and so on. After a
number of steps, the centroids will stabilize and records will no longer move.
Notice that the algorithm calculates (N−K)K distances at each step, but it
does not need to keep them in memory. This is what makes it much cheaper
than hierarchical clustering. Of course, without hierarchy the dendrogram
cannot be plotted.
However, the gain in computational complexity reflects in the loss in result
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stability. Indeed, the choice of the initial clusters does impact the outcome
of the algorithm. Lucky choices may output better results as well as unlucky
choices may output worse results. Sometimes there could be strong reasons
to choose a specific set of initial clusters, but often this is not the case and
the algorithm should be run over a number of different sets of initial condi-
tion to individuate stable clusters. This is not only useful to return stable
partitions, but also to choose a reasonable K. For example, if we observe
a major drop down in dispersion at one specific K, this could be a good
reason to choose that K.
Nonetheless, several studies such as Arai et al. (2007), Chen et al. (2005)
and Liu et al. (2017) propose some combinations of hierarchical and non-
hierarchical algorithms to fix or avoid the problem of setting initial condi-
tions for the K-means algorithm. The resulting algorithm is generally called
hierarchical k-means clustering. Its simplest and most intuitive form comes
out when the centroids returned by the hierarchical method are used as
initial conditions of the K-means algorithm (this is the technique we will
use to estimate the churn rate later on). Even if we still need to run the
hierarchical algorithm, this is only needed one single time to extract reason-
able centroids, whereas its clusters and the whole hierarchy will be ignored.
After that, indeed, we will use the K-means algorithm only.
All in all, hierarchical clustering is computationally expensive, but quite ro-
bust, while non-hierarchical clustering is computationally cheap, but more
volatile. Nonetheless, beside computational cost and stability, cluster anal-
ysis should also guarantee interpretability. In other words, cluster analysis
reaches its goal when the clusters are meaningful, somewhat in line with our
expectations. When this is possible, then they can be labelled and figured
out qualitatively, not only numerically.

2.4 An application to French motor insurance data

The goal of our analysis is to predict customer behaviour in a given motor
insurance portfolio, and explain this by examining which features affect the
purchase and retention of the product. We will use the unsupervised tools
described in Section 2.3 to support data preparation and analysis. After
that, the churn rate will be predicted by a simple logistic regression (further
supervised machine learning tools will be introduced and used in Chapter 3
and 4).

2.4.1 Data

The data comes from an R package containing a number of datasets for ac-
tuarial applications (see Dutang et al. (2016)). In Dutang et al. (2016), the
whole database is called French claims for private motor (fremotorclaim),
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although it encompasses, among others, three different datasets with the
following description:

fremotor1freq, fremotor1sev, fremotor1prem are three datasets
from the same database for a private motor portfolio observed
between January 2003 and June 2004, respectively the claim fre-
quency database, the claim severity database and the premium
database.
The dataset fremotor1prem consists of 50.710 records with ex-
planatory variables for policies (possibly with multiple vehicles
insured under the same policy number).
The dataset fremotor1freq consists of 19.928 records of claim
numbers (by policy) between January 2003 and June 2004.
The dataset fremotor1sev consists of 18.057 records of claim
amount, their occurrence date, the corresponding guarantee, be-
tween January 2003 and June 2004.

Our starting point is represented by fremotor1prem, which contains 31
fields:

• IDpol for the policy ID (used to link with the claims in fremotor1sev)

• DrivAge for the driver age, in years

• DrivGender for the gender

• MaritalStatus for the marital status

• BonusMalus for the bonus/malus, between 50 and 350 (lower than 100
means bonus, grater than 100 means malus in France)

• LicenceNb for the licence number (at least one)

• VehNb for the power of the car (ordered categorical)

• PayFreq for the payment frequency

• JobCode for the job code

• VehAge for the vehicle age, in years

• VehClass for the vehicle class

• VehPower for the vehicle class from least powerful (P2) to most pow-
erful car (P15)

• VehGas for the car gas (diesel or regular)

• VehUsage for the vehicle usage



CHAPTER 2. CUSTOMER MANAGEMENT 63

• Garage for the type of garage

• Area for the area code

• Region for the policy regions in France (based on a standard French
classification)

• Channel for the channel distribution code

• Marketing for the marketing code

• PremWindscreen for the premium of windscreen guarantee

• PremDamAll for the premium of damage all-accident guarantee

• PremFire for the premium of fire guarantee

• PremAcc1 for the premium of type-1 accident guarantee

• PremAcc2 for the premium of type-2 accident guarantee

• PremLegal for the premium of legal protection guarantee.

• PremTPLM for the premium of mandatory third-party liability guaran-
tee

• PremTPLV for the premium of voluntary third-party liability guarantee

• PremServ for the premium of service guarantee

• PremTheft for the premium of theft guarantee

• PremTot for the total premium

• Year for the calendar year.

Moreover, the dataset fremotor1sev contains 5 fields:

• OccurDate for the occurrence date

• Payment for the amount of money paid

• IDpol for the policy ID

• IDclaim for the claim ID

• Guarantee for the corresponding guarantee of the claim

and the dataset fremotor1freq contains 3 fields:

• IDpol for the policy ID

• ClaimNb2003 for the claim number in 2003
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• ClaimNb2004 for the claim number in 2004.

Notice that fremotor1sev implicitly includes the data of fremotor1freq, so
we can ignore the latter as a first step. Then, the factor variables Garage and
Marketing explain exactly the same information, that is, there is no differ-
ence between their categories, so we can delete one of them, say Marketing.
For the same reason, we can delete PremTot, which is the sum of the single
premium components.
One of our goals is the estimation of the churn rate in year 2004, that is, the
probability that a policyholder in portfolio as at year 2003 will not renew
the year after. To do that, we need to separate the records per Year. In
particular, we will use the 2003 portfolio as our current portfolio and per-
form our analysis on that, while the only information needed from the 2004
portfolio is the indication about the presence/absence of the records that
existed in 2003. This information will be represented by the new binary
variable Churn. Obviously, the field Year is constantly 2003 now, so it can
be deleted.
Remember that data are available until June 2014, that is, there is a chance
that we are overestimating the churn rate. To address this potential issue
and avoid excessive flaws in our analysis, various checks were necessary. For
instance, if policyholders enter the dataset as soon as they pay their pre-
mium, we should expect the renewal to be wrongly driven by PayFreq: in-
deed, about half of the policyholders with annual premium frequency should
pay the premium and enter the dataset after June 2014. However, this is
not the case, and more generally payment frequency seems to be completely
unrelated to the renewal (in particular, it will not be retained by the step-
wise regression in Subsection 2.4.4). All in all, we are aware of the potential
flaws, but the data as well as the final results do not seem to be strongly
impacted.
As explained in the database description from Dutang et al. (2016) reported
at the beginning of this subsection, fremotor1prem includes duplicated pol-
icy IDs. It is important to check them to determine whether they refer to
one of the followings:

1. one vehicle insured by one policyholder

2. more vehicles insured by one policyholder

3. one vehicle insured by more policyholders

4. more vehicles insured by more policyholders.

Unfortunately, we do not know the real reasons of such duplicates. For ex-
ample, the case 1. might refer to a change in premium amount, while the
case 3. might refer to the same family or firm. In any case, we need to keep
this type of information as much as we can, and we do it by defining two new
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fields, that is, OwnedVehiclesAssured and FamilyMembersAssured, both of
them equal to 1 as default.
Regarding the duplicates of the first type, we simply keep the last record
in chronological order, which is inferable from some features of the dupli-
cates such as driver age or vehicle age (the other subsequent duplicates are
deleted).
Regarding the duplicates of the second type, we can detect them by us-
ing the vehicle features at our disposal to determine whether the duplicates
relate to different vehicles: if so, we keep both the records, and set their
OwnedVehiclesAssured to 2 (or more, in case of triplicates, quadruplicates,
etc.).
Regarding the duplicates of the third type, we can detect them by using the
policyholder features at our disposal to determine whether the duplicates
relate to different policyholders: if so, we keep both the records, and set
their FamilyMembersAssured to 2 (or more, in case of triplicates, quadru-
plicates, etc.).
Finally, regarding the duplicates of the fourth type, we can detect them by
using both the vehicle features and the policyholder features at the same
time, keeping all the duplicates, and setting OwnedVehiclesAssured and
FamilyMembersAssured accordingly.
As a conclusion, we delete few records relating to categories that are very
infrequent in the dataset, that is, those with LicenceNb equal to 6 or 7,
those with VehNb equal to 6 or 21, those with JobCode equal to Retailer,
those with Area equal to A12, those with OwnedVehiclesAssured equal to
4, and those with FamilyMembersAssured equal to 3. That should make
results stabler.

2.4.2 Data preparation with machine learning

In this subsection, we will complete the data preparation started in Subsec-
tion 2.4.1. More specifically, we will first perform dimension reduction on the
premium amount fields, and then the claims of the dataset fremotor1sev

will be assigned to the records of fremotor1prem.
As explained in Subsection 2.3.2, PCA is one of the most common techniques
for dimension reduction. First, we take the natural logarithm of the premium
variables (PremWindscreen, PremDamAll, PremFire, PremAcc1, PremAcc2,
PremLegal, PremTPLM, PremTPLV, PremServ and PremTheft) to reduce skew-
ness and kurtosis, and then standardize them to apply PCA. The resulting
descriptive statistics are reported in Figure 2.5. We can easily observe the
numerous high correlations among most of the premium fields. For instance,
the linear correlation between PremLegal and PremTPLM is even greater than
90%, and that between PremTPLM and PremTPLV is almost 80%. Nonetheless,
PCA will return independent variables that would be much more suitable to
be used in any regression method. At the same time, such high correlations
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Fig. 2.5: Descriptive statistics of churn rate’s explanatory variables

Fig. 2.6: Importance of principal components
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Fig. 2.7: Regression summary after stepwise selection
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Fig. 2.8: Claim rate ROC Fig. 2.9: Claim rate deciles

suggest that some principal components could be easily ignored because of
the scarce information they represent.
The results of the PCA performed on these premium variables are reported
in Figure 2.6, where the principal components are sorted by explained vari-
ance. Half of them - from PC6 to PC10 - explain less than 5% information,
that is, a small portion. By contrast, the first four principal components -
from PC1 to PC4 - explain more than 80% information, which can be consid-
ered as a sufficient amount. Further, the first six components explain more
than 90% information. In any case, the choice of the number of components
is free, and depends on our priorities about parsimony and accuracy. For our
analysis, we prefer the former, so we will keep four principal components,
defining four new fields: PremPC1, PremPC2, PremPC3 and PremPC4.
The second part of data preparation relates to the merge of the claim dataset
fremotor1sev into the main dataset fremotor1prem, in order to define the
new feature Claim, a binary variable equal to 1 if the record reports a
claim. More specifically, we need to assign the claims of fremotor1sev to
the records of fremotor1prem by using the field IDpol. This is straightfor-
ward for unique IDpol, but we have already explained in Subsection 2.4.1
that fremotor1prem includes duplicates that can correspond to different
policyholders and/or vehicles reported under the same IDpol. That is the
case for a relevant number of records - around 18% of the entire dataset - so
we want to keep them, but need a way to assign claims to them, given that
there are no duplicates in fremotor1sev. To do that, we will fit a logistic
regression on the unique records to estimate the claim probability of the
duplicated records. After that, we will assign the claims to the duplicated
records with the highest estimated claim probability.
Notice that we only assign aggregated claims because fremotor1sev does
not report any information about frequencies and single claim amounts.
Nonetheless, that would have been more relevant for loss estimation or claim
reserving, but our analysis is focused on renewal prediction, so we prefer to
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keep the minimal information about whether the policyholder made a claim
during the year, regardless of any frequency or amount involved in the pro-
cess. The results of the stepwise logistic regression on the claim rate are
reported in Figure 2.7, while the predictive performance is illustrated by
the ROC curve and the decile chart in Figure 2.8 (AUC 60%) and 2.9 re-
spectively.
This application of logistic regression should make clear that the distinction
between unsupervised and supervised learning is not always as strict as it
may seem. Many supervised learning tools are often used for data manipu-
lation (for instance, missing value handling, when they are too frequent to
be simply deleted) and dimension reduction (for instance, variable selection
using stepwise regression or any other supervised learning tool).

2.4.3 Market basket analysis

As previously described in Subsection 2.3.1, association rules were originally
introduced for market basket analysis, which still remains one of their main
fields of application. Of course, we could have done more accurate analyses
by using more complex tools. However, the fundamental simplicity of asso-
ciation rules in getting and interpreting results make it a good candidate for
any market basket analysis.
First and foremost, we need to categorize any numerical variable of our
dataset as association rules may be applied to categorical data only. More
specifically, we define new categorical fields - DrivAge fac, BonusMalus fac,
VehPower fac and VehAge fac - to categorize the related numerical vari-
ables (see Figure 2.10).
After that, we need to define binary variables to indicate which record
bought each of the guarantees. For that, we can leverage the premium
variables: if the premium of one guarantee is nonzero, the related binary
variable should be set to 1. Such new variables will be TPL, Legal, Serv,
Fire, Theft, Windscreen, DamAll, Acc1 and Acc2. Notice that TPL, Legal
and Serv are identically 1 in the dataset (they are probably mandatory
guarantees), so we should exclude them.
As explained in Subsection 2.3.1, each association rule is determined by an
antecedent and a consequent, that is, logical expressions defined by any pos-
sible combination of categories in the dataset. To keep it simple, we will
avoid complicated expressions by limiting them to one single category for
each association rule. Moreover, we will separate the six different guaran-
tees to make it clearer. The results are reported in Figure 2.12-2.17, that
is, the twenty most relevant (i.e., highest lift) rules for each guarantee. To
avoid insignificant rules, we set a minimum support level to 100 records and
a minimum confidence level to 30%. These settings and constraints lead to
435 rules, which are often represented by a scatter plot varying by support,
confidence and lift just like in Figure 2.11.
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Fig. 2.10: Variable categorizations for association rules

First of all, notice that the rules for Fire, Theft, Windscreen and DamAll

(see Figure 2.12-2.15) are quite similar. That is not surprising as they
share the same nature. All of them are primarily activated by policyhold-
ers to cover their brand new vehicles (“VehAge fac=[0,5]”) or expensive
vehicles (“VehClass=Expensive”, but also “VehClass=Medium high”, “Ve-
hClass=Medium” and “VehClass=Medium low”).
Other rules are less intuitive. For instance, old policyholders are more likely
to buy those types of guarantees. The second highest confidence and lift
for DamAll relates to over-70 policyholders (“DrivAge fac=(70,100]”). Ac-
tually, we can observe that the antecedents “DrivAge fac=(50,60]”, “Dri-
vAge fac=(60,70]” and “DrivAge fac=(70,100]” always appear among the
twenty most significant rules for those guarantees. We can conclude that
aged drivers tend to be more risk adverse than younger drivers.
The same trend is somewhat explained by the bonus/malus too. Indeed,
we can observe the presence of the antecedents “BonusMalus fac=(0,50]”
and “BonusMalus fac=(50,60]” in each guarantee. Those categories encom-
pass the most expert drivers having the lowest bonus/malus levels: in other
words, the less risky customers in portfolio. On the other hand, the fact
that the riskiest policyholders are the less prone to insure their own vehicles
should be a source of concern for the company, which should try to raise
awareness among them.
Less surprising is the presence of “Channel=B”. It seems that such a chan-
nel is working significantly better than others in selling those guarantees. In
this case, the company may try to improve the operations of underperform-
ing channels.
Further, let’s focus on Acc1 (see Figure 2.16) and Acc2 (see Figure 2.17),
which show quite different rules as compared to the aforementioned guar-
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Fig. 2.11: Scatter plot of the 435 association rules

antees. First of all, they substitute each other, because the antecedents
“Acc2=N” and “Acc1=N” get the highest lift and the second highest lift
respectively.
The location - Region and Area - seems to represent a major feature to
explain the purchase of these guarantees. Indeed, “Region=Paris Area” and
“Area=8” get the fourth and fifth highest lifts and confidences for Acc1,
while “Region=South West” and “Area=7”get the first and third highest
lifts and confidences for Acc2.
Something interesting to notice is the opposite impact of the bonus/malus as
compared to the other guarantees. While the latter had highest lifts by less
risky drivers, Acc1 and Acc2 show highest lifts by some of the riskiest ones.
For instance, the antecedent “BonusMalus fac=(100,150])” gets the highest
lift and confidence for Acc2 among the bonus/malus categories. However,
we should highlight that those lift values are relatively low - 1,15 or lower -
so the materiality of the related rules is limited.
A last remark may be done about the fifth and sixth most relevant rules
for Acc2, that is, “MaritalStatus=Unknown” and “JobCode=Unknown”. It
may be the case that those 5499 records refer to juridical entities (i.e., firms)
rather than physical customers. In such a case, Acc2 would be the most pre-
ferred product to firms for some reasons. It may be a strategic choice of the
insurance company, but it may also be a natural consequence of the product
design. In the latter case, the insurer should leverage that by offering the
same guarantee to other firms.
This subsection was worth to describe a simple way to detect marketing pat-
terns using association rules. Just like renewal prediction itself, association
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Fig. 2.12: Association rules for Fire

Fig. 2.13: Association rules for Theft
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Fig. 2.14: Association rules for Windscreen

Fig. 2.15: Association rules for DamAll
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Fig. 2.16: Association rules for Acc1

Fig. 2.17: Association rules for Acc2
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rules represent a common tool to optimize selling and advisory strategies in
the most appropriate way.

2.4.4 Churn rate estimation

So far we only used the information in fremotor1prem as at year 2003, but
we need its records for year 2004 now. Indeed, we define the new binary
variable Churn to indicate whether one record that are present in 2003 are
no longer present in 2004. In this case, Churn is set to 1, otherwise 0. The a
priori churn rate is around 11,3%, which represents a reasonable proportion
if compared to the industry average norm in France: retention ratio 82%,
that is, churn rate 18% (see Figure 2.1).
As the target variable is binary, this is another problem that may be easily
solved by the usual logistic regression. The results are reported in Figure
2.18, while ROC curve and decile chart are shown in Figure 2.19 and 2.20
respectively. The stepwise selects the following churn predictors:

• DrivAge

• DrivGender

• BonusMalus

• JobCode

• VehAge

• Garage

• Channel

• PremPC1, PremPC2, PremPC3, PremPC4

• OwnedVehiclesAssured

• FamilyMembersAssured

• Claim

with an AUC around 66,4%.
That was what any actuary could easily do to handle the estimation of the
churn rate. Nonetheless, let’s try to see how clustering may enhance the
analysis and improve the results.
First, we need to binarize all the categorical variables, that is, DrivGender,
MaritalStatus, LicenceNb, VehNb, PayFreq, JobCode, VehClass, VehGas,
VehUsage, VehGarage, Area, Region and Channel. Then, the dataset can be
partitioned through hierarchical clustering as described in Subsection 2.3.3.
Hierarchical clustering partitions the data points for any possible number of
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Fig. 2.18: Regression summary after stepwise selection
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Fig. 2.19: Churn rate ROC Fig. 2.20: Churn rate deciles

clusters, so we get finer partitions and lower within variance as that number
increases.
Looking at the reduction in within variance in Figure 2.21 represents an
intuitive way to decide the number of clusters. It is not always an obvious
choice, but in this case we observe major reductions until the seven-cluster
partition (indicated by the dashed line in Figure 2.21), while they get less
material onwards. Figure 2.22 illustrates the dendrogram as well as the
seven-cluster choice.
Furthermore, this method does not help only with the choice of the number
of clusters for the hierarchical methods, but also for other methods. For
instance, as suggested by numerous recent studies (see Arai et al. (2007),
Chen et al. (2005) and Liu et al. (2017), among others), we will use the
same number of clusters for the K-means method starting from the cluster
centroids returned by the hierarchical clustering itself. That tackles the two
major drawbacks of K-means clustering. First, it provides us with a solid
reason to set K = 7. Second, it fixes the problem of the initial conditions
at once and deterministically. Actually, we might have run the K-means
algorithm several times with random initial conditions in order to produce
stable clusters (this is the approach needed to produce the related within
variance reduction in Figure 2.23, for which 10 different initial conditions
are applied to each value for K, between 1 and 100), but it would have
been much heavier from a computational perspective. On the other hand,
K-means clustering is so attractive thanks to its low runtime above all. All
in all, the suggested approach avoids the repetitive usage of the costly al-
gorithm behind hierarchical clustering: we need to run it only once to get
the inputs for the K-means method, and then we can always use the latter
as much as we want and as long as we assume that those inputs are still
relevant.
To better compare the differences between the two clustering methods in
terms of potential in predicting renewals, we run one logistic regression for
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Fig. 2.21: Within variance by number of hierarchical clusters

Fig. 2.22: Dendrogram and seven-cluster split
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Fig. 2.23: Within variance by number of K-means clusters

each cluster in order to observe the differences with the logistic regression
that was previously run on the non-clustered dataset.
Figure 2.24 summarizes the parameter estimates returned by the logistic
regressions on the seven hierarchical clusters. The bold estimates are the
most significant ones, with a p-value lower than 5%. Some predictors are
so correlated with the churn rate that they are kept in most of the clusters.
They include BonusMalus (within all the clusters but one), PremPC1 (within
all the clusters but two), OwnedVehiclesAssured (within all the clusters but
one) and Claim (within all the clusters). Not surprisingly, those variables
are kept in the no-clustering regression as well. Nonetheless, less present
variables are still kept by that, for instance, DrivGender (in the third clus-
ter only), JobCode (in the fifth cluster only), VehAge (in the second cluster
only), Garage (in the fifth cluster only) and Area (in the seventh cluster
only). More importantly, there are few predictors that do not appear in
the no-clustering regression, although they do appear in some clusters. For
example, PayFreq is quite significant in both the fourth and seventh clus-
ter, but it is not in the no-clustering regression. This occurs to VehClass,
VehGas, VehUsage and Area as well. To some extent, it could represents a
loss of relevant information when we do not account for clusters.
Similar remarks can be done for the seven clusters produced by the K-means
algorithm. Figure 2.25 summarizes the parameter estimates returned by
the logistic regressions on them. The bold estimates are the most signifi-
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Fig. 2.24: Logistic regression coefficients by hierarchical cluster
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Fig. 2.25: Logistic regression coefficients by K-means cluster
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Fig. 2.26: Performance comparison by AUC

cant ones, with a p-value lower than 5%. Some predictors are so correlated
with the churn rate that they are kept in most of the clusters. They in-
clude BonusMalus (within all the clusters but two), OwnedVehiclesAssured
(within all the clusters but two) and Claim (within all the clusters but one).
Not surprisingly, those variables are kept in the no-clustering regression as
well. Nonetheless, less present variables are still kept by that, for instance,
DrivAge (in the first and fifth cluster only), DrivGender (in the second and
fourth cluster only), JobCode (in the second and fifth cluster only), VehAge
(in the first and second cluster only) and Area (in the fifth and seventh clus-
ter only). More importantly, there are few predictors that do not appear in
the no-clustering regression, although they do appear in some clusters. For
example, PayFreq is quite significant in both the second and seventh clus-
ter, but it is not in the no-clustering regression. This occurs to LicenceNb,
VehClass, VehGas, VehUsage and Area, that is, the same variables as in the
hierarchical clustering except for LicenceNb. It represents one more indica-
tion on the loss of information caused by their exclusions in the no-clustering
regression.
The simplest way to observe whether - and how much - the no-clustering
regression is missing in terms of predictive power is based on the AUC values
reported in Figure 2.26. The overall AUCs for the two clustering methods
are calculated as averages of the single AUCs weighted by the number of
records in each cluster. Apparently, they can explain slightly more infor-
mation than the no-clustering regression, that is, further 0,5% and 1,2%
for hierarchical clustering and K-means clustering respectively. Even if this
gain may not necessarily justify the cluster analysis itself, it still shows
that single regressions on specific clusters can materially outperform the no-
clustering regression. For instance, the K-means performance on the second
cluster exceeds 75% AUC, much higher than 66,4%. Quite significant is the
performance on the fifth hierarchical cluster, which exceeds 71%. In other
words, it helps us to identify clusters of policyholders whose renewal may
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be anticipated more accurately.
Before concluding this section, it is worth taking a look at the practical im-
pact of each relevant predictor on the churn rate. More specifically, we will
use the best method with the highest AUC, that is, the logistic regression
combined with K-means clustering (see Figures 2.26). The results - distri-
butions and churn rate estimations - are illustrated in Figure 2.27-2.38.
The most relevant, policyholder-related predictors include driver gender
(DrivGender), driver age (DrivAge), job type (JobCode) and sale chan-
nel (Channel). Figure 2.27 shows that men lapse significantly more often
than women, with a churn rate higher than 13,5% against a churn rate lower
than 11%. At the same time, the youngest drivers have a 15% churn rate
at least (between 18 and 20 years old it is even higher than 20%!), which
should be something to be appropriately managed by the company (see Fig-
ure 2.28). However, it is somewhat balanced by older drivers, with a churn
rate stabilized below 10%. This is also confirmed by the job impact: retired
policyholders show the lowest churn rate - below 10% - among the seven
categories of JobCode (see Figure 2.29). Moreover, as shown in Figure 2.30,
the sale channel seems to have a material impact for the category indicated
by “B” (unfortunately, we do not have any specific information about the
meaning of the Channel categories).
The most relevant, vehicle-related predictors include vehicle age (VehAge)
and garage type (Garage). In Figure 2.31, we can observe a linear shape of
the churn rate by vehicle age. In particular, new vehicles tend to relate to
low churn rates, approximately lower than 11%, while churn rate seems to
increase as they get older. However, we should highlight the huge variability
of results at high vehicle ages, which prevent us from giving accurate estima-
tion. A linear shape is also shown in Figure 2.32, that is, the more exposed
the parking type, the higher the churn rate. For instance, policyholders that
own a closed box have a churn rate around 11%, while policyholders parking
on the street have a churn rate around 14%.
As expected, premium amounts are quite relevant in predicting renewal. In
order to avoid any impractical analysis on the principal component of the
premiums in the dataset, we will analyse the change in churn rate by over-
all third-party premium (see Figure 2.33) and overall damage premium (see
Figure 2.34). The former is clearly another churn driver: it slowly makes
the churn rate higher and higher at premiums below 1000, while it lets it
explode at greater amounts. The latter does not impact so much, probably
because the related amounts are much lower, so less significant for the pol-
icyholders: except at very low premium amounts, the churn rate is always
around 10%.
The riskiness of the policyholder plays a role as well, although it is less intu-
itive to figure out. Figure 2.35 clearly shows that the churn rate increases as
the bonus/malus category of the policyholder (i.e., the potential riskiness)
increases. From a business perspective, this is perfectly fine: for some rea-
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Fig. 2.27: Churn rate
by driver gender

Fig. 2.28: Churn rate
by driver age

Fig. 2.29: Churn rate
by job code

Fig. 2.30: Churn rate
by channel

Fig. 2.31: Churn rate
by vehicle age

Fig. 2.32: Churn rate
by garage
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Fig. 2.33: Churn rate
by third-party premium

Fig. 2.34: Churn rate
by damage premium

Fig. 2.35: Churn rate
by bonus-malus

Fig. 2.36: Churn rate
by claim occurrence

Fig. 2.37: Churn rate
by vehicles assured

Fig. 2.38: Churn rate
by members assured
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sons, riskier policyholders tend to lapse more often. However, that seems
to be in contrast to what is shown in Figure 2.36, that is, policyholders
that caused a claim in 2003 will lapse in 2004 with an estimated likelihood
around 4%, which is extremely low. In other words, we should separate the
historical information provided by BonusMalus from the actual information
provided by Claim: even if both of them are two expressions of the same
risk, their impact on the churn rate is opposite.
Finally, the number of vehicles assured (see Figure 2.37) and members as-
sured (see Figure 2.38) are relevant in the same direction. In other words,
the more the vehicles or members assured, the higher the chance of lapse.
This is simply due to the fact that the presence of more available vehicles
make all of them less necessary, so it is reasonable not to expect the renewal
of one (or even more) of the policies with a higher chance, especially when
one vehicle has just replaced another vehicle.

2.5 Limitations, extensions and conclusions

The main purpose of this chapter is the demonstration of how unsupervised
learning can be used to support data preparation and/or enhance customer
behaviour prediction. According to the CRISP-DM standard for the data
mining process (see Section 1.2), the chapter can be formally broken as
follows:

C1 Business understanding : Section 2.1

C2 Data understanding : Subsection 2.4.1

C3 Data preparation: Subsection 2.4.2, 2.4.3 and 2.4.4

C4 Modelling : Subsection 2.4.3 and 2.4.4

C5 Evaluation: Subsection 2.4.3 and 2.4.4

C6 Deployment : none.

Unlike the applications of the next two chapters, this one is not actuarial
in nature, but it is however necessary to suggest the importance of data by
introducing unsupervised learning, and build a bridge to the next topics.
Nonetheless, the results produced may still be useful for several actuarial
exercises. For instance, premium loadings may be calibrated and customized
taking into account the likelihood of renewal for each policyholder in the next
few years, in order to avoid unexpected losses. Moreover, we may use the
estimated churn rates to evaluate the profitability of a portfolio on a more
realistic basis and over a time horizon longer than one year. That could be
considered as a sort of life-style evaluation applied to non-life.
In the next chapters, we will introduce some of the most common supervised
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learning methods in data science. They will play the same role that logistic
regression played in this chapter, that is, tools to predict target variables. As
we will also demonstrate, those methods can outperform logistic regression
as they tend to adapt to data. Of course, we could have tried to use them
to predict churn rate too, but, as explained, supervised learning was not the
primary purpose of this chapter, so we will start employing them from the
next one.

2.5.1 Key conclusions for actuarial practitioners

Data scientists usually leverage unsupervised learning to simplify and im-
prove subsequent supervised learning. If an actuary intends to apply data
science, he/she needs to know that range of techniques. As we explained in
this chapter, indeed, unsupervised learning can help in several ways.
While preparing the dataset, one may need to compress data in order to
reduce size without losing too much information. There are a lot of data
reduction techniques: we introduced the most common ones. To reduce the
columns, actuaries can apply PCA as well as its adaptations for nonnumeri-
cal variables, just like we did in this chapter for the premium amount fields.
Essentially, we could halve them. Instead, to reduce the rows, cluster anal-
ysis can help by grouping similar records based on the distance measure we
defined. In our analysis, we did not need to use that for dimension reduc-
tion as the number of records was fairly manageable, but clustering can be
crucial when this is not the case.
Nonetheless, we demonstrated how cluster analysis may improve perfor-
mance of supervised learning tools. Indeed, supervised learning on single
clusters slightly outperformed supervised learning on the entire dataset. Of
course, this is not always the case, because it depends on the level of het-
erogeneity into the dataset. However, it shows that unsupervised learning
techniques are not merely used for more complex data handling, but they
can even boost supervised learning performance.



Chapter 3

Individual Claim Reserving
using Supervised Learning

This chapter will be the first one dealing with supervised learning. More
specifically, a number of techniques will be introduced, distinguishing be-
tween classification and prediction algorithms. They include näıve Bayes
classifiers, nearest neighbours, decision trees and neural networks, which rep-
resent the most widely used supervised learning techniques besides GLMs.

Actuarial context

The application relates to a classical problem in non-life actuarial practice,
that is, claim reserve estimation. Actuaries mostly deal with it by aggre-
gating claim payments to calculate the overall reserve. This is usually done
with run-off triangles, which account for accident year, reporting year and
closing delay. This has been proven to return accurate estimations as long
as claims are homogeneous and their payment is not correlated with other
features. However, this is not always the case, and sometimes individual
reserving is necessary for a better reserving process. Generally speaking, in-
dividual reserving is performed for each single claim by using all the available
information, in contrast to aggregation methods such as run-off triangles.

Chapter overview

Given that the data-driven nature of machine learning can be more easily
leveraged by individual reserving, this is the approach we will choose for this
chapter. The dataset consists of automobile bodily injury claims from the
Australian insurance market, which guarantees a high level of heterogene-
ity, and thus a potential outperformance of more flexible machine learning
methods over GLMs.
The analysis will be split into two separate exercises: the classification
among closing delay classes and the prediction of claim payment amount.

88



CHAPTER 3. INDIVIDUAL CLAIM RESERVING 89

Both of them will be tackled by using all the aforementioned machine learn-
ing techniques as well as proper GLMs (i.e., multinomial regression and
gamma regression respectively) in order to compare their performances. In
closing delay estimation, all the methods will approximately return the same
accuracy, so it does not justify the usage of alternative techniques. On the
contrary, we will demonstrate that the claim payment amount predictions
returned by the decision tree are significantly more accurate than those of
the GLM.
Even if it represents just one specific case study that cannot be generalized,
the chapter will emphasize the additional predictive power that more flexible
techniques may offer, that is, better exploitation of data variability.

3.1 Introduction

Actuarial practice in non-life reserving is traditionally based on aggregate
claims data structured in triangles. In fact, this has been proven (for in-
stance, in Bonrhuetter et al. (1972) and Mack (1993)) to be an effective ap-
proach as long as we face high-probability low-impact claims such as those
of motor insurance. Run-off triangles - like that in Figure 3.1 - are funda-
mentally based on the assumption that the reserve on future claim payments
depend on accident year, reporting year and closing delay only. Actually, it
is far to be true, unless the claims tend to be extremely homogeneous, and
even in that case, triangle-based estimations will neglect relevant informa-
tion about individual claims. This was necessary when actuaries had to use
data in times of strong computational limits. Nowadays, this is no longer a
major constraint.
On the other hand, in parallel to triangle-based methods for the total claim
reserve, insurance companies employ case reserving methods to estimate in-
dividual claim reserves, that is, the expected ultimate loss. The first reserve
estimate, typically input within a few days of receiving claim notice, is based
on the little information known at that time. As the claim matures, this
estimated value should be established for the claim based on the information
known at any point, net of any partial amount previouly paid to the policy-
holder. This individual approach allows for a continuous monitoring of the
single case, and may be much more useful for low-probability high-impact
claims.
Thanks to the current data availability, many studies on claim reserving
published in the last ten years promote the usage of individual claim data
for aggregated reserving as well as case reserving. Some of the most re-
cent include Taylor et al. (2008), Jessen et al. (2011), Pigeon et al. (2013),
Antonio et al. (2014), Martinez-Miranda et al. (2015), Antonio et al. (2016),
Avanzi et al. (2016), Badescu et al. (2016) and Hiabu et al. (2016). To some
extent, all of them assume a rather fixed structural form for the timing or
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reporting closing delay
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T PT,0 P̃T,1 . . . P̃T,n−1 P̃T,n P̃T,c

Fig. 3.1: Run-off triangle of paid amounts, and related reserve estimations
(in red)

the amount of the payments, often based on some GLM form. To relax
the rigidity due to full parametric models like those, machine learning may
represent a further option to explore.
It is worth highlighting that machine learning can be easily and directly
applied to case reserving as it relates to individual estimations. Another
intuitive application of machine learning in non-life practice involves pricing
(see Wüthrich et al. (2018) for a detailed presentation of the topic), which
is individual by definition. On the contrary, the application of the same
techniques to triangle-based reserving is less obvious, because it is based on
aggregated data, and takes into account a limited number of features. In
the recent years, however, some researchers tried to enhance such traditional
methods by using machine learning (among others, see Wüthrich (2016b),
which applies classification trees to estimate number of future payments
varying by accident year and reporting delay, and Wüthrich (2017), which
applies neural networks to handle heterogeneity in data and improve Chain-
Ladder reserving).
On our side, we will try to extend those ideas by estimating the case reserve
by using a range of machine learning tools, in order to emphasise their ad-
vantages (in terms of accuracy above all) as well as their drawbacks. Even
if we will not deal with triangle-based methods, the results will be reported
in the traditional reporting-year-per-closing-delay format, based on the two
target variables of our application, that is, the closing delay and the ulti-
mate cost.
After a brief introduction to the reserving problem in non-life insurance (see
Section 3.2) and the probabilistic model at the base of our analysis (see
Section 3.3), we will recall some features of the machine learning tools we
intend to use (see Section 3.4). All of them will be applied to publicly avail-
able automobile bodily injury claim data, in order to estimate individual
case reserves. The analysis is presented in Section 3.5. In line with the
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underlying model, the results will be broken down into three steps:

1. closing delay estimation of individual claims through multinomial re-
gression, näıve Bayes, nearest neighbours and classification tree (see
Subsection 3.5.2)

2. payment amount estimation of individual claims through generalized
regression, regression tree and neural network (see Subsection 3.5.3)

3. case reserve estimation of individual claims through some combina-
tions between tools in 1. and tools in 2. (see Subsection 3.5.4).

Furthermore, we will also address the problem of the separation between
small claims and large claims (see Subsection 3.5.5), which is part of the
non-life best practice, and may be useful for various reasons.
While no machine learning tool will be able to explain a relevant amount
of variance at the closing delay’s step, payment amount estimations and
claim separation performances will be quite accurate. More specifically,
the estimations returned by the decision tree and the neural network will
be significantly more accurate than those from a GLM based on the gamma
distribution. Of course, this is not to prove that machine learning can always
outperform more traditional approaches. Nonetheless, it should provide
actuaries with further techniques to better estimate individual reserves when
it comes with heterogeneous data.

3.2 Understanding claim timeline

Generally, a claim is triggered by an accident causing a damage covered by
the insurance contract. In an ideal world, the related benefit is paid as soon
as the accident occurs, but often this is not the case in non-life insurance.
In fact, a number of years may pass between the effective occurrence and
the final claim payment (or payments). This time gap represents the reason
why insurance companies must allocate reserve sufficient to cover any future
payments for outstanding loss liabilities.
Assume the premium is paid in t0 for an insurance protection that is im-
mediately effective for a period T . During that period, an accident occurs
at time ta < T , the so-called accident date. Ideally, the accident is immedi-
ately reported to the company, but for a number of reasons it may happen
differently, that is, the accident is reported at any time tr ≥ ta, the so-
called reporting date. The difference Γ := tr − ta is the reporting delay. If
it is small, say days, it does not really represent a problem to the company.
However, if the reporting delay extends for years, it generates an unknown
outstanding loss liability for the company, which is backed by the so-called
Incurred-But-Not-Yet-Reported reserve - or IBNYR reserve. Actually, the
related claims are not in the company’s systems yet, so data-driven tools
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Fig. 3.2: Graphical representation of the claim timeline

are hardly adaptable to this problem. For this reason, we will not estimate
the IBNYR reserve in our analysis, although it is a relevant topic for further
development.
As soon as the accident is reported, the company is able to collect informa-
tion about it, which represents the starting point for our analysis. Typically,
the claim cannot be settled immediately for a number of reasons, including
further investigation, new information, court decisions and so on. As a con-
sequence, the claim is actually closed only at a future date tc ≥ tr, the
so-called closing date. The difference ∆ := tc− tr is the closing delay, which
may have very different features depending on the specific non-life business
involved as well as the claim severity. For standard claims, it might be
very small, like in health insurance contracts for the employees of a firm:
the company receives standard claim documentation from the policyholder,
approves it quickly, and refunds him/her with one single payment. On the
other hand, more severe claims often lead to more tortuous - and longer -
closing delay: sometimes no payment is due, sometimes a final payment is
due, and sometimes company’s investigation justifies claim benefits all the
way along and a series of cash-flows is correspondingly paid. At reporting
date, the company must allocate reserve to cover the payments expected
during the closing delay. Such a reserve is the so-called Reported-But-Not-
Yet-Settled reserve - or RBNYS reserve. Given that it is allocated at report-
ing date, when some information about the claim is already known, we can
use it to build our individual reserve estimation.
The process described in this section is represented by the timeline in Figure
3.2.

3.3 Assumptions and model

Since our valuation date is the reporting date, we can assume that all the
information about the claim is known at that date, and thus it can be used
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to predict future payments. This is a first simplification, which may be un-
acceptable in some specific cases. In fact, one of the causes of the closing
delay is the further investigation by the company, which could discover new
information at a later date. For sake of simplicity, we will ignore this possi-
bility.
According to the explanation in Section 3.2, the company pays an amount
to the policyholder as soon as it is justified by the aforementioned investi-
gation, thus generating a series of cash-flows. The emerging of such partial
payments should be modelled, because it explains the change in reserve as
the time passes. However, the dataset we will use includes the individual ag-
gregated cost only, rather than the details on the cash-flows and the related
timing. As a consequence, we will assume one single, aggregate payment for
each claim due at closing date (nonetheless, repeated payments could poten-
tially be discounted and summed to define one proper aggregate payment).
Once these two assumptions are accepted, the model is a rather simple one.
Assume that the closing delay ∆ is a discrete variable measured in years,
say 0, . . . ,m. That means: no payment is delayed more than m years after
the reporting date. Moreover, consider a number of predictors x1, . . . , xn,
that is, information about the policyholder, the claim, or any other relevant
details. They are all available at reporting date, so they can be used to
predict how likely the payment related to the claim i occurs after k years,
that is, ∆i = k. Using a proper classification tool, formally represented
by a function pk(·) of the predictors, we will estimate P (∆i = k) for each
admissible k:

P̂ (∆i = k) := pk(xi1, . . . , xin), ∀k ∈ [0,m]. (3.1)

Now, we can still use the same predictors xi1, . . . , xin to estimate the pay-
ment amount due for the claim i; additionally, we will also use the infor-
mation about ∆i. Using a proper regression tool, formally represented by
a function f(xi1, . . . , xin|∆i) of the closing delay and the predictors, we will
estimate the payment amount:

Ĉi(∆i) := f(xi1, . . . , xin|∆i). (3.2)

providing us with an estimation conditioned to ∆i, which is unknown at
reporting date. To overcome this limit, we first calculate the following esti-
mations:

Ĉi(k) := f(xi1, . . . , xin|k), ∀k ∈ [0,m] (3.3)

and then estimate the payment amount for the claim i as follows:

Ĉi :=

m∑
k=0

P̂ (∆i = k)Ĉi(k) =

m∑
k=0

pk(xi1, . . . , xin)f(xi1, . . . , xin|k) =

=

m∑
k=0

pk(xi)f(xi|k) (3.4)
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which is an unconditioned estimation. Even if is not so common for case
reserving to place such focus on settlement timing, it can be quite impor-
tant when it comes with cash-flow management or any valuation based on
discounted cash-flows (e.g., Solvency II).
Although such a theoretical model is quite general, the aforementioned as-
sumptions are necessary to apply it on our specific data. In any case, if the
reader wants to use it on its own available dataset and the final goal of its
analysis, model and assumptions should be properly adapted.
In the next sections, we will present some of the machine learning techniques
that can be used to estimate pk and f . We will separate them because of
their different nature: while pk estimates the probabilities related to the
categorical variable ∆i, f estimates the claim amount Ci(k). The former
refers to a classification problem, whereas the latter refers to a regression
problem.

3.4 Fundamental supervised learning tools

The closing delay estimation is a classification problem, that is, the goal is
the prediction of how likely a claim will be closed - and the related amount
paid - after k years from the reporting date. By contrast, the claim amount
estimation is a regression problem since the target variable is numerical. The
closing delay estimation could have been treated as a regression problem too,
if we had assumed k as a continuous time variable, being inconsistent with
the traditional assumption of a discrete k with some upper limit m, just like
in any triangle-based reserve calculation exercise.
Although we will distinguish between tools used for closing delay estimation
and tools used for claims amount estimation as described at the end of
Section 3.1, this distinction is not strict. In fact, most of the fundamental
machine learning tools we will recall in the following subsections - näıve
Bayes, nearest neighbours, decision trees and neural networks - are flexible
enough to be used for both classification and regression problems.

3.4.1 Näıve Bayes

This tool is surely one of the easiest machine learning techniques. It is a
transformation of the well-known Bayesian classifier. Given the values for
the predictor vector xi related to the claim i, the Bayes’ theorem returns
the (exact) Bayesian classifier:

pk(xi) = P (∆i = k|x = xi) =

=
P (∆i = k)P (x = xi|∆i = k)∑m
h=0 P (∆i = h)P (x = xi|∆i = h)

. (3.5)

This approach is theoretically correct, but presents a fundamental limit.
The predictor in (3.5) implicitly assumes that we can find a sufficient num-
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ber of records in the sample sharing the same vector xi. Perhaps, this is
reasonable when there are VERY few predictors in the dataset, otherwise it
is completely impracticable.
A straight modification to (3.5) represents a very simple solution to such a
problem. If we give up to the assumption that the best probability estima-
tion is only returned by those records matching the record to be classified,
we will be able to use the whole dataset for the estimation. As a consequence
of this assumption, the classifier in (3.5) changes as follows:

pk(xi) = P (∆i = k|x = xi) =
P (∆i = k)P (x = xi|∆i = k)∑m
h=0 P (∆i = h)P (x = xi|∆i = h)

=

=
P (∆i = k)

∏n
j=1 P (xj = xij |∆i = k)∑m

h=0 P (∆i = h)
∏n
j=1 P (xj = xij |∆i = h)

(3.6)

which is, indeed, the so-called näıve Bayes classifier.
This approach is extremely simple to understand and to use. Moreover,
it presents no computational issues: it is just a formula to apply as it is,
rather than a complex algorithm. Unfortunately, this simplicity hides a
major drawback, that is, the assumption of stochastic independence among
predictors. In effect, that is exactly the assumption which allows us to move
from the Bayesian classifier in (3.5) to the näıve Bayes classifier in (3.6).
Comparing the two formulas, we can easily notice this point. However, this
is seldom the case.
Moreover, some studies (for instance, Larsen (2005)) point out the strengths
of such a classifier when it comes with record ranking, but also its weak-
nesses when it comes with probability estimation. In practice, näıve Bayes
classifier’s probability estimation can be very biased by the assumption of
stochastic independence. If the same bias is shared by each record, the clas-
sification can be still good, but of course we cannot rely on the estimated
probability. This is the reason why this classifier often outperforms more
sophisticated classifiers as a classification tool, and it is still widely used in
several fields (for instance, the spam filtering case in Shmueli et al. (2010)).
A last drawback is quite relevant. Actually, what if some predictor category
is not present in the training dataset (for instance, it could be very rare)?
In this case, P (xj = xij |∆i = k) = 0 for some j and k, thus pk(xi) = 0,
which is clearly wrong. In fact, the näıve Bayes classifier works well if each
and every category is well represented. That has a two-fold meaning. First,
the training dataset should be large enough to well represent each and every
category. Second, more importantly, numerical predictors are not admissi-
ble by definition, that is, we can use it for closing delay estimation (which
is a classification problem), but not for claim amount estimation (which is
a regression model). For the latter, we need the methods described in the
next subsections.



CHAPTER 3. INDIVIDUAL CLAIM RESERVING 96

3.4.2 Nearest neighbours

The idea behind the nearest-neighbours algorithm is very intuitive, but it
still guarantees a high level of adaptability to data. To score a new record,
the method relies on finding the most “similar” records - the so-called “neigh-
bours” - in the training dataset. In fact, this is a pure nonparametric
method: no assumption needs to be established, no parameter needs to
be estimated, no functional form needs to be assumed.
The sole issue regards the choice of a measure to calculate the “distance”
between two records, that is, their grade of similarity. The most popular
measure is the Euclidean distance defined in (2.14). It is worth noting that
this definition of distance would give much more weight to higher scales
than lower scales, so all the predictors should be first standardized before
computing (2.14). Otherwise, the nearest-neighbours algorithm could result
in extremely biased predictions.
Once we have chosen a distance measure, we can calculate the distance be-
tween any pair of records, but we still need a rule to score new records.
The simplest rule is: a new record is classified in the same category of its
closest neighbour. Therefore, given the predictors of such a record, we will
compute all the distances between it and the records in the training dataset.
Among them, pick up that with the smallest distance to the new record: its
category will be assigned to the new record itself. In effect, we have just
applied a 1-nearest neighbours algorithm.
Nonetheless, the approach might be easily generalized to any number k of
neighbours. Instead of picking up the closest record only, pick up the k clos-
est records, and assign the majority class among them to the new record.
In practice, the usage of more neighbours tends to reduce misclassification
error. If we use one neighbour only, it could be the case that a record is the
closest one to the new record only by chance: there could be noise there,
rather than information. To some extent, the greater the k, the lower the
error, the greater the predictive power. On the other hand, however, if k
is too high, we will miss out on the method’s ability to capture the local
structure in the data, that is, we will ignore information.
In any case, the choice of k is straightforward. First, choose an upper limit
K for k. Then, score each record in the validation dataset using the closest
record in the training dataset (1-nearest neighbours algorithm), and cal-
culate the validation error ε1. Likewise, score each record in the validation
dataset using the two closest records in the training dataset (2-nearest neigh-
bours algorithm), and calculate the validation error ε2. Repeat the process
until the nearest-neighbours algorithm, that is, the last admissible algorithm
according to our upper limit. At the end, we will get the validation errors
ε1, . . . , εK . Finally, pick up the k related to the smallest validation error,
say kmin, and use the kmin-nearest neighbours algorithm for scoring.
Remember that εk denotes the validation error of nearest-neighbours algo-
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rithm. Correspondingly, we could compute the training error as well, that
is, the error committed when scoring each record in the training (rather
than validation) dataset using the k closest records in the training dataset
itself. The training error, however, cannot be used for scoring because the
smallest training error always relates to the 1-nearest neighbours algorithm:
whichever the training record to be scored, its closest training record is ob-
viously the record itself!
Of course, the nearest-neighbours classifier is as simple as the näıve Bayes
classifier. As already discussed at the beginning of this section, its main ad-
vantage is the lack of parametric assumptions. Unfortunately, there are some
drawbacks. For instance, from a computational perspective, this algorithm
can be very expensive. Sometimes, data scientists try to reduce predictors
by using other, less expensive machine learning tools before applying the
nearest-neighbours algorithm to their datasets. Dimension reduction my be
performed, among others, by classification trees, which is the topic of the
next subsection.

3.4.3 Classification and regression trees (CARTs)

Decision trees were used as a machine learning tool in Breiman et al. (1984)
for the very first time to segment a population by splitting up the dataset
through binary rules. The algorithm is now referred to as classification tree.
Since one of our goals is the categorical classification among the closing de-
lay classes, this tool is a good candidate for us. By contrast, we should
properly adapt it to regression problems, if we want to use it to predict the
claim amount. In this case, we call it a regression tree. However, given that
the basic algorithm does not change, we can always refer to classification
and regression trees, or CARTs.
CARTs are based on recursive partitioning, which divides up the multi-
dimensional space (that is, the dataset) of the explanatory variables into
non-overlapping multidimensional rectangles. This division is accomplished
recursively, that is, operating on the results of the prior divisions. An ex-
ample of CART is in Figure 3.3. First, one of the explanatory variables is
selected, say xk(0) (the first node of the tree, so-called root), and a value of
xk(0), say sk(0)), is chosen to split the n-dimensional space into two parts:
one part contains all the records with xk(0) ≤ sk(0), say n(1, 1) records, while
the other with all the records with xk(0) > sk(0), say n(1, 2) records. The
two subsets represent the first level of the tree. Let’s consider one of them:
it could be either pure (i.e., it contains only records sharing the same value
of the independent variable) or impure. In the first case, no further split is
possible, so the subset will represent a leaf of the tree. In the second case,
other splits are possible, so the subset will represent another node of the
tree. In Figure 3.3, leaves are denoted by green rectangles, while nodes are
denoted by blue circles. Unless both of the subsets generated by the root
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node are pure, one of them (at least) will be divided in a similar manner by
choosing a variable again and a split value for the variable. In Figure 3.3,
where both of the subsets of the first level are impure, they represent the
two nodes of the first level, and the initial dataset is further partitioned into
four regions:

• the first one contains the n(2, 1) records with xk(1,1) ≤ sk(1,1), and
represents a node for the next level using xk(2,1) as a splitting variable

• the second one contains the n(2, 2) records with xk(1,1) > sk(1,1), and
represents a node for the next level using xk(2,2) as a splitting variable

• the third one contains the n(2, 3) records with xk(1,2) ≤ sk(1,2), and
represents a leaf for the next level containing all the records with
target variable equal to yh(2,3)

• the fourth one contains the n(2, 4) records with xk(1,2) > sk(1,2), and
represents a node for the next level using xk(2,4) as a splitting variable.

Since some splits are still possible, the recursive partitioning goes on, getting
smaller and smaller subsets, either nodes or leaves. Sooner or later, we will
have divided the whole dataset up into pure subsets (of course, this is not
always possible, as there may be records that belong to different classes but
have exactly the same values for everyone of the predictor variables).
In the case of closing delay estimation, the dataset will be partitioned into
subsets which contain either claims closed in the reporting year (closing
delay 0), or claims closed the year after (closing delay 1), or claims closed
two years after (closing delay 2), . . ., or claims closed m years after (closing
delay m). In fact, the classification tree resulting from recursive partitioning
is a pure tree: all the closing delay categories are perfectly separated.
The main problem of recursive partitioning is the choice of the splitting
rule node by node, that is, the choice of xk(·,·) and sk(·,·) at each step of
the algorithm. Assume to define an impurity function i(A) as an impurity
measure of some rectangle A, or its related node. A specific splitting rule on
A results in two subrectangles AL and AR, which are generally impure, that
is, i(AL) and i(AR) are both nonzero. Intuitively, we want to choose the
splitting rule in order to minimize some combination of i(AL) and i(AR).
The most natural choice is the function

I(AL, AR) :=
card(AL)

card(A)
i(AL) +

card(AR)

card(A)
i(AR) (3.7)

which is the average of the two impurity measures, weighted by the number
of observations in each rectangle, that is, its cardinality. By comparing the
reduction in I(AL, AR) across all possible splits in all possible predictors,
the next split is chosen.
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Fig. 3.3: Example of CART produced by recursive partitioning

What about the impurity function i? In our application and in most of
them, one uses the Gini index (as defined in Shmueli et al. (2010)):

i(A) := 1−
m∑
k=0

p2
k(A) (3.8)

where pk is the proportion of records in rectangle A that are closed after k
year from the reporting. However, other impurity measures are also widely
used, for example the entropy index (as defined in Shmueli et al. (2010)):

E(A) := −
m∑
k=0

pk(A) log2[pk(A)]. (3.9)

All in all, so far the algorithm is quite intuitive as well as its application in
classifying new records. For instance a new observation, whose explanatory
values are known, will be dropped down the tree until it reaches a leaf. So
the new observation will be simply classified on the base of the specific leaf’s
classification.
As discussed at the beginning of the section, the algorithm can be easily
adapted to predict numerical variables. We only need some changes. First,
the response value assigned to a record in a leaf is determined by the average
of the response variable among the records in that leaf (by contrast, in a
classification tree, it is determined by one of the possible category of the
response variable). Second, given that we cannot use discrete measure of
impurity such as the Gini index and the entropy index, the typical impurity
measure used in regression problems is the sum of squared deviations from
the mean, that is, the sum of squared errors.
By definition, recursive partitioning produces a tree which classify the records
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Fig. 3.4: Misclassification error and minimum-error model selection

without errors. Actually, we used a training dataset to train the classifica-
tion tree, which perfectly predict closing delay on that dataset. But what if
we use the same tree on the validation dataset? In general, the predicted val-
ues on the validation dataset will result in a positive misclassification error.
In fact, the error cannot be zero on datasets other than the training dataset
itself. However, our full classification tree has a major drawback represented
by Figure 3.4. As it usually happens through the first splits on the valida-
tion dataset, the full tree can still guarantee comparable misclassification
errors on the two datasets. However, as the number of splits increases, the
full tree starts overfitting the validation data: since it fully reflects the train-
ing dataset without distinguishing between “signal” and “noise”, the noisy
component cause too high misclassification error in the validation dataset.
Indeed, the typical consequence of overfitting is that, after some number of
splits, the misclassification error on the validation dataset stops decreasing
and starts increasing (in Figure 3.4, it occurs after ten splits). In the first
ten splits both the training and validation misclassification errors decrease,
but thereafter the full tree overfits the validation data.
Overfitting prevents us from using the full tree for predicting purposes, so
we need to choose another tree, that is, some subtree of the full tree. There
are several criteria to do that, but two major categories of methods can be
distinguished:

• forward stopping-tree methods

• backward pruning-tree methods.
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Fig. 3.5: Misclassification error and best-pruning model selection

Some empirical forward methods can be easily implemented by setting condi-
tions to the tree characteristics such as maximum number of splits, minimum
number of records in a node and minimum reduction in impurity. However,
these approaches are merely based on the tree complexity, rather than its
predictive power.
Among the forward methods, the most natural choice is suggested by the
Figure 3.4 itself, that is, we can simply use the tree consisting of the first n
splits that do not induce overfitting (n = 10 in Figure 3.4). In other words,
we let the full tree grow until the first step leading to a validation error
higher than the previous step. If we have new observations to classify, they
will be dropped down this subtree until they reach a leaf.
More complex methods have been developed as well, for instance, the so-
called chi-squared automatic in-training data (CHAID). At each node, the
algorithm select the predictor with the strongest association to the target
variable, measured by the p-value of the chi-squared test of independence.
If such a p-value is low enough, the split of the node significantly improves
its purity, so the algorithm will carry it out, and the growth of the tree goes
on. Otherwise, the growth is stopped.
The alternative to stopping the growth of the tree is represented by prun-
ing the tree, that is, “climb” the training full tree and “chop” the weakest
branches until some conditions are met. Intuitively, pruning the tree is
more computationally expensive, because we have to build the full tree in
any case, and then work on that further. However, it has been proven to be
more successful too, and it is not so surprising. In effect, the tree is pruned
considering more information: not only what-if-we-keep-the-smaller-tree in-
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formation, but also what-if-we-take-the-bigger-tree information.
A simple backward approach follows the idea of picking the tree with the
smallest validation error, just like in one of the forward methods. However,
the full tree is still built until the last leaf, and then we choose the subtree
leading to the smallest validation error. Notice that we would still pick the
subtree after 10 splits in Figure 3.4, but that is not always the case (see, for
instance, Figure 3.5).
However, choosing the subtree according to the smallest validation error only
means we completely ignore the complexity of the tree. For instance, take
a look at Figure 3.5 once again. We are picking the 15-split subtree since it
leads to the smallest error, but we get a rather small error with the 10-split
subtree as well. Actually, we accept five splits more - a relevant increase
in complexity - for a little decrease in error. Somehow, it does not seem to
be the best choice. To consider this issue in pruning the tree, we may use
the so-called cost complexity criterion as described in Breiman et al. (1984).
For a tree with L leaves and training error ε, the cost complexity is defined
as follows:

γ := αL+ ε (3.10)

where α denotes a (nonnegative) penalty factor for the tree size as measured
by the number of leaves. Notice that, if α = 0, there is no penalty for the
tree size, and the best tree is simply the full tree itself. On the other hand,
the greater the α, the greater the relevance of the tree size in pruning the
tree. If α is great enough, the training error is no longer relevant for the
algorithm, and the tree is pruned until the very first node, that is, the root.
The algorithm therefore starts with the n-level full tree, and compares its
γ with the γ of all the possible subtrees with n − 1 levels. Starting from
α = 0, the α gets increased little by little, until the γ of the full tree exceeds
that of one of those subtrees. Such a subtree is considered as the best of
its level, and the same procedure is repeated starting from it. In fact, the
algorithm finds the best subtree of each size based on the cost complexity
criterion: the lower γ, the better the subtree. In practice, we get a sequence
of “best subtrees” for their sizes, based on the training data only. Finally,
the so-called best pruned tree used for scoring will be the subtree among
them leading to the smallest validation error.
All in all, the full tree is useless for scoring purposes, rather it is just the
formal result of recursive partitioning. What is really useful for prediction is
the subtree extracted by using one of the several algorithms to stop growing
or pruning the full tree.
So far we described the fundamentals of CARTs. One of the reasons for
their popularity is that they are adaptable to a wide variety of applications,
and have been successfully used in many situations. In particular, if there
is a highly non-linear and complex relationship to describe, decision trees
may outperform regression models. Furthermore, CARTs do not require
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massive data preparation, that is, they can handle non-standardized data,
categorical data, missing data, outliers and so on. By contrast, we should
standardize the variables and take the natural logarithm of some numerical
variables before running standard linear regression, logistic regression, or
even the nearest-neighbours method described in Subsection 3.4.2. Finally,
trees provide easily understandable classification rules (at least if they are
not too large), even easier than in regression.
An important advantage of CARTs is that no further selection algorithm is
necessary. As opposed to parametric regression methods, the process itself
selects the most relevant explanatory variables. We simply let the machine
learning tool run on the whole dataset, and the resulting tree will include
only some of the explanatory variables, which are the most significant on
the base of the impurity measure used to split the dataset.

3.4.4 Neural networks

Algorithms like nearest-neighbours method or CARTs have the major ad-
vantage of non-dependence on underlying structures or parameters. This is
what makes them perfect to handle - and, to some extent, discover - un-
known relationships in datasets. On the other hand, this flexibility makes
them extremely weak when data is not enough to train them properly. Neu-
ral networks are trained by data too, but assume an underlying function
that is generally much more complex than the typical functions used in re-
gression. To some extent, we might consider neural networks as a trade-off
between pure nonparametric methods and traditional regressions.
A number of successful applications contributed to the great spread of
the neural network concept, including some relevant financial topics (see
Trippi et al. (1996)) such as bankruptcy prediction, asset allocation, fraud
detection and customer relationship management.
An example of neural network is in Figure 3.6. Actually, each neural net-
work has its own structure based on neurons, but all of them share the same
fundamental features:

• one input layer consisting of a number of neurons - one for each pre-
dictor

• one or more hidden layers, each of them consisting of its own neurons

• one output layer consisting of a number of neurons which returns the
predictions.

In particular, notice that the output layer consists of one neuron only if the
target variable is binary (i.e., the neural network predicts one probability
only) or numerical (i.e., the neural network predicts one numerical value
only).
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Fig. 3.6: Example of neural network

Another important remark regards the number of hidden layers. One is-
sue within this subject on which there is a consensus is the performance
difference from adding additional hidden layers: the situations in which per-
formance improves with a second (or third, etc.) hidden layer are very few.
One hidden layer is sufficient for the large majority of problems, as stated
in Shmueli et al. (2010) as well:

The most popular choice for the number of hidden layers is one.
A single hidden layer is usually sufficient to capture even very
complex relationships between the predictors.

This is an empirical statement coming from the evidence of a large number
of applications with neural networks. More importantly, it has been given
a rigorous theoretical foundation in Hornik et al. (1989), where the authors
prove that one-hidden-layer neural networks can approximate any deter-
ministic measurable function arbitrarily well, as long as sufficiently many
hidden neurons are available. Therefore, we will only consider one-hidden-
layer neural networks, just like the example in Figure 3.6.
Furthermore, each input neuron is connected to each hidden neuron, and
each hidden neuron is connected to each output neuron.
Neural network training is based on the calibration of the following param-
eters (see Figure 3.6):

• the weight parameters wij , one for each connection from the input
layer to the hidden layer

• the bias parameters uj , one for each hidden neuron
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• the weight parameters w′jk, one for each connection from the hidden
layer to the output layer

• the bias parameters u′k, one for each output neuron.

The input layer, which knows the raw data of the predictors xi, communicate
it to the hidden layer. Such an information, however, is weighted by the
connection itself, that is, by the related weight parameter. In other words,
the jth hidden neuron receives the information wijxi. Additionally, given
that it receives data from each and every input neuron (i.e., predictor) at
the same time, it aggregates information through some hidden activation
function f(x,wj , uj) of the predictor values, the weights and the bias. The
most popular hidden activation function is the traditional weighted average:

Hj := f(x,wj , uj) = uj +
∑
i

wijxi, ∀j. (3.11)

Likewise, the output neurons receive weighted information from each hidden
neuron. In particular, the kth output neuron receives the value w′jkHj from

the jth hidden neuron. In fact, the kth output neuron receives information
from each and every hidden neuron, so it will manipulate it too. More specif-
ically, the output neurons use an output activation function g(H,w′k, u

′
k) of

their own parameters.
As we have already mentioned, Hornik et al. (1989) proves that one-hidden-
layer neural networks can approximate any deterministic measurable func-
tion to any degree of accuracy. Surprisingly, this statement still holds re-
gardless of the activation function we use, as long as it is nonconstant and
continuous. Therefore, the choice of g is completely up to the data scientist,
and may be adapted to the specific application. However, there are some
properties that make an activation function preferable to others:

• nonlinearity, which allows for the detection of nonlinear relationships
in the dataset

• continuous differentiability, which guarantees the convergence through
gradient-based optimization methods (e.g., the back propagation we
will describe later)

• monotonicity, which makes the error surface convex, guaranteeing one
single global minimum and avoiding any issue related to possible local
minimums (see Wu (2009)).

As a result, the range of activation functions that guarantee convergence and
stability in any neural network is quite reduced. Here is a list of the most
common activation functions sharing the three aforementioned properties:

Ok := logit

(
u′k +

∑
j

w′jkHj

)
=

1

1 + e−u
′
k−

∑
j w
′
jkHj

(3.12)
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Ok := tanh

(
u′k +

∑
j

w′jkHj

)
=

2

1 + e−2(u′k+
∑
j w
′
jkHj)

− 1 (3.13)

Ok := arctan

(
u′k +

∑
j

w′jkHj

)
= tan−1

(
u′k +

∑
j

w′jkHj

)
(3.14)

Ok := softsign

(
u′k +

∑
j

w′jkHj

)
=

u′k +
∑

j w
′
jkHj

1 +
∣∣∣u′k +

∑
j w
′
jkHj

∣∣∣ (3.15)

Ok := ISRU

(
u′k +

∑
j

w′jkHj

)
=

u′k +
∑

j w
′
jkHj√

1 + α
(
u′k +

∑
j w
′
jkHj

)2
(3.16)

where α > 0 in the inverse-square-root-unit (ISRU) function. Ok always
represents the prediction provided by the kth output neuron. If the target
variable is categorical, Ok equals the probability of the kth category related
to a specific record. All in all, as long as those properties hold, the choice
of the activation function into the standard architecture of a neural network
(Figure 3.6) is important to the extent it makes the convergence slower or
faster. Indeed, the neural network will anyway converge to the same solution
- the global minimum - regardless of the activation function. Throughout
this dissertation, we will always use the logit activation function in 3.12.
There is still an interesting observation to do. Assume that the target vari-
able is binary, that is, the neural network gets only one output neuron that
predicts the probability of “success”, whereas the number of hidden neuron
is the same as the number of predictors. Moreover, assume the following
parameters within the hidden layer:

ui = 0, wij =

{
1 if i = j
0 if i 6= j

, ∀i, j (3.17)

which actually means
Hj ≡ Hi = xi, ∀j. (3.18)

Using the logit activation function in (3.12) for the single output neuron, we
get

P̂ (1) = O1 := g(x,w′k, u
′
k) = logit

(
u′1 +

∑
i

w′i1xi

)
=

1

1 + e−u
′
1−

∑
i w
′
i1xi

(3.19)
which is equivalent to the functional form of a logistic regression’s prediction.
However, we are going to see why it does not mean that this peculiar neural
network equals the logistic regression in terms of predicted probabilities.
In fact, the main difference between neural networks and regressions lies
in the way parameters are estimated. While regression methods rely on
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predetermined target functions to minimize or maximize, neural networks
actually “learn” from data. Estimating biases and weights is a consequence
of such a learning process, whichever its algorithm is. The most popular one
is the so-called back propagation, which we will describe now.
We denoted the prediction from the kth node by Ok. Moreover, let’s define
the prediction error related to the first record as

ε1k := O1k(1−O1k)(y1 −O1k) (3.20)

where y1 equals the actual value of the target variable. Given a global
learning rate λ ∈ (0, 1) and some initialization values for the parameters of
the network weights and biases are updated as follows, for each i and j:

wij −→ wij + λε1k (3.21)

uj −→ uj + λε1k (3.22)

w′jk −→ w′jk + λε1k (3.23)

u′k −→ u′k + λε1k. (3.24)

After that, the second record goes through the network to get its own esti-
mations O2k, then the error is computed:

ε2k := O2k(1−O2k)(y2 −O2k) (3.25)

and the parameters are updated once again starting from those of the pre-
vious step:

wij −→ wij + λε2k (3.26)

uj −→ uj + λε2k (3.27)

w′jk −→ w′jk + λε2k (3.28)

u′k −→ u′k + λε2k. (3.29)

The computation is repeated for all the records, all the way through the
training dataset: after the last observation, the first epoch is completed.
Generally, a number of epochs is predefined, that is, the records are esti-
mated several times until some tolerance on the significance of parameter
updating is broken, or some threshold on the training error is finally met.
What we have just described is called case updating, but it is not the sole
option. For instance, in batch updating, the whole training dataset is run
through the network before each updating takes place. As a consequence,
the parameters are updated on the base of the overall training error, or its
average:

ε̄k :=
1

N

∑
i

εik (3.30)
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and, for each i and j,

wij −→ wij + λε̄k (3.31)

uj −→ uj + λε̄k (3.32)

w′jk −→ w′jk + λε̄k (3.33)

u′k −→ u′k + λε̄k. (3.34)

In practice, case updating tends to be more accurate than batch updating,
but it is also more computationally expensive, given that the parameters are
updated N times per epoch rather than only once.
As long as nonlinear, differentiable and monotonic activation functions are
chosen for the neural network, meta-parameters such as the learning rate
and the number of epochs are relevant to the extent they facilitate conver-
gence to the global minimum, but they do not affect the overall predictive
performance of the algorithm. For this reason, given that the logit activa-
tion function is the only one used in our applications, we will arbitrarily set
them to λ = 0, 1 and N = 2000 respectively, while the initial values of bias
and weights are all zero.
Neural networks can be very powerful, if their architecture is significant,
that is, the number of hidden layers and hidden neurons is “right” - what-
ever it means. There are algorithms that automatically select this features,
but none of them seems clearly superior to a simple trial-and-error approach
(see Shmueli et al. (2010)). Nonetheless, network architecture depends on
the predictors too. Unfortunately, neural network are rigid in this sense:
they cannot really choose among predictors, as opposite to other methods
such as stepwise regressions and CARTs. Neural networks always use all
the predictors given as input, so they should be chosen very carefully by the
data scientist, for instance, by using a proper selection method. Clustering,
PCA and CARTs themselves are all suitable approaches.
The various forms of their architecture give neural network a unique flexibil-
ity in dealing with data. Potentially, they can recognize any type of pattern.
However, the architecture itself is the origin of their major drawback too,
that is, their black-box structure. While anyone can easily “read” a tree, or
interpret the parameters of a regression, this is generally impossible when
dealing with neural networks. Of course, knowing the transfer functions and
any parameters, we may write the ultimate function returning predictions,
but then we would probably find no meaning in that. Too many parameters
and too complex functions are often involved in neural network, and it must
be accepted as it is. The usual validation tools can be used to measure the
predictive power of a neural network, but unfortunately we cannot rely on
model interpretation.
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3.5 An application to Australian bodily injury data

As we may have noticed in Section 3.4, machine learning tools are very
flexible, and could potentially improve many of the traditional processes in
actuarial practice. Non-life reserving is just one of them.
This section describes the path that has been followed to predict the closing
delay and claim amount on a publicly available motor insurance dataset.

3.5.1 Data

The data comes from an R package containing a number of datasets for actu-
arial applications (see Dutang et al. (2016)). Additionally, it was also used
in De Jong et al. (2008) as a starting point for generalized regression anal-
ysis. In Dutang et al. (2016), the dataset is called Automobile bodily injury
claim dataset in Australia (ausautoBI8999), with the following description:

This dataset contains information on 22.036 settled personal in-
jury insurance claims in Australia. These claims arose from acci-
dents occurring from July 1989 through to January 1999. Claims
settled with zero payment are not included.

Notice that it only includes the claims that were settled as at January 1999,
and all of them are supposed to be definitely closed, although some might
have been reopened afterwards. Actually, the dataset relates to a small part
of the entire claim scope of a motor insurance company, but it is probably
one of the most interesting parts to us. Bodily injury claims are indeed
the most expensive and long-lasting ones, thus some of the most important
claims to analyse individually. Moreover, the dataset does not include any
information on timing and amount of partial payments, so triangle-based
methods do not represent a viable solution. For these reasons, case reserving
seems to be a natural choice in this specific situation.
The dataset includes the following fields:

• AccDate for the claim accident date

• ReportDate for the claim reporting date

• FinDate for the claim closing date date

• AccMth for the claim accident month

• ReportMth for the claim reporting month

• FinMth for the claim closing month

• OpTime for the total time it took to close the claim (operational time)

• InjType1 for the injury severity of the first injured person
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• InjType2 for the injury severity of the second injured person

• InjType3 for the injury severity of the third injured person

• InjType4 for the injury severity of the fourth injured person

• InjType5 for the injury severity of the fifth injured person

• InjNb for the number of injured persons (max 5)

• Legal for the legal representation (yes/no)

• AggClaim for the aggregate claim amount after closing.

The injury severity variables are categorical, but we converted them in nu-
merical between 0 and 100, in order to calculate an overall severity score
for each claim. The conversion is based on the rules in Figure 3.7, and the
overall score of a single claim is given by the sum of its own scores (no-
tice that it will be always positive because each claim caused one injury at
least). Therefore, we define the numerical variables InjScore1, InjScore2,
InjScore3, InjScore4 and InjScore5, in correspondence to the original
InjType1, InjType2, InjType3, InjType4 and InjType5. Additionally, we
get the overall severity score variable InjScoreTot. It is worth mentioning
that, in many jurisdictions, care costs for seriously injured individuals could
outstrip compensation costs for the fatal claims. In other words, assigning
the latter to the highest injury score (see Figure 3.7) could potentially lead
to bias. However, we performed some checks in the dataset to prove that
this is not the case. For instance, comparing the claims with one single
severe injury to the claims with one single fatal injury, we observe that the
average of the former is materially lower than the average of the latter.
From the variables AccDate, ReportDate and FinDate, we extract the year
- AccYr, ReportYr and FinYr - and use it to add two more variables:

• ReportTime for the reporting delay defined as ReportYr− AccYr

• FinTime for the closing delay defined as FinYr− ReportYr.

One last additional variable that will be useful to evaluate linear correlations
is LnAggClaim, that is, the natural logarithm of AggClaim.
Using ReportYr and FinTime, let’s have a look at the run-off triangle of
the entire dataset in Figure 3.8 for the claim numbers, in Figure 3.9 for the
claim payments and in Figure 3.10 for the claim average payments (a dozen
of claims relating to the highest amounts have been excluded). Apparently,
some reporting years and closing delays include too few observations, as we
can easily observe in Figure 3.8. This is the reason why we will select a
proper training/validation dataset as well as a test dataset for the ultimate
analysis. More specifically, the reporting years 1993-1996 for the closing
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category score

NA (no injury) 0
minor injury 25
small injury 25
medium injury 50
not recorded 50
high injury 75
severe injury 75
fatal injury 100

Fig. 3.7: Codification of injury severity

Fig. 3.8: Claim numbers

Fig. 3.9: Claim amounts

Fig. 3.10: Claim average amounts
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delays from 0 to 3 (in bold in Figure 3.8, 3.9 and 3.10) and will be consid-
ered for training and validation, while the reporting years 1997-1998 will be
considered for test using all the available closing delays, that is, from 0-2 for
1997 and 0-1 for 1998 (in Roman in Figure 3.8, 3.9 and 3.10). All the other
data (in grey in Figure 3.8, 3.9 and 3.10) are not necessary for the analysis,
and will be excluded.
Figure 3.8 also demonstrate that there is no regular path by reporting year
or closing delay. For instance, the zero-delay claims tend to decrease by
reporting year, while the 3-year-delay claims have a rather different path.
Comparing reporting years, we see less differences, but still some relevant
discordances. For instance, compare the 1-year-delay claim average payment
to the 2-year-delay claim average payment in Figure 3.10: in 1993 the latter
is about 50% greater than the former, while in 1996 the latter is about 150%
greater than the former.
To better include timing information, we consider both the reporting year
and the closing delay as categorical variables. As a consequence, we convert
each of them in the three corresponding binary variables (the fourth one
would be redundant):

• ReportYr is converted to ReportYr1 for 1994, ReportYr2 for 1995 and
ReportYr3 for 1996

• FinTime is converted to FinTime1 for one year, FinTime2 for two year
and FinTime3 for three year.

Similarly, we convert InjNb to InjNb2 for two injuries, InjNb3 for three
injuries, InjNb4 for four injuries and InjNb5 for five injuries.
Finally, we will use the following fields: InjScoreTot, InjNb2, InjNb3,
InjNb4, InjNb5, LegalBin, ReportTime, ReportYr1, ReportYr2, ReportYr3,
FinTime, FinTime1, FinTime2, FinTime3, AggClaim and LnAggClaim (be-
sides an ID variable to identify the different records).

3.5.2 Claim closing delay estimation

In our framework, estimating the closing delay means using the predictors
InjScoreTot, InjNb2, InjNb3, InjNb4, InjNb5, LegalBin, ReportTime,
ReportYr1, ReportYr2 and ReportYr3 as inputs for some machine learning
tool to return an estimation of the probability that the claim is definitely
closed after 0, 1, 2 and 3 years after the reporting. In other words, the
target variable is FinTime. We use four methods: multinomial regression,
näıve Bayes, nearest neighbours and classification tree.
The first method we will consider is the multinomial regression, that is, a
generalization of the logistic regression for count variables with more than
two categories. It is a GLM whose target variable is distributed as a multi-
nomial on a discrete and finite domain: in our case, it will be the range
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Fig. 3.11: Descriptive statistics of closing delay’s and claim amount’s ex-
planatory variables
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Fig. 3.12: Regression summary for closing delay estimation after stepwise
selection
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closing prior
delay probability

0 20,01%
1 38,86%
2 27,00%
3 14,14%

Fig. 3.13: Prior probabilities using training data

{0, 1, 2, 3}.
Dealing with regressions, we should pay attention to possible multicollineari-
ties that could distort the results. Figure 3.11 reports the correlation matrix
of the dataset. If all the correlations among the binary variables of the same
categorical variable are excluded, few remaining correlations are significant.
Therefore, we will run the multinomial regression including all the predictors
except for InjNb5, whose correlation with InjScoreTot is the highest one,
equal to 68,6%. Figure 3.12 reports the regression summary; in particular,
observe that InjNb2 and InjNb3 have been dropped out by the stepwise
algorithm (given that the software does not have an automatic selection
algorithm for multinomial regressions, we did it manually, because the ex-
planatory variables are relatively few).
Moreover, using the definition of näıve Bayes classifier in 3.6, we can easily
apply the näıve Bayes method, which is quite straightforward and does not
need further discussion.
After that, let’s perform the same estimation by using the nearest-neighbours
method. According to the description in Subsection 3.4.2, the number k of
neighbours should correspond to the lowest validation error. As demon-
strated in Figure 3.18, it occurs when k = 19. It is worth noting the pecu-
liar, opposite shape of the two lines. In Subsection 3.4.2, we noticed that
the training dataset has actually nothing to gain from nearest-neighbours
prediction: in fact, the more the neighbours, the greater the error. This
happens because the best prediction in the training dataset always occurs
when k = 1 by definition. On the contrary, the validation error slightly
decreases as k increases since the algorithm neglects more and more noisy
information. So this is not surprising if the greatest validation error occurs
when k = 1, just as the training error is minimum.
Likewise, we need to choose a proper classification tree on the base of the
validation error as well. In Figure 3.21, we observe that the lowest valida-
tion error occurs after twelve splits (grey dashed line in Figure 3.21), but,
as discussed in Subsection 3.4.3, this is not necessarily the best choice if
we want to take into account the complexity of the tree too. This is the
reason why we will use the best-pruned tree for scoring, that is, the tree
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Fig. 3.14: Multinomial regression summary results using training data

Fig. 3.15: Multinomial regression summary results using validation data

consisting of three splits (black dashed line in Figure 3.21). Furthermore,
Figure 3.22, 3.23 and 3.24 shows the full tree, the minimum error tree and
the best pruned tree respectively.
Remember: we are not really interested in classifying records among the
four classes, rather we will directly use the estimated probabilities. How-
ever, trying to classifying them using the various methods is the easiest way
to compare their performances. Therefore, such an assessment is reported in
Figure 3.14-3.15, 3.16-3.17, 3.19-3.20 and 3.25-3.26. There we can observe
the related confusion matrices together with the training and validation er-
rors. All the errors seems to swing around 60%. In other words: if we use
the rule that assigns a record the greatest predicted probability among the
four possible category, we will correctly predict around 40% closing delays.
Actually, that represents a rather poor result, and it can be proven through
a straightforward remark, the so-called näıve rule. The training data is
characterized by the prior (empirical) probabilities per closing delay category
as in Figure 3.13. The most obvious prediction algorithm would classify all
the records in the category that appears most often in the training dataset,
that is, category 1 with 38,86%. In such a case, we would correctly predict
38,86% claims, that is, an error of 61,14%. But it is just slightly higher than
the overall validation errors of the multinomial regression (see Figure 3.15),
the nearest-neighbours algorithm (see Figure 3.20) and the best pruned clas-
sification tree (see Figure 3.26). Curiously, it is even lower than the overall
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Fig. 3.16: Näıve Bayes summary results using training data

Fig. 3.17: Näıve Bayes summary results using validation data

Fig. 3.18: Nearest neighbours - training and validation error varying by k
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Fig. 3.19: Nearest neighbours summary results using training data

Fig. 3.20: Nearest neighbours summary results using validation data

Fig. 3.21: Classification tree - training and validation error varying by num-
ber of splits
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Fig. 3.22: Full classification tree

Fig. 3.23: Minimum error classification tree
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Fig. 3.24: Best pruned classification tree

Fig. 3.25: Classification tree summary results using training data

Fig. 3.26: Classification tree summary results using validation data
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validation error of näıve Bayes (see Figure 3.17). In other word, it does
not seem we gain any insight by using machine learning on this dataset to
predict closing delay. This is simply due to the low informative value of the
data itself. This is not always the case. For instance, as we will observe
later on, some machine learning methods will return more accurate claim
amount estimations as compared to traditional regression methods.

3.5.3 Claim payment amount estimation

In our framework, estimating the claim payment amount means using the
predictors previously used to estimate the closing delay together with the bi-
nary variables FinTime1 for the 1-year closing delay, FinTime2 for the 2-year
closing delay and FinTime3 for the 3-year closing delay. They will represent
the inputs for machine learning tools to return estimations of AggClaim. We
use three methods: gamma regression, regression tree and neural network.
When it comes with regression methods with numerical fields, we should pay
attention to the features of our predictors. First, it’s important to reduce
asymmetries and too heavy tails. This can be checked by having a look at
the skewness and kurtosis in Figure 3.11. Only the target variable AggClaim
got very high skewness (5,42) and kurtosis (42,21), but this is simply due
to the nature of the variable itself. A simple solution is represented by the
natural logarithm of AggClaim, LnAggClaim, which would permit us to use
multiple linear regression (Figure 3.11 also reports skewness and kurtosis of
LnAggClaim: both of them are very low). However, it would also introduce
a significant component of transformation bias (see Subsection 1.6.1), so we
will not try this approach. Rather, we will use gamma regression, a typical
choice in non-life actuarial practice (for instance, see Charpentier (2015b))
to overcome the typical obstacles in amount estimations.
Another typical issue related to regression models is multicollinearity among
explanatory variables. However, as already done in Subsection 3.5.2, we will
run the regression including all the predictors except for InjNb5, whose cor-
relation with InjScoreTot is the highest one, equal to 68,6% (see Figure
3.11). Figure 3.27 shows the related results. By comparing Figure 3.11 and
Figure 3.27, it is worth noting that the selected 10-coefficient model includes
the predictors characterized by the highest correlations with LnAggClaim.
Moreover, the exclusion of most of the InjNb binary variables leads to the
exclusion of some among the most relevant multicollinearities, that is, those
among InjNb and InjScoreTot (see Figure 3.11). Actually, this is not sur-
prising: to some extent, in effect, the greater the number of injuries, the
greater the overall claim severity.
When it comes with regression trees, we need to do some further remarks
with respect to classification tree. Actually, the former predict numerical
variables, while the latter classify records among a range of categories. Given
that each claim relates to a different payment, a mere full tree would get
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Fig. 3.27: Regression summary for claim amount estimation after stepwise
selection
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Fig. 3.28: Regression tree performance varying by minimum number of
records per leaf

as many leaves as the number of records in the training dataset. Obviously,
this is not feasible, so we need an additional rule to stop the growth of the
full tree, and the prediction related to a specific leaf will equal the average
payment of the training records in that leaf. Generally, the rule is quite em-
pirical, for instance, a maximum number of tree levels, a maximum number
of nodes and so on.
In our analysis, we choose a minimum number of records in any leaf, and
then predictions and errors from that tree are evaluated. The results are
summarized in Figure 3.28, not only training error, validation error and
overall error, but also a percentage weighted error and a percentage overall
error. The percentage weighted error is based on the sixteen percentage
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errors per reporting year and closing delay weighted on the actual payment
amount itself. Instead, the percentage overall error is simply the percentage
difference between the total of the payments in the dataset and the total of
the related estimates.
First, Figure 3.28 shows no overfitting, which is a quite important advantage
for any predictive model. In other words, training error and validation error
are very close regardless of the minimum records per leaf. Secondly, observe
the fluctuation of the percentage errors in the last to columns in Figure
3.28. When very few records are required in each leaf, it seems that a lot
of noise affects the tree: errors are quite material, especially the percentage
weighted errors, which are greatest between 10 and 40 minimum records
per leaf. After all, the regression tree is predicting much better between 50
and 100: it will be probably there where it performs at best. Nonetheless,
further increase in minimum records per leaf implies a new increase in error:
in fact, if too many records are required into each leaf, the regression tree
will no longer be able to detect information in data.
All in all, the chosen tree is highlighted in bold in Figure 3.28, that is, the
tree leading to the lowest percentage weighted record 3,67%. Further, al-
though it leads to the lowest average overall error, it does not lead to the
lowest percentage overall error (which is however very low).
Unfortunately, we cannot report the whole full tree and best pruned tree
since they are too big (the former got 15 levels, while the latter got 13 lev-
els). However, Figure 3.29 reports the best pruned tree in tabular form from
the root to the fifth level. Although most of the predictors already appear
there, the most important ones are those used for splitting in the very first
levels. They are likely reducing error the most. The injury score and the
reporting time have a primary importance since they define the root and the
first level of the tree respectively. The binary variable for the 3-year closing
delay is also quite relevant, given that it separates almost all the records on
the second level. This is not a surprise, if you look back at the correlations
in Figure 3.11: InjScoreTot, ReportTime and FinTime3 correspond to the
greatest correlations with the claim amount. However, observe that InjNb2
and ReportYr1 are used on some nodes in the fourth level, although they
are the least correlated predictors with the claim amount in Figure 3.11. It
is probably indicating that the tree is trying to explain variability that can-
not be detected by the logistic regression, which has indeed excluded those
variables through the stepwise routine (see Figure 3.27).
As briefly mentioned in Subsection 3.4.4, standard neural networks lack
an embedded algorithm to select relevant predictors and exclude irrelevant
predictors, but we may refer to the predictors implicitly selected by the re-
gression tree itself. Since it has used all of them (few are used in deeper
levels of the tree, so they do not appear in Figure 3.29), we will run the
neural network on the full dataset.
So far, we know the structure of the input layer: thirteen neurons for thir-
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Fig. 3.29: Best pruned regression tree features until the fifth level

teen predictors. As discussed in Subsection 3.4.4, we may also accept the
assumption of one single hidden layer. However, how many hidden neurons
shall we use? Intuitively, too few hidden neurons will not be able to detect
information, while too many hidden neurons will imply overfitting. Just like
for the regression tree, let’s try various cases by gradually increasing the
number of hidden neurons, say from 1 to 20. The results are summarized
in Figure 3.30 (the fields have the same meaning as in Figure 3.28). Once
again, training error and validation error are very close: the neural network
is not overfitting. The bad performance due to few hidden neurons - be-
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Fig. 3.30: Neural network performance varying by number of hidden neurons

tween 1 and 7 - is quite clear. By adding more hidden neurons, the error
tends to decrease slowly, but it seems that it is not overfitting by 20 neurons
yet: it will probably start overfitting a bit later. The chosen neural network
is that (in bold in Figure 3.28) leading to the lowest percentage weighted
error, which also coincides to the lowest average overall error and the lowest
percentage overall error. A formal representation of this neural network is
in Figure 3.31, while the related parameters are reported in Figure 3.32.
As a conclusion to this subsection, we will present some global results. First
of all, the convergence plots of the regression tree and the neural network
in Figure 3.33 and 3.34 respectively. More importantly, we compare actual
data and estimations in Figure 3.35-3.38. Remember that the chosen re-
gression tree and neural network got a weighted error of 3,67% and 8,30%
respectively, which relate to the lowest validation errors in Figure 3.30 and
3.28, so their good punctual estimations for the claim payments are not sur-
prising. Let’s analyse them by closing delay.
For closing delay 0, GLM and regression tree seem more accurate than neural
network, as we can observe by comparing the estimated amounts of report-
ing year 1994, for instance. To some extent, this is the case for closing delay
1 as well, whatever the reporting year. For both those closing delays, re-
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Fig. 3.31: 8-hidden-neuron neural network for claim amount prediction

Fig. 3.32: 8-hidden-neuron neural network parameters
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Fig. 3.33: Convergence of the er-
ror for the regression tree

Fig. 3.34: Convergence of the er-
ror for the neural network

Fig. 3.35: Actual data Fig. 3.36: Gamma regression

Fig. 3.37: Regression tree Fig. 3.38: Neural network

gression tree and neural network tend to overestimate the claim payments,
although this is much more evident for the latter.
For closing delay 2, we can highlight the good performance of the regression
tree. By contrast, GLM and neural network return good estimations for
some reporting years only: the former for 1995 and 1996, while the latter for
1993 and 1996. Finally, the estimations for closing delay 3 report a major
performance gap between the GLM and the two other methods, as it is clear
from the amounts for all the reporting years except for 1995.
Densities and QQ-plots in Figures 3.39-3.44 somewhat confirms that both
regression tree and neural network outperform the GLM. Comparing Fig-
ures 3.40 and 3.42, for instance, it is worth noting how the accuracy of
non-GLM methods tend to improve along the tail of the distribution, that
is, at high closing delays. Given their nonparametric or semiparametric na-
ture, they have more chance of adapting to any target variable, in spite of
its peculiarities. On the other hand, this is not the case for the given GLM,
although we might have tested other underlying distributions such as the
inverse Gaussian or any Tweedie distribution (see Subsection 1.6.1).
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Fig. 3.39: Density
actual vs. gamma regression

Fig. 3.40: QQ-plot
actual vs. gamma regression

Fig. 3.41: Density
actual vs. regression tree

Fig. 3.42: QQ-plot
actual vs. regression tree

Fig. 3.43: Density
actual vs. neural network

Fig. 3.44: QQ-plot
actual vs. neural network
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3.5.4 Claim reserve estimation as an ensemble

In data science, an ensemble is a complex machine learning algorithm con-
sisting of a number of simpler machine learning tools. The combination may
be very easy to implement (for instance, relating to the three predictive mod-
els in Subsection 3.5.3, an ensemble for the prediction of the claim amount
could be the average of the three different predictions), or very difficult. In
any case, the goal is the improvement of the predictive performance.
Performance assessment for an ensemble typically requires more computa-
tion than performance assessment for its constituents, so ensembles may be
thought of as a way to compensate for poor learning algorithms by perform-
ing a lot of extra computation. Therefore, fast algorithms such as CARTs
are commonly used in some ensemble versions (e.g., bagging trees, random
forests and boosting trees, introduced in the next chapter) which could have
been used to estimate reserve amount. However, we decided to avoid it be-
cause this chapter mostly focuses on fundamental machine learning tools.
From this perspective, the estimation expressed by (3.4) may be seen ex-
actly this way, that is, as an ensemble resulting from the combination of a
classification tool and a regression tool. Of course, considering all the tools
described in Section 3.4, any of the classification methods may be combined
with any of the regression methods. The choice will depend on the per-
formance reported in Figure 3.45-3.48 by reporting year, and the overall
performance reported in Figure 3.49.
Globally, gamma regression significantly overestimates the claim payments,
especially for the reporting year 1993 and 1994. More importantly, the ma-
jor problem is that the performance is quite different across reporting years
regardless of the classification tool used. All in all, the best performances
seem to be related to two ensembles:

• multinomial regression and regression tree (overall error 0,19%)

• classification tree and regression tree (overall error -0,14%)

and their error per reporting year is always lower than 3% in absolute value.
Basically, if one of these two combinations is used to predict the payment
as soon as the claim is reported (assuming that all the relevant information
is immediately available), we will reserve a very accurate amount for any
reporting year at an aggregated level. That sounds quite good, but it is
not necessarily the best solution as a proper reserve should always account
for some level of conservatism, as long as it is uniformly included into each
allocation. For instance, Figure 3.45-3.48 shows that the two ensembles

• multinomial regression and neural network (overall error 6,36%)

• classification tree and neural network (overall error 5,76%)
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Fig. 3.45: Predictive performance for reporting year 1993

Fig. 3.46: Predictive performance for reporting year 1994

Fig. 3.47: Predictive performance for reporting year 1995

Fig. 3.48: Predictive performance for reporting year 1996

Fig. 3.49: Overall predictive performance
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Fig. 3.50: Summary results on the test dataset (reporting years 1997-1998)

Fig. 3.51: Cumulative amount
for claims reported in 1993

Fig. 3.52: Cumulative amount
for claims reported in 1994

Fig. 3.53: Cumulative amount
for claims reported in 1995

Fig. 3.54: Cumulative amount
for claims reported in 1996
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slightly overestimate the claim payments, but still less than gamma regres-
sion. In particular, the overestimation is quite stable over the reporting
years 1994-1996, that is, they overestimate in the same direction, with sim-
ilar magnitude, regardless of the reporting year. If the company reserves
using one of the two aforementioned ensembles, it will most probably over-
estimate the amount by around 6-8% (we do not consider the lower but older
- thus less significant - errors for the year 1993). For our purpose, it could
really be the best compromise, including a reasonable prudence margin.
Once the best ensembles are selected, the last step is the estimation of the
reserve on the test dataset, that is, the allocation for the claims reported in
1997 and 1998. A further assumption is immediately necessary: given that
the reporting year is a categorical variable, the new reporting years are not
included in our models, so they will be replaced by the last year available,
that is, 1996 - the most significant one in terms of timing. The results are
stored in Figure 3.50. As specified in the column fields, remember that these
two reporting years contain information for a limited number of closing delay
categories: 0, 1 and 2 for 1997, while 0 and 1 for 1998. This is because the
dataset was extracted at year end 1999. Whatever the ensemble is, the over-
all claim amounts are materially overestimated for both of the years. A total
46M claim amount in 1997 is predicted to be about 50% greater, between
63M and 68M. In 1998, this delta reaches about 150%! Actually, this is
not surprising, if we take into account the performance of both multinomial
regression and classification tree in predicting closing delay (see Subsection
3.5.2). The ensembles correctly predict amounts, but they tend to allocate
them in wrong closing delay categories. Indeed, some claims are allocated
as lower delays - 0 and 1 - whereas they should be allocated as higher delays
- 2 and 3. Additionally, we do not have many actual claims by higher delay
categories yet, so this bias is not balanced out by them, as opposed to the
reporting years 1993-1996. However, this happens in those years as well,
if we separate claims by reporting year. In Figure 3.51-3.54), this effect is
represented by the gap between the dashed lines (actual cumulative amount
paid) and the four coloured lines, representing the four ensembles.
On the one hand, the low-closing-delay payments tend to be overestimated,
but the overall amount per reporting year still converges to the correct one.
As it is said, keeping in mind that a prudence margin is always required,
such ensembles may be still used for reserving purposes. On the other hand,
it would be legitimate to let the company reduce such a prudence margin.
Ideally, it should own enough data to get better predictions for the closing
delay, in order to reduce the gaps shown in Figure 3.51-3.54.

3.5.5 Small claims and large claims

A common enhancement in non-life modelling is based on the initial distinc-
tion between small claims and large claims. It allows for an ad hoc treatment



CHAPTER 3. INDIVIDUAL CLAIM RESERVING 134

Fig. 3.55: Small claim results
for LR (training dataset)

Fig. 3.56: Small claim results
for LR (validation dataset)

Fig. 3.57: Small claim results
for NB (training dataset)

Fig. 3.58: Small claim results
for NB (validation dataset)

Fig. 3.59: Small claim results
for NN (training dataset)

Fig. 3.60: Small claim results
for NN (validation dataset)

that, on one hand, improves accuracy, and, on the other hand, avoids unde-
sired reserve estimations. For example, the claims department might decide
to assign a predefined reserve amount for all the claims that will be likely
smaller than some amount. On the other hand, the claims and actuarial
departments might use appropriate ad hoc methods to estimate reserve for
all the claims that will be likely larger than some amount.
In this subsection, we will perform the separation on our dataset by defin-
ing two further binary variables, SmallClaimBin and LargeClaimBin, the
targets for our classification. The former equals 1 one if the claim amount
is lower than 1.000, while the latter equals 1 if the claim amount is greater
than 100.000. Notice that a single, categorical variable with three categories
- small, normal and large claims - would be much more efficient, in the sense
that we might run one single algorithm to classify a claim in one of them.
However, we prefer the separation of the two problems since binary targets
allow for an easier visualization of the results (e.g., ROC curves).
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Fig. 3.61: Large claim results
for LR (training dataset)

Fig. 3.62: Large claim results
for LR (validation dataset)

Fig. 3.63: Large claim results
for NB (training dataset)

Fig. 3.64: Large claim results
for NB (validation dataset)

Fig. 3.65: Large claim results
for NN (training dataset)

Fig. 3.66: Large claim results
for NN (validation dataset)

We will use some of the tools which have already been used in the previ-
ous sections, properly adapted for classification, that is, logistic regressions,
näıve Bayes and neural networks. For sake of consistency, the logistic re-
gressions will include all the predictors selected by the stepwise algorithm
in Figure 3.27, and the neural networks will maintain the same architecture
as in Figure 3.31.
For the small claim analysis, the cut-off values have been set in order to
approximately return the same complement of the specificity in the training
dataset among the three tools, that is, the same number of false positive.
As you can see in Figure 3.55, 3.57 and 3.59, that is always around 15%. In
this way, we can control the misclassification error on the majority of the
records - non-small claims - and then observe it in the rest of the dataset -
small claims - which represents the most interesting part. In fact, misclassi-
fication errors on the validation dataset in Figure 3.56, 3.58 and 3.60 do not
demonstrate any relevant difference. The sensitivity reveals that about two
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small claims out of three small claims are successfully detected, while the
false positive percentage and the overall error are still around 15%. These
are quite good results: the ROC curves in Figure 3.67-3.68 imply AUCs
greater than 85%, and the decile charts in Figure 3.69-3.70 reveal predictive
powers that are at least four times higher than that of the näıve rule in the
first decile.
For the large claim analysis, the cut-off values have also been set in order to
approximately return the same complement of the specificity in the training
dataset among the three tools, that is, the same number of false positive. As
you can see in Figure 3.61, 3.63 and 3.65, that is always between 27% and
28%. In this way, we can control the misclassification error on the major-
ity of the records - non-large claims - and then observe it in the rest of the
dataset - large claims - which represents the most interesting part. Similarly
to the small claim analysis, misclassification errors on the validation dataset
in Figure 3.62, 3.64 and 3.66 do not demonstrate any relevant difference.
The sensitivity reveals that about two small claims out of three small claims
are successfully detected, while the false positive percentage and the over-
all error are still around 27%. These are quite good results too, although
slightly worse than those from the small claim analysis: the ROC curves
in Figure 3.67-3.68 imply AUCs greater than 77%, and the decile charts in
Figure 3.69-3.70 reveal predictive powers that are around four times higher
than that of the näıve rule in the first decile.
All in all, we reach a very good accuracy with all the tools we used. Nonethe-
less, it is worth noting that it does not depend on the complexity of the
underlying algorithm. In other words, there is no reason to prefer logis-
tic regression or neural network if a simple näıve Bayes returns comparable
accuracy. Logistic regressions and neural networks always require prelimi-
nary analysis such as variable selections, optimizations and calibrations since
they depend on parameters and meta-parameters. By contrast, näıve Bayes
is purely non-parametric, and there is really no algorithm behind that. If it
performs as well as more complex tools, why should we use the latter? This
is the reason why näıve Bayes is still used for many practice applications
(e.g., spam filtering) in industry.
A claim department may hypothetically use our results to differentiate claim
treatment. Moreover, actuaries may separately build reserving algorithms
for small claims and large claims, for example, using the techniques pre-
sented in this chapter. We did not proceed this way for two reasons es-
sentially. First, we cannot rely on very big data, that is, 660 small claims
and 1294 large claims. Second, it would not change the idea behind our
analysis, that is, improving reserving through machine learning. Moreover,
this separation could be even redundant when it comes with tools that are
already characterized by discrimination features such as CARTs. In other
words, it could be even embedded in the algorithm itself, whether implic-
itly or explicitly. On the other hand, the separation may be crucial when
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Fig. 3.67: Small claim ROCs
(training dataset)

Fig. 3.68: Small claim ROCs
(validation dataset)

Fig. 3.69: Small claim deciles
(training dataset)

Fig. 3.70: Small claim deciles
(validation dataset)

Fig. 3.71: Large claim ROCs
(training dataset)

Fig. 3.72: Large claim ROCs
(validation dataset)

Fig. 3.73: Large claim deciles
(training dataset)

Fig. 3.74: Large claim deciles
(validation dataset)
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we use tools that are sensitive to outliers, especially regressions. Indeed, it
is a common practice among non-life actuaries, who always use regression
models.

3.6 Limitations, extensions and conclusions

In this chapter, we exploited the potential of machine learning in solving a
traditional problem such as case reserving for a specific type of claims in
non-life. According to the CRISP-DM standard for the data mining process
(see Section 1.2), the chapter can be formally broken as follows:

C1 Business understanding : Section 3.1 and 3.2

C2 Data understanding : Subsection 3.5.1

C3 Data preparation: Subsection 3.5.1

C4 Modelling : Subsection 3.5.2 and 3.5.3

C5 Evaluation: Subsection 3.5.4 and 3.5.5

C6 Deployment : none.

Given that we focused on a specific application to automobile bodily injury
claim data, no general conclusion may be drawn (which is typical when it
comes with machine learning), but of course the ensembles we used can be
easily adapted to different datasets. In addition, we chose two representa-
tive from the class of regression models - multinomial regression and gamma
regression - but there may be other, more complex regression models leading
to better results (e.g., GLMs based on Tweedie distributions). Nonetheless,
the a priori choice of the underlying probabilistic model (e.g., link func-
tions, distributions, etc.) is a typical issue of regression. Such an issue is
completely skipped in machine learning, somewhat replaced by the proper
setting of few meta-parameters (e.g., minimum records in the leaves of a
tree, number of hidden neurons, etc.). This is feasible thanks to the unique
flexibility of machine learning tools.
On the other hand, we should point out some major drawbacks we faced
during the analysis:

• as discussed in Section 3.1, case reserving is just one instance of the
reserve allocation in non-life, and applying machine learning to other
instances (e.g., aggregated estimation methods such as run-off trian-
gles) might be much less immediate, or not practicable at all;

• data availability is the crucial constraint, and it may happen that a
dataset is extremely useful for some target variables, but very poor for
others (for instance, compare closing delay performance in Subsection
3.5.2 and payment amount performance in Subsection 3.5.3);
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• poor predictions for the closing delay is not a problem if claim reserves
are evaluated as at REPORTING year, but it would if they were eval-
uated as at PAYMENT year (this is actually another way to state the
problem we faced in Subsection 3.5.4);

• IBNYR reserve might be a relevant component of the total claim re-
serve, but it is not considered here (see Section 3.2 for further details).

Data is always a major issue in machine learning. In our application, we ex-
perienced it when selecting useful data in Section 3.5.1. A number of records
(in grey in Figure 3.8, 3.9 and 3.10) have been excluded, for instance, those
related to closing delays beyond three years. Even if they are few, actuaries
know they bring relevant information about long-lasting claims. Generally
speaking, when records are few, pure machine learning techniques should
be avoided in favour of less data-driven methods such as regressions and
extrapolations. They may actually help us to deal with the variability ex-
plained by those records. For instance, using Poisson regression instead of
multinomial regression, we can allow for closing delays that do not appear
in the dataset.
Regarding the last bullet point, we should probably build a completely dif-
ferent model for IBNYR prediction. However, it would not be strictly “indi-
vidual”, because the company does not get any individual claim data before
the reporting date of the claim itself. If we want to use machine learning
techniques for this purpose, we should rather rely on different data. More
specifically, cross-sectional data related to the policyholder (age, family, ad-
dress, habits, etc.) and external information like economic environment
(unemployment rate, inflation rate, financial distress, etc.), weather condi-
tions, natural catastrophes (storm, flood, earthquake, etc.) and so on. Of
course, such additional data may be useful for better prediction of the RB-
NYS reserve as well.
It is our opinion that a complete analysis should distinguish between small
claims and large claims just like in Subsection 3.5.5. Although it may be re-
dundant when the algorithm manages to separate them automatically, those
claims are sometimes distinguished by unique features, which could lead to
very different treatment in reserving. This is also the case for zero claims,
that is, claims that are closed without any payment: if they can be detected
such as small claims, they will require some specific reserving process too.
A final remark is important to conclude the chapter. Even if data is ma-
terially informative, traditional parametric methods could still outperform
nonparametric tools, or return comparable results. For instance, look at the
payment amount predictions for closing delays 0 and 1 in Figure 3.35-3.38.
Actually, gamma regression predictions seem more accurate than those of
regression tree and neural network. That is just an example of the fact
that machine learning is not always superior to traditional methods. The
strength of machine learning relates to the ability to catch intricate depen-
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dencies among data, which is however not always necessary. More impor-
tantly, a greater effort in predicting such dependencies could paradoxically
lead to worse performance on regular data. This is also clear in Figure
3.35-3.38: better predictions for rare, severe claims (closing delays 3 and 4),
but slightly worse predictions for numerous, regular claims (closing delays
0 and 1). In fact, if data is actually regular enough to fulfil the regression
assumptions about residuals and multicollinearity, there is no reason to use
other tools: regression would return the best performance by definition.
In spite of it, it is worth noting how these new methods can be convenient
for non-life companies. Although we only used basic machine learning tools
and combined them together, we have still got very accurate predictions per
reporting year, outperforming regression.

3.6.1 Key conclusions for actuarial practitioners

This chapter demonstrated the primary importance of data availability. For
instance, we could not use a considerable amount of records because of the
data-driven nature of some nonparametric algorithms. Actually, if we want
to avoid any assumption on the distribution of the target variable, data is all
we have. A compromise may be represented by the usage of the same non-
parametric tools to estimate parameters of predefined distributions (e.g.,
assuming the closing delay to be Poisson distributed, we could have esti-
mated the related λ by using regression trees or neural networks), but it
would make the model more rigid, so we did not deal with this option.
Data availability is as important as data significance: if information is not
enough, performance will not be good regardless of the statistical model
used. As we observed for closing delay estimation, all the methods we used
returned approximately the same, significant error. Machine learning ex-
ploits information, but does not create it.
Nonetheless, if there is some relevant information in our dataset, machine
learning techniques can outperform more traditional methods. This is what
we observed in claim amount estimation: the regression tree returned a
better QQ-plot as well as a more accurate overall reserve allocation as com-
pared to gamma regression. Actuaries need to know that it is not always the
case as it strongly depends on the specific dataset. However, they should
acknowledge that there are alternatives to GLMs, and sometimes they can
lead to better results.
Regardless of the model performance, individual reserving is becoming in-
creasingly important thanks to real-time data availability. Run-off triangles
are still widely used in many applications, but individual reserving offers the
opportunity to enhance them (e.g., as a backtesting tool) or replace them
(e.g., in heterogeneous branches). This evolution may result in two major
outcomes: instantaneous, accurate reserve estimation, and a brand new field
for non-life reserving actuaries.



Chapter 4

Policyholder Behaviour
Modelling using Ensembles

Even if data science tends to be more useful in non-life actuarial practice
due to the nature of the related information and techniques, life practice
can benefit from it as well. One of the possible fields of application is
policyholder behaviour, that is, the individual reaction to relevant dynamics
such as ageing and economic conditions.

Actuarial context

In life insurance, policyholder behaviour is reflected by the exercise of options
embedded in a product. As demonstrated by several studies, the exercise
likelihood can be affected by various features, related to policyholder profile,
terms of tariff and market interest rates. Without a doubt, the impact on
profitability and solvency may be material, especially under unfavourable
scenarios.
There is a wide variety of embedded options in the insurance market. Some
of the most common include guaranteed annuity, fund switching, paid-up
and so on. However, the largest impact is due to the surrender option as
it may be embedded in any type of product. It represents the main non-
financial risk driver in life insurance, allowing the policyholder for lapse at
any time before the maturity with the withdrawal of the actual reserve.

Chapter overview

Aware of the superior performance of decision trees in the last chapter, we
will try to use them for lapse rate estimation with a dataset from the Italian
insurance market. However, we will face a typical drawback of most of the
basic machine learning techniques: instability. Indeed, overfitting is a major
issue in data science. This is the reason why tree-based ensembles are often
preferred over single trees, and we will use their most common forms (i.e.,

141



CHAPTER 4. POLICYHOLDER BEHAVIOUR MODELLING 142

bagging, random forest and boosting) for our last application.
The extraction of relevant information from policyholder profile, tariff fea-
tures and macroeconomic conditions is just one aspect of the case study.
The second step involves the usage of estimated lapse rates to assess the
actual impact on the profitability of a life product. More specifically, we
will build an asset-liability management model based on a stochastic in-
terest rate model. Given that the estimated lapse rates will vary by year-
dependent variables such as sum assured and forward rate (among others),
we will get different lapse rates per year and simulation. In other words, the
policyholder will dynamically react to changes in features, year after year.
Using Monte Carlo simulations, we will estimate the profit of the product
with and without dynamic lapse rates. Given that the surrender is essen-
tially an embedded put option, the former case will result in a decrease in
profitability. Such a decrease represents a marginal measure of the surrender
option value.

4.1 Introduction

Following the introduction of the most recent regulatory frameworks, the
traditional actuarial methods are being replaced, little by little, by more
complex and structured models to estimate the economic value (in his sev-
eral forms) of insurance companies and their business. So far, in life insur-
ance, most of the effort focused on financial risks, which encompass the most
relevant risk factors (e.g., interest rate risk, credit risk, liquidity risk, rein-
vestment risk, etc.) for life insurers. However, those frameworks themselves
highlight that non-financial risks should be evaluated and monitored as well,
including the risks due to the policyholder behaviour (PHB). Typically, pol-
icyholders are given a number of embedded options within their insurance
contracts, and predicting the exercise likelihood is crucial to forecast the
portfolio profitability.
In general, PHB refers to the policyholder’s tendency to exercise any of
the options embedded in its insurance contract. They include surrender op-
tion, guaranteed annuity option, dynamic premium increase option, product
switching option, fund switching option, paid-up option and so on. For sev-
eral reasons, the surrender option leads to the greatest impact within the
portfolio. Indeed, it is embedded in almost all the insurance products. To
some extent, it guarantees the fairness of the contract by allowing the policy-
holder to receive back its reserve, net of some penalty. As opposed to other
aforementioned options, the surrender option can be generally exercised at
any time prior to the maturity, just like an American option, so that the
insurer is exposed on a continuous basis.
In the Solvency II Directive, for instance, PHB was assumed as a relevant
source of risk from the very first Quantitative Impact Study (QIS). The
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paragraphs TP.2.129-TP.2.135 in Solvency II Technical Specification (2014)
introduce the concept of PHB within the Best Estimate Liability (BEL)
evaluation. For instance, TP.2.130 states that

Any assumptions made by insurance and reinsurance undertak-
ings with respect to the likelihood that policyholders will exercise
contractual options, including lapses and surrenders, should be
realistic and based on current and credible information. The as-
sumptions should take into account, either explicitly or implicitly,
of the impact that future changes in financial and non-financial
conditions may have on the exercise of those options.

Paragraph TP.2.131 is even more specific:

Assumptions about the likelihood that policyholders will exercise
contractual options should be based on analysis of past policy-
holder behaviour and a prospective assessment of expected pol-
icyholder behaviour. The analysis should take into account the
following:

(a) how beneficial the exercise of the options was and will be
to the policyholders under past circumstances (whether the
option is out of or barely in the money or is in the money),

(b) the influence of past and future economic conditions,

(c) the impact of past and future management actions,

(d) any other circumstances that are likely to influence a deci-
sion whether to exercise the option.

In the Solvency II framework, PHB is not only supposed to be object of
the BEL, but also a risk factor to take into account within the lapse risk
module of the Solvency Capital Requirement (SCR). Paragraph SCR.7.43
in Solvency II Technical Specification (2014) indeed provides the following
definition:

Lapse risk is the risk of loss or adverse change in liabilities due
to a change in the expected exercise rates of policyholder op-
tions. The relevant options are all legal or contractual policy-
holder rights to fully or partly terminate, surrender, decrease,
restrict or suspend insurance cover or permit the insurance pol-
icy to lapse.

More recently, the International Accounting Standards Board (IASB) has
issued the new accounting standard, IFRS 17, for insurance contracts (see
IFRS 17 Insurance Contracts (2017)). It is going to replace the previous
standard, IFRS 4, starting from January 2021, in order to converge to com-
mon accounting rules within the insurance industry.
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Although risk-based exercises such as those of Solvency II can be very dif-
ferent to the evaluations underlying accounting principles, PHB is a rele-
vant feature of the former as well as the latter. Indeed, dealing with future
cash-flow estimation, paragraph B62 of IFRS 17 Insurance Contracts (2017)
points out the following:

Many insurance contracts have features that enable policyholders
to take actions that change the amount, timing, nature or un-
certainty of the amounts they will receive. Such features include
renewal options, surrender options, conversion options and op-
tions to stop paying premiums while still receiving benefits under
the contracts. The measurement of a group of insurance con-
tracts shall reflect, on an expected value basis, the entity’s cur-
rent estimates of how the policyholders in the group will exercise
the options available, and the risk adjustment for non-financial
risk shall reflect the entity’s current estimates of how the ac-
tual behaviour of the policyholders may differ from the expected
behaviour. This requirement to determine the expected value ap-
plies regardless of the number of contracts in a group; for example
it applies even if the group comprises a single contract. Thus, the
measurement of a group of insurance contracts shall not assume
a 100 per cent probability that policyholders will:

(a) surrender their contracts, if there is some probability that
some of the policyholders will not; or

(b) continue their contracts, if there is some probability that
some of the policyholders will not.

Solvency II and IFRS 17 represent only two of the numerous regulatory
frameworks that explicitly require PHB analysis nowadays. As such, it is
the object of this chapter, which will embed dynamic PHB into the stochastic
profit evaluation of an insurance product. We will focus on the possible risk
of loss due to unanticipated PHB for full (i.e., not partial) surrender. The
adjective “unanticipated” refers to the exclusion of any PHB assumption
from both pricing and reserving, just like it is still common in traditional
actuarial practice.
After a broad review of the past studies about PHB risk factors in Section
4.2, we will start our analysis. We can distinguish three steps:

1. data preparation (see Subsection 4.5.1)

2. lapse rate prediction (see Subsection 4.5.2)

3. profit and TVOG analysis (see Subsection 4.5.3 and 4.5.4).

So in short, we will first predict lapse rates in a dynamical way (that is,
different lapse rates in different scenario simulations), and then use them
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as a contingency in a typical profit test for a specific insurance contract.
Notice that PHB occurs after economic scenario simulation, because the
former depends on the latter. In other terms, PHB will be treated as a
deterministic function - represented by the machine learning algorithm -
of the scenario simulation, among others. All in all, we will not build a
stochastic model for PHB, so that no further computational burden will be
caused beyond that coming from the economic scenario simulation.

4.2 Drivers of the policyholder behaviour

Because surrender activity can be so damaging to a single company or to
the life insurance industry if it occurs en masse, research on widespread
surrender activity and its possible determinants is especially important. In
the last century, several studies and papers have been published about the
very sources of PHB. They referred to the financial and insurance market
of various countries worldwide. Although our analysis does not aim to de-
tect the fundamental causes of PHB, it is worth recalling the most relevant
results about them, covering almost one century. This will provide us with
a good foundation to start analysing a lapse rate database of an insurance
company.
An extensive description of the lapse rate research’s early stage can be found
in Richardson et al. (1951), which focuses on North American markets. By
earlier twenties, almost one hundred years ago, some results had already
demonstrated correlation between lapse rate and economic conditions, curi-
ously right before the great depression after 1929. Nonetheless, researchers
were well aware that market variables could not completely explain the ef-
fective duration of any product. As a consequence, several studies started
focusing on policyholder-related variables, finding out that lapse could be
correlated to income, occupation, sex, age, family, premium frequency and
amount, and others. Another relevant finding of those years regards the
effects of global economic distress on lapse rates. Briefly, each policyholder
seems to have a tolerance threshold depending on its risk-propensity. It can
be largely irrational, but it is also related to the actual economic condition:
in time of economic distress, it is likely that most of policyholders feel be-
yond their threshold, which leads them to close their contracts. In other
terms, lapse rate cannot be represented as a regular function of a global
index market.
Without a doubt, three of the most comprehensive studies in that period
were Cannon (1948), LIAMA (1948) and LIAMA (1949). Among others,
they suggest that an insurance company can limit lapse from contract’s
inception by selecting quality business, recognizable from some objective in-
dications of good persistence, especially age at issue, premium frequency and
plan. Surprisingly, the author of Cannon (1948) concludes that the agent’s
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ability in picking quality business can be even more crucial than the actual
economic condition itself.
Later, in the 1960s and 1970s, a couple of interesting empirical contri-
butions have been produced by the Institute and Faculty of Actuaries.
Both Crombie et al. (1979) and Patrick et al. (1969) are based on Scottish
data, and the first one is meant to update the second one. To some ex-
tent, we can say that Patrick et al. (1969) is based on data of 1960s, while
Crombie et al. (1979) is based on data of 1970s (this is the reason why both
of them have been published at the end of the respective decade). As the
titles suggest, such studies are exploratory in nature, but consider some of
the variables which, on the base of the aforementioned sources, can drive
surrender decisions. Sex, age at entry, occupation, purpose of assurance,
calendar year (as a representation of variable economic conditions), sum as-
sured, premium payment term and frequency, distribution channel, policy
duration - all of them have been included in the analysis, but only duration
and age at entry showed a significant correlation with the lapse rate.
All in all, by the end of the 1970s, lapse rates were fairly steady, with in-
creases occurring during recessions, and decreases occurring during expan-
sions. However, in the late 1970s, some important aspects started chang-
ing. Markets began to experience the highest increase in interest rates and
volatility ever, while new, more complex insurance products were intro-
duced. The contemporary improvement in financial literacy among poli-
cyholders led many of them to surrender their policies for more rational
reasons such as interest rate arbitrage, preference for pure financial prod-
ucts, awareness about their own risk-propensity and so on. Surrender was
no longer the natural, though irrational, response to the need of money dur-
ing time of distress (the so-called Emergency Fund Hypothesis, for instance,
in Russell et al. (2013)). In some cases, it turned to be the result of a pre-
cise, financial-oriented decision of the policyholder (the so-called Interest
Rate Hypothesis, for instance, in Russell et al. (2013)). Of course, it could
only worsen the position of intermediaries. Insurers were forced to liquidate
bonds to meet surrender requests at precisely the time when the values of
bond portfolios were depressed by high interest rates.
The increased volatility in economic conditions and financial markets made
the correlation between PHB and macroeconomic variables much more in-
teresting than policy features. A number of studies published in the last
thirty years focuses on the macroeconomic determinants of global lapse
rates in various countries. Most of them succeed in proving the Emergency
Fund Hypothesis, but not the Interest Rate Hypothesis. The authors of
Dar et al. (1989) explored the relationships between variables like interest
rates and unemployment rate with surrender activity in the UK endowment
life insurance market from the period 1952-1985. Something similar has been
analysed by the author of Outreville (1990) using US and Canadian data of
whole life policies from the period 1955-1979. In this study, the unemploy-
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ment rate has a significantly positive effect on lapse rate, while policyholder’s
income has a significantly negative effect, while no significant relationship
with interest rates was found. Further, the author of Hoyt (1994) concludes
that the unemployment rate is the most significant variable in predicting
surrender activity for universal life policies in the US from the period 1982-
1986. The authors of Chen et al. (2003) used a dataset provided by the
American Council of Life Insurance (ACLI) from the period 1951-1998 to
confirm the strong correlation of the surrender activity with the unemploy-
ment rate. Nonetheless, they find a strong impact of the interest rate as well.
In other words, Chen et al. (2003) supports both the Emergency Fund Hy-
pothesis and Interest Rate Hypothesis.
In more recent years, other researchers focused on some European and
Asian countries, both for empirical study and regression-based prediction
of lapse rates. The Italian insurance market of savings products has been
analysed in Cerchiara et al. (2009) by using surrender experience data of
a large Italian bankassurer from the period 1991-2007. Explanatory vari-
ables included product type, calendar year, duration and inception year.
In Kim (2010), the author used logistic regression to model lapse rate of
Korean interest indexed annuities. Explanatory variables included the dif-
ference between reference market rates and product crediting rates, policy
duration, unemployment rate, economy growth rate and some seasonal ef-
fects. One of the most comprehensive surrender analysis is represented by
Kiesenbauer (2012), which focuses on the German market. The study dis-
tinguishes five product categories (traditional endowment policies, annuities
and long-term health contracts, term life insurance, group business and unit-
linked contracts), and includes both macroeconomic explanatory variables
(e.g. current market yield, DAX performance, gross domestic product and
unemployment rate) and company-specific explanatory variables (e.g. com-
pany ages, distribution channel, company legal form and company size). One
of the most recent study is the working paper Hwang et al. (2014) on Tai-
wan data from the decade 1999-2009. Just like in Kiesenbauer (2012), the
paper considers a number of macroeconomic variables and company-specific
variables, that is, business line, premium income, company age, return-
on-asset, domestic/foreign company, unemployment rate, home-ownership
ratio, short-term interest rate and economic growth rate.
Beyond the huge amount of empirical studies on surrender rates (only par-
tially described so far in this section) trying to detect the most relevant
predictors, a remarkable number of studies about surrender option’s valua-
tion also exists. Such papers deal with the surrender activity of policyholders
as the exercise of an American option embedded in the insurance contract,
and evaluate it as a stand-alone option by using either analytic or numeric
models. Given that our goal is not product pricing, the topic is beyond our
scope, and it will not be analysed further.
Obviously, persistence is a crucial factor in the pure financial market as well.
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For instance, the author of Stanton (1995) values mortgage-backed securi-
ties in the US assuming that part of the prepayment decision of mortgage
holders is rational and based on current economic conditions, while the re-
maining part is interpreted as irrational. Again, this is beyond our scope,
and the topic will be not analysed further.
To sum up, three categories of PHB drivers can be empirically distinguished:
macroeconomic factors, company-specific factors and policy-specific factors.
Of course, other factors could relate to life insurance surrender activity, al-
though they might not have mentioned in past studies yet. At the same
time, the set of relevant explanatory variables could change in time, for ex-
ample, as target clients, product nature, or insurance purpose change. As a
consequence, looking for a unique, stable set of explanatory variables seems
to be the wrong way to go ahead. Therefore, we will focus on the dataset
provided by a single insurance company, where most of the explanatory vari-
ables are policy-specific, while only one macroeconomic variable is included
(obviously, there is no reason to include company-specific variables, given
that data come from the same company).

4.3 Segregated fund modelling

The crucial aspect of Italian segregated fund modelling is the simulation of
the crediting rate, that is, the yield used to reevaluate the sum assured (and
the reserve) of the policyholder. Such a yield will be a function of the fund
rate as well as a number of tariff parameters.
For the economic scenario generation, we will use a Gaussian two-factor
model (like in PIA (2015) and Aleandri (2016)), which guarantees a num-
ber of useful properties. First, it embeds an instantaneous linear correlation
between rates at different maturities, while single-factor models (e.g. CIR,
Vasicek, etc.) implicitly assume correlation 1 (see Brigo et al. (2001)): ef-
fectively, each simulation leads to a rigid movement of the interest rate
curve. Another reason relates to the fitting of the actual interest curve:
while single-factor models, indeed, fit it, two-factor models like the Gaus-
sian one can adapt to it perfectly.
The short rate under the Gaussian model is defined by the following equa-
tion:

it := Xt + Yt + φ(t) (4.1)

where

dXt = −µxXtdt+ σxdZ
x
t (4.2)

dYt = −µyYtdt+ σydZ
y
t (4.3)

and initial conditions X0 = 0 e Y0 = 0. The instantaneous linear correlation
between X and Y is represented by the parameter ρ:

dZxt dZ
y
t = ρdt. (4.4)
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parameter value

µx 0,40100
σx 0,03780
µy 0,17800
σy 0,03720
ρ -0,99600

α0 0,00044
β0 -0,31131
β1 30,00000
β2 -26,98974
τ1 0,13474
τ2 0,16187

Fig. 4.1: Gaussian two-factor model and Nelson-Siegel-Svensson parameters

The parameters in the equations (4.2), (4.3) and (4.4) are the same as in
PIA (2015) and Aleandri (2016), based on the market data at 25/11/2016.
Assuming that the actual ZCB price curve is interpolated by some polyno-
mial function Φ(t), it can be proven (see Brigo et al. (2001)) that, if f(t)
denotes the instantaneous forward rate in t, that is,

f(t) := −d ln Φ(t)

dt
(4.5)

then the deterministic function φ(t) defined by

φ(t) := f(t) +
σ2
x

2µ2
x

(1− e−µxt)2 +
σ2
y

2µ2
y

(1− e−µyt)2 +

+
ρσxσy
µxµy

(1− e−µxt)(1− e−µyt) (4.6)

guarantees a perfect fitting of the actual interest rate curve. However, no-
tice that the choice of the polynomial function still affects the results. An
option is the Nelson-Siegel-Svensson function (see Nelson et al. (1987) and
Svensson (1994)):

f(t) := α0+β0

(
1− e−tτ1

tτ1

)
+β1

(
1− e−tτ1

tτ1
−e−tτ1

)
+β2

(
1− e−tτ2

tτ2
−e−tτ2

)
.

(4.7)
The short rate defined by (4.1) should be calibrated from the actual risk-
free curve. We will use the parameters calibrated in PIA (2015) for the
German market (see Figure 4.1), which produce the curve in Figure 4.2.
However, we also need a stochastic model for the future bond yields since
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Fig. 4.2: Polynomial function f(t) from the Nelson-Siegel-Svensson model

the segregated fund invests in risky bonds. So we adjust (4.6) as follows:

φ∗(t) := f(t) +

(
σ2
x

2µ2
x

+ dx

)
(1− e−µxt)2 +

(
σ2
y

2µ2
y

+ dy

)
(1− e−µyt)2 +

+
ρσxσy
µxµy

(1− e−µxt)(1− e−µyt) (4.8)

by using two deterministic factors which tends to the parameters dx and
dy over time. In other words, the bond yield is simulated by the stochastic
process

rt := it + dx(1− e−µxt)2 + dy(1− e−µyt)2 (4.9)

or equivalently

X∗t := Xt + dx(1− e−µxt)2 (4.10)

Y ∗t := Yt + dy(1− e−µyt)2. (4.11)

The parameters dx and dy are calibrated in order to match an average 10-
year spread approximately equal to the actual 10-year Bund-BTP spread,
that is, 186 bps as at 31/12/2017. Specifically, dx = dy = 1, 77%.
Generally, a minor part of the segregated fund is equity-based, so we need a
stochastic model for it as well, for example a classical geometric Brownian
motion defined by the risk-free component rt, the risk premium parameter
µS and the non-systematic risk parameter σS :

St = S0e

∫ t
0 rτdτ+

(
µS−

σ2S
2

)
t+σSZ

S
t

(4.12)
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where ZSt is uncorrelated with both Zxt and Zyt .
In practice, assume that the segregated fund invests b ∈ [0, 1] asset in n
held-to-maturity coupon bonds bought at par and 1− b in equity. In t = 0,
when a new insurance contract is underwritten, each bond in portfolio has a
different maturity, say t1, . . . , tn. In other words, the ith bond pays a known
coupon ci for the next ti years. Since each bond is bought at par, its annual
yield equals the coupon rate itself. More specifically, if Fi denotes the face
value of the ith bond, its contribution to the segregated fund rate is

Ci :=
ciFi∑n
k=1 Fk

:= cibi (4.13)

where
∑n

i=1 b1 = 1. In fact, as long as t ≤ min{t1, . . . , tn}, that is, no bond
has matured yet, the average yield of the bond component is

RC :=
n∑
i=1

Ci ≡
n∑
i=1

cibi, ∀t ≤ min{t1, . . . , tn} (4.14)

which is known in t = 0 and constant. As soon as the ith bond matures after
Ti years, it will be probably replaced by a comparable security, say a new
coupon bond with same maturity in Ti years (for practical reasons, assume
that Ti is greater than the duration of the insurance contract, in order to
replace each bond at most one time). The new par bond yields exactly the
stochastic forward rate f(ti + 1, Ti). Using the dummy function χt≤ti , the
contribution of the ith bonds to the segregated fund rate in t can be written
as follows:

Ci(t) := [χt≤tici + (1− χt≤ti)f(ti + 1, Ti)]bi (4.15)

and finally the stochastic return of the whole bond component in the segre-
gated fund:

RC(t) :=
n∑
i=1

Ci(t) =
n∑
i=1

[χt≤tici + (1− χt≤ti)f(ti + 1, Ti)]bi, ∀t. (4.16)

The initial bond component will be represented by three BTPs (i.e., fixed-
coupon bonds issued by the Italian government), as shown in Figure 4.3.

Each of them will cover 30% of the entire bond allocation, which equals
b = 90% of the entire asset allocation. In particular, BTP1 has been just
bought, BTP2 was bought 10 years ago, and BTP3 was bought 23 years
ago. As soon as one of them matures, it will be replaced by a new bond
with same maturity and yield equal to the related forward rate from the
stochastic scenario.
Furthermore, (4.12) provides the return of the equity component:

RS(t) :=
St
St−1

− 1 = e
rτ−1+

(
µS−

σ2S
2

)
+σSZ − 1 (4.17)
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parameter BTP1 BTP2 BTP3

bi 30% 30% 30%

ci 1,0% 3,0% 5,0%
ti 0 yrs 10 yrs 23 yrs
Ti 10 yrs 15 yrs 30 yrs

Fig. 4.3: Initial bond component parameters of the segregated fund

parameter FTSE EURO S&P

1− b 10%

µS -1,96% 2,46% 9,35%
σS 20,22% 12,15% 10,83%

Fig. 4.4: Initial equity component parameters of the segregated fund

where Z denotes a standard normal distribution. For our application, we
will consider one three types of equity securities at a time, calibrated on the
performances of three market indexes - FTSE MIB, EURO STOXX 50 and
S&P 500 - from the period 2010-2016 (see Figure 4.4). Such a component
will cover 1− b = 10% of the entire asset allocation.
Given the yield contributions RC(t) and RS(t) for the bond and equity
components respectively, the segregated fund rate is equal to

g(t) := bRC(t) + (1− b)RS(t). (4.18)

Nonetheless, sum assured and reserve revaluation takes into account other
contract parameters such as profit sharing η, minimum guaranteed rate %
and minimum management fee k. Therefore, the stochastic crediting rate is

R(t) := max{min{ηg(t), g(t)− k}, %} (4.19)

assuming no technical rate (which is common in Italian insurance contracts
including a minimum rate guarantee).
The insurance contract we will analyse is a deferred capital with duration
n = 20 years, age at entry x = 30 years, without death benefit and termi-
nal bonus at maturity. Notice that the choice of such a simple contract is
due to the necessity of excluding any potential impact from mere techni-
cal complexities, in order to better isolate and emphasize the lapse aspect.
Nonetheless, the analysis of this chapter can be easily extended to more
peculiar products.
Regarding the technical assumptions, we will use the mortality rates qx+t

published in ISTAT (2015) for the year 2015, while no lapse rate is included
in the calculation of the policy number as we will evaluate the lapse impact
ex post by averaging on the profit using the estimated lapse probabilities.
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As a consequence, the average policy number in t is equal to

Nt =

{
1 t = 0
Nt−1(1− qx+t) ∀t = 1, . . . , n.

(4.20)

To simplify the analysis and avoid the allocation of expense reserves, any
premium loading is explicit and applied to the annual premium Π, although
implicit loadings as well as loadings applied to the reserve are common in
life insurance. As a consequence, Π is affected by predetermined acquisition
cost α (entirely paid at inception), yearly premium collection cost β and
yearly maintenance cost γ. Since Π is also increased by the safety loading
l, the total premium paid by the policyholder is

Π =
P (1 + l)

1− α− β − γ
(4.21)

where P is the theoretical fair premium.
Following the local accounting standards, the mathematical reserve in t can
be calculated retrospectively as the sum of the mathematical reserve in t−1
and the premium paid:

Vt = Vt−1[1 +R(t)] + P ∀t = 1, . . . , n (4.22)

where V0 = P . The initial sum assured S0 is function of P :

S0 = P
äx:n

nEx
= P

∑n−1
k=0 kpx

npx
. (4.23)

where kpx denotes the k-year survival probability at age x (no deflator ap-
pears as no technical rate is anticipated). For any t > 0, the sum assured is
affected by the increase in reserve due to R(t), so that the following formula
for the sum assured holds:

St =
Vt−1 + P äx+t:n−t

n−tEx+t
=
Vt−1 + P

∑n−t−1
k=t k−tpx+t

n−tpx+t
∀t = 1, . . . , n.

(4.24)
As an obvious consequence, the rate crediting the sum assured is not R(t),
but a much lower rate.
The aforementioned costs are assumed to offset the related expenses gener-
ated by the maintenance of the contract, so the initial expense is

E0 = αΠ (4.25)

while the expense in any subsequent t is

Et = (β + γ)Π ∀t = 1, . . . , n. (4.26)

Since no reserve reduction for acquisition costs is permitted (i.e., the reserve
may not be “zillmered”), and no timing gap between maintenance costs and
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parameter value

η 90%
% 1,0%
k 0,2%

n 20 yrs
x 30 yrs
P 1000
l 15%
α 2,0%
β 3,0%
γ 0,5%

Fig. 4.5: Tariff parameters

premium payments occurs, no expense reserve will be allocated.
Once the tariff parameters are determined (see Figure 4.5), we can calculate
the annual profit generated by the contract. In t = 0, the company receives
the first premium and immediately pays the acquisition costs. After that,
the company still receives premiums and the related reserve begins to credit
at rate g(t); however, maintenance expenses and surrender benefits (from
the fourth year) are paid. In the last policy year, the company receives the
last return from the reserve, but pays the sum assured. In formulas

P&Lt =


Π− E0 t = 0

Πt−1 + g(t)V t−1 − Et −∆V t−1,t ∀t = 1, . . . , n− 1

g(n)V n−1 − En − (Sn − V n−1) t = n.

(4.27)

where Πt := NtΠ, V t := NtVt, Et := NtEt, St := NtSt and ∆V t−1,t :=
V t − V t−1. As a consequence, the cumulated discounted profit at the end
of year t is

Dt(·) :=
t∑

τ=1

P&Lτ (·)vτ (·). (4.28)

where the argument represents some underlying economic scenario, and vτ
denotes the deflator.
As a next step, assume that we can somehow estimate lapse probabilities as
at any policy year, given the economic scenario. Let’s denote Pt−1(Lt) the
probability that the policyholder leaves as the end of the policy year t given
that he/she did not leave at the end of the policy year t− 1. Then, for each
t = 1, . . . , n− 1, the unconditioned probability of a lapse at the end of year
t is

P (t) := Pt−1(Lt)
t−1∏
τ=1

(1− Pτ−1(Lτ )) (4.29)
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while the unconditioned probability that the policyholder will reach the
maturity is

P (n) :=
n∏
τ=1

(1− Pτ−1(Lτ )) (4.30)

where P0(L1) = P1(L2) = P2(L3) = 0 in our specific case.
Given that

∑
t P (t) = 1, the average discounted profit over some economic

scenario may be calculated as the mean of the potential discounted profit
as at the end of each policy year. For instance, if those unconditioned
probabilities are denoted with p1(·), . . . , pn(·), the average discounted profit
in that scenario will be

D(·) :=
n∑
t=1

pt(·)Dt(·) =
n∑
t=1

pt(·)
t∑

τ=1

P&Lτ (·)vτ (·) (4.31)

where the argument represents some underlying economic scenario. More
specifically, we will consider three type of scenarios, that is, the certainty
equivalent, the stochastic scenario with static PHB (i.e., certainty equiv-
alent lapse probabilities) and stochastic scenario with dynamic PHB (i.e.,
simulation-based lapse probabilities). While the discounted profit of the
former is deterministic:

D[ce, p(ce)] :=
n∑
t=1

pt(ce)Dt(ce) =
n∑
t=1

pt(ce)
t∑

τ=1

P&Lτ (ce)vτ (ce) (4.32)

those of the stochastic approaches depend on the specific simulation gen-
erated by the stochastic processes defined earlier in this section. The dis-
counted profits related to the kth scenario with static PHB and dynamic
PHB are respectively

D[k, p(ce)] :=

n∑
t=1

pt(ce)Dt(k) =

n∑
t=1

pt(ce)

t∑
τ=1

P&Lτ (k)vτ (k)(4.33)

D[k, p(k)] :=

n∑
t=1

pt(k)Dt(k) =

n∑
t=1

pt(k)

t∑
τ=1

P&Lτ (k)vτ (k) (4.34)

and the Monte Carlo proxies of the related stochastic discounted profits are

D[N, p(ce)] :=
1

N

N∑
k=1

D[k, p(ce)] (4.35)

D[N, p(N)] :=
1

N

N∑
k=1

D[k, p(k)]. (4.36)

Additionally, we can consider a stricter lapse definition by setting a full lapse
as soon as the estimated probability exceeds the cut-off. In other words,
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referring to the kth simulation, the policyholder will decide to lapse at the
end of the first policy year t∗ whose estimated probability is pt∗(k) > 50%.
In this case, the discounted profit over the kth simulation is

D[k, t∗(k)] := Dt∗(k)(k) =

t∗(k)∑
τ=1

P&Lτ (k)vτ (k) (4.37)

and the related Monte Carlo proxy is

D[N, t∗(N)] :=
1

N

N∑
k=1

D[k, t∗(k)]. (4.38)

To summarize, the analysis in Section 4.5 will be based on the average profit
over N = 1000 simulations for the four aforementioned approaches, that is,

• certainty equivalent scenario with static PHB (i.e., certainty equivalent
lapse probabilities) and deterministic profit D[ce, p(ce)]

• stochastic scenarios with static PHB (i.e., certainty equivalent lapse
probabilities) and stochastic profit D[N, p(ce)]

• stochastic scenarios with probability-based dynamic PHB and stochas-
tic profit D[N, p(N)]

• stochastic scenarios with time-to-lapse-based dynamic PHB and stochas-
tic profit D[N, t∗(N)].

Although those average discounted profit are unquestionably the reference
measures to value an insurance contract, there are other relevant measures as
well. In particular, we will also consider the time value of options and guar-
antees (TVOG) calculated as the difference between the certainty equivalent
profit and the stochastic average profit in the three different cases:

TV OG[N, p(ce)] := D[ce, p(ce)]−D[N, p(ce)] (4.39)

TV OG[N, p(N)] := D[ce, p(ce)]−D[N, p(N)] (4.40)

TV OG[N, t∗(N)] := D[ce, p(ce)]−D[N, t∗(N)]. (4.41)

TVOG is crucial because it measures the value of any options and guarantees
embedded in the contract. In our case, D[ce, p(ce)] is a favourable scenario
where the minimum guaranteed rate plays no relevant role. This is the
reason why D[ce, p(ce)] is very stable or even constant in most of the plots of
Section 4.5. The full effect of the guarantee is only evident in the stochastic
profit, that is, in the TVOG component.
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4.4 Ensembles in machine learning

Broadly speaking, a machine learning ensemble is any combination of pre-
dictions from different tools. For example, the tool used in Subsection 3.5.4
to estimate individual case reserves is an example of ensemble. Nonethe-
less, there is a range of common ensembles which will be introduced in this
section. All of them are based on the concept of bootstrap (appeared in
Efron (1979) for the very first time), that is, repetitively simulating from a
model in order to improve the knowledge about the underlying phenomenon.
Consider a distribution F and some statistic of F , T (y1, . . . , yn), function
of n observations, representing a characteristic θ of F (e.g., the mean or
the variance). We may want to estimate θ by using bootstrap. If we know
the analytical form of F , we can estimate its parameters by maximizing the
likelihood, and then simulate independent observations from the estimated
distribution F̂ . If we don’t know the analytical form of F , but we have a
population drawn from F , we can assume that its empirical distribution is
an estimation for F : we can randomly draw - with replacement - from it,
and still obtain a sample of independent observations. Whether F is analyt-
ical or empirical, there is always a straightforward way to get an estimation
of F , say F̂ , and sample from it. More importantly, F̂ converges uniformly
to F , as stated by Theorem 20.6 in Billingsley (1995).
Bootstrap is actually based on sampling. We can sample n observations as
many time as we want from F̂ . Denote the ith sample as yi = yi1, . . . , yin,
and calculate the ith sample estimation for θ:

θ̂i := T (yi). (4.42)

Repeat the computation for a high number of samples, say N . Finally, the
bootstrap estimation of θ is the mean of all the sample estimations:

θ̂ :=
1

N

N∑
i=1

T (yi). (4.43)

For instance, if θ represents the mean of F , (4.43) becomes

θ̂ :=
1

N

N∑
i=1

n∑
j=1

yij (4.44)

which is an alternative to the traditional sample mean as a population mean
estimator:

y :=
n∑
k=1

yk. (4.45)

It is worth noting the resemblance between the bootstrap and Monte Carlo
methods: the key concept is basically the same.
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As we will easily see in the next subsections, classical ensembles in machine
learning are all based on the same bootstrap concept. They are typically
used to improve CART performances. Indeed, the main drawback of trees is
the high volatility of their predictions. For example, if we use two training
datasets from the same database, the two full trees may be quite different.
Bootstrap represents a solution.

4.4.1 Bagging

Bootstrap aggregation, or bagging, was first proposed in Breiman (1996). It
represents the most natural way to reduce variance in a machine learning
tool: run it on N random samples, and average the N predictions. This is
indeed in equation (4.43). If the variance of T (yi) is σ2, then

V ar(θ̂) = V ar

(
1

N

N∑
i=1

T (yi)

)
=

1

N2

N∑
i=1

V ar(T (yi)) =

=
1

N2

N∑
i=1

σ2 =
σ2

N
(4.46)

which is a reduction in estimation variance by a factor 1
N . In bagging, we

use N random samples - with replacement - from the training dataset (or,
ideally, N different training datasets), apply the same machine learning tool
on each of them, and average the N different predictions for the jth training
record:

θ̂bagj :=
1

N

N∑
i=1

θ̂ij , ∀j = 1, . . . , n (4.47)

Each bagged tree is a full tree, that is, it is not pruned, so it gets very low
bias and very high variance. The latter is however reduced by bagging. No-
tice that (4.47) may be used for classification problems too, as long as θ̂bagj

is rounded to 0 or 1.
Once we get the estimations from the bagging procedure, they can be val-
idated in the usual way by using the validation dataset. However, there is
a further, less expensive option. First, consider a random sample from a
database with n observations. The probability of drawing the jth observa-
tion for the sample is 1

n , so the probability of not drawing it is 1− 1
n . That’s

just for the first draw. Since there are a total of n sample, all of which
are independent and with replacement, the probability of never choosing
the jth observation on any of the draws is (1 − 1

n)n. If n is great enough,
that probability approximates to e−1 ≈ 36, 8%. In other words, around 1

3
training records are not used for the jth bagged prediction. So we can use
those out-of-bag observations as validation records for the jth bagged tree.
Using this approach, we do not even need a standalone validation step on a
separated validation dataset. Actually, we may use the entire database as
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the training dataset.
The higher the number of bagged trees, the lower the interpretability of pre-
dictions. When aggregating trees, we have to give up the nice visual diagram
of one single tree. Nonetheless, we can still get an indication of the variable
importance of each predictor. For classification trees, the variable impor-
tance is usually defined as the reduction in misclassification error due to the
split over a given predictor, averaged over the number of bagged trees. For
regression trees, the variable importance is instead defined as the reduction
in the sum of squared errors due to the split over a given predictor, averaged
over the number of bagged trees.
Although bagging reduces variance by definition, this reduction is typically
small. Indeed, remember that (4.46) holds if the bagged predictions are in-
dependent, that is, very different with each other. Unfortunately, a dataset
often includes few predictors that explain most of the variance and many,
less significant - but still significant - predictors. There is a high chance
that most of the bagged trees will be heavily impacted by the former only.
As a result, the bagging algorithm will return many similar bagged trees
returning similar predictions: this will not reduce variance materially.
Actually, we need smarter aggregation algorithms.

4.4.2 Random forests

Random forests represent a simple enhancement of bagging. Although the
algorithm was originally designed to aggregate trees (see Ho (1995)), it can
be easily extended to other tools.
Remember that the main drawback of bagging is that the most significant
predictors in the dataset will be always used for the first splits in any bagged
tree. It results in many, highly correlated bagged trees, which impede a
significant reduction in variance. In a random forest, each split in every
tree is forced to take into account only a subset of the m predictors. Before
any split, the algorithm selects p < m predictors randomly, and performs
the split by using one of them. This is actually an easy way to introduce
further variance in the process. The random forest can thus generate many
different trees, and when the strongest predictors are not selected for the
first splits, there is a significant chance that the final tree could not have
been generated by the bagging algorithm.
How should we set p? A standard choice in statical software such as R
and SAS is p =

√
m rounded down. This implies a quite low number of

possible predictors at each split, guaranteeing a fair variety in the forest.
However, there could be reasons to believe that this is not the best choice.
Typically, if we have high (respectively: low) correlations among predictors,
small (respectively: great) values for p should be more suitable.
An option for a further randomization of random forests is described in
Geurts et al. (2006). In a random forest, the subset of predictors is random,
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while the splitting rule is defined by minimizing some impurity measure. In
extremely randomized trees, or extra trees, both the subset of predictors and
the splitting rule are random, in order to introduce an additional source of
variance.

4.4.3 Boosting

Just like bagging and random forests, boosting is mainly used to improve
performance of CARTs, but it can be easily adapted to any other machine
learning tool. However, boosting is not built on bootstrapped samples,
although it is still based on trees aggregation. It was informally introduced
in Kearns (1988) and analysed in Schapire (1990) a couple of years later.
Bagging and random forests are both based on a rather simple concept:
the bigger the sample, the better the estimation. Are there any alternative
to improve estimators? In Kearns (1988), the author cites the so-called
hypothesis boosting problem:

Informally, this problem asks whether an efficient learning al-
gorithm [. . .] that outputs an hypothesis whose performance is
only slightly better than random guessing implies the existence
of an efficient algorithm that outputs an hypothesis of arbitrary
accuracy.

In our context, is there any reason to believe that an ensemble of weak
estimators (weak learners) may generate a single, strong estimator (strong
learner)? The paper Schapire (1990) focuses on the hypothesis boosting
problem, and proves that

a model of learnability in which the learner is only required to
perform slightly better than guessing is as strong as a model in
which the learner’s error can be made arbitrarily small.

A sequence of weak estimators should thus predict as well as a sequence of
bootstrapped estimators. So we can leverage weakness rather than random-
ness.
There are a great number of boosting algorithms that develop the concepts
in Schapire (1990). However, the main idea remains the same. First, set the
interaction depth d, that is, the number of splits of each tree. Because we
want to aggregate weak learners, d should be quite small, for instance d = 1
or d = 2. Let’s use it for a first, weak prediction for the jth training record:

θ̂boost0j := θ̂0j = θj + ε1j , ∀j = 1, . . . , n (4.48)

where ε1j is the estimation error from the initial step. Using the same
predictors, the algorithm then builds a new tree with d splits to predict ε1j ,
so that the boosting estimator at the subsequent step is

θ̂boost1j := θ̂0j + ε̂1j = θj + ε2j , ∀j = 1, . . . , n. (4.49)
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Once again, the algorithm builds a tree to predict ε2j , and obtain the new
estimation:

θ̂boost2j := θ̂0j + ε̂1j + ε̂2j = θj + ε3j , ∀j = 1, . . . , n. (4.50)

The iteration goes on until the N th estimation:

θ̂boostj := θ̂0j +
N∑
i=1

ε̂ij , ∀j = 1, . . . , n. (4.51)

Weak learners are thus used to fit the residuals of previous (weak) estima-
tions rather than the target variable in the usual way.
Notice that this algorithm is quite prone to overfit as N increases. Indeed,
we don’t know how weak the single trees are, even if d is very small. To
better control the learning process, we can additionally define a learning
rate λ (analogue to that of neural networks in Subsection 3.4.4) and adjust
the algorithm so that the first estimation is

θ̂boost1j (λ) := θ̂0j + λε̂1j , ∀j = 1, . . . , n (4.52)

the second one is

θ̂boost2j (λ) := θ̂0j + λε̂1j + λε̂2j , ∀j = 1, . . . , n (4.53)

and finally

θ̂boostj (λ) := θ̂0j + λ
N∑
i=1

ε̂ij , ∀j = 1, . . . , n (4.54)

for some N , which will be likely higher than before since λ is further slowing
the learning process.
Starting from this general algorithm, a number of authors proposed more
specific algorithms with various rationales and several applications. The
most successful one, adaptive boosting (or AdaBoost), was introduced in
Freund et al. (1997) for classification. For the jth record in the training
dataset, initialize a weight w1j ≡ 1

n , where n is the number of training
records. Then, the algorithm builds a first weak learner by minimizing the
sum of errors for misclassified records weighted on w1j (at initialization, the
errors are equally weighted):

ε1 :=
∑
θ̂j 6=θj

w1j (4.55)

which returns the weak estimations θ̂1j . Set

α1 :=
1

2
ln

(
1− ε1
ε1

)
, (4.56)
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calculate the boosted estimation for the first step:

θ̂AdaBoost1j := sign(α1θ̂1j), ∀j = 1, . . . , n (4.57)

and update the weights for the next one:

w2j := w1je
−α1θj θ̂1j , ∀j = 1, . . . , n. (4.58)

In the second step, the new weak learner returns the weak estimations θ̂2j

by minimizing the error

ε2 :=
∑
θ̂j 6=θj

w2j . (4.59)

Once again, set

α2 :=
1

2
ln

(
1− ε2
ε2

)
(4.60)

calculate the boosted estimation for the second step:

θ̂AdaBoost2j := sign(α1θ̂1j + α2θ̂2j), ∀j = 1, . . . , n (4.61)

and update the weights for the next one:

w3j := w2je
−α2θj θ̂2j , ∀j = 1, . . . , n. (4.62)

After N steps, the final (strong) estimation for the jth record will be

θ̂AdaBoostj := sign

(
N∑
i=1

αiθ̂ij

)
, ∀j = 1, . . . , n. (4.63)

Notice that the weights should be renormalized at every step in order to
sum up to 1.
Historically, AdaBoost represents the first boosting algorithm that is able
to update the weights αi in an automatic fashion. It is worth mentioning
more recent algorithms such as LPBoost, TotalBoost, BrownBoost, xgboost,
MadaBoost, LogitBoost and others. All of them are beyond the scope of
this dissertation.

4.5 An application to the Italian insurance market

This section describes the path followed to predict the lapse rate from a
deferred capital insurance dataset. Using such a dataset, we will be able to
predict the lapse probability by policy year. After that, we will use include
those estimated probabilities into the simplified ALM model introduced in
Subsection 4.3. More specifically, they will define the vector pk.
However, we do not intend to generalize our results. They are specific for



CHAPTER 4. POLICYHOLDER BEHAVIOUR MODELLING 163

one particular portfolio, whereas they may turn out to be completely dif-
ferent for other portfolios. Nonetheless, we discussed in Section 4.2 how
heterogeneous the lapse’s explanatory variables may be, varying by country,
business line, or even policyholder. After such a huge number of empirical
studies, we do not intend to discuss further the fundamental sources of PHB.
By contrast, we will focus our attention on the impact that unanticipated
surrender activity can have on the profit of a product. About that, much
less has been written, especially because of the difficulties in embedding a
comprehensive PHB model into profit valuation.

4.5.1 Data

The results we will show are based on the surrender data provided by an
Italian insurer from the period 2005-2006 for part of its endowment business.
The raw lapse rate from the dataset is around 10,09%, as already mentioned
in Section 4.3. Each of the 11770 records represents the state of a specific
tariff as at year end 2005. The dataset includes the following fields:

• Maturity for the remaining maturity of the product

• Sex for the sex of the policyholder

• Age for the age of the policyholder

• NoPremium for the number of premium instalments that still need to
be paid

• Premium for the yearly premium amount

• AlphaCost for the yearly acquisition cost percentage on the net pre-
mium

• BetaCost for the yearly collection cost percentage on the net premium

• GammaCost for the yearly maintenance cost percentage on the net pre-
mium

• Reserve for the actual reserve

• SumAssured for the actual sum assured

• TermBonus for the actual terminal bonus

• MinGuarRate for the yearly minimum guaranteed rate

• DeltaReturn for the yearly difference between the one-year forward
rate of the Italian sovereign yield curve and the product crediting rate

• Lapse for the lapse (yes/no).
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It is worth clarifying that, in light of the European Directive 2004/113/CE
- better known as “gender directive” - Sex may not be used as a pricing
feature to differentiate premiums in the European Union. Nonetheless, we
will see that Sex is a rather irrelevant predictor for PHB (see Figure 4.35,
for instance). In any case, given that our analysis will be much more focused
on profit valuation than actual pricing, this would not be a problem even if
Sex was relevant, as long as the results do not impact any policy term (e.g.,
surrender penalties).
In fact, one single macroeconomic variable is available, DeltaReturn, which
represents the gap between a reference market rate and the interest guar-
anteed by the product, just like in several published studies (for example,
see Kim (2010)) and in the common actuarial practice. Naturally, we could
add other relevant macroeconomic variables among those aforementioned in
Section 4.2 (e.g. unemployment rate and gross domestic product), but such
variables typically change very smoothly in relation to the actual economic
condition. Given that our analysis focuses on data of a specific company,
and the historical horizon is not so long, we excluded any pure macroeco-
nomic variable from the analysis.
On the other hand, we can use a number of policy-specific features:

• policyholder-related variables (Sex and Age)

• tariff-related variables (Maturity, NoPremium, Premium, AlphaCost,
BetaCost, GammaCost and MinGuarRate)

• path-dependent variables (Reserve, SumAssured and TermBonus).

The distinction between tariff-related variables and path-dependent vari-
ables is fundamental to understand how the dataset has been structured.
As confirmed in several empirical studies (for example, see Stanton (1995)),
surrender activity of a single policyholder - whether rational or irrational -
tends to depend on a limited period of time. In other words, it is unlikely
that policyholders will base their decisions on what has happened many
years ago, or what is going to happen in many years. This leads to a PHB
depending on the current year’s condition only, that is, current age, current
number of premium payments, current duration, current reserve, current
sum assured and difference between the current reference market rate and
the current crediting rate.
In Figure 4.6, we reported statistics and correlations calculated from the fea-
tures in the dataset. As expected, skewness and kurtosis of currency-based
variables such as Premium, Reserve, SumAssured and TermBonus are very
high. At the same time, means and standard deviations differs a lot because
of the different nature of each feature. To make the dataset more homoge-
neous and avoid scale distortions, we first replace each currency field with
its natural logarithm, and then standardize the whole dataset. The result-
ing statistics and correlations are reported in Figure 4.7 (Premium, Reserve,
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Fig. 4.6: Descriptive statistics of lapse rate’s explanatory variables before
standardization
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Fig. 4.7: Descriptive statistics of lapse rate’s explanatory variables after
standardization
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SumAssured and TermBonus have been replaced by LnPremium, LnReserve,
LnSumAssured and LnTermBonus, while the field names have not been modi-
fied to indicate standardization), where some further multicollinearity issues
have been highlighted, that is, all the correlations higher than 50%.
All in all, some of the relationships outlined in various empirical papers re-
called in Section 4.2 are somehow confirmed by the correlations in Figure
4.7. Maturity is inversely correlated, that is, policyholders tend to lapse
in the first years, rather than in the last ones (the premium payment pe-
riod is often close to the maturity, so its correlation is similar). Premium
amount is significantly correlated, although it seems partially due to the
loading components, especially beta costs. It can be seen as an instance
of the Emergency Fund Hypothesis described in Section 4.2: policyholders
lapse for reasons merely related to the expenses, which they can no longer
afford. Similarly, both sum assured and reserve are positively correlated
with the surrender activity (the two correlations are also very close, given
that the reserve is a function of the sum assured): policyholders lapses only
when it is really worth it. Finally, policyholders seem to be sensitive to
the difference between what the financial market yields and what their pol-
icy effectively returns. It can be seen as an instance of the Interest Rate
Hypothesis described in Section 4.2: policyholders may also lapse for more
rational reasons to other advantageous yields available on the market.
Those are the most significant correlations, but some non-significant corre-
lations are interesting as well. For example, the technical rate guaranteed
by the insurer has no significant impact on the surrender activity: it indi-
rectly confirms the policyholder’s short-term sight, which ignores the future
benefits represented by a higher guaranteed rate.
As explained in Subsection 1.4.1, datasets are usually partitioned to allow
for training, validation and test in three separated steps. In classification
problems, however, it is often the case that the “interesting” outcome of
the target variable - Lapse = 1 - is quite rare, causing little “interesting”
information. If we partition the dataset randomly, we will further lose infor-
mation in the training dataset, and the model could be potentially trained
in a distorted or incomplete way. This is the reason why oversampling is
common practice in data mining: we build the training dataset in such a
way that lapse occurrences are as likely as non-lapse occurrences (both 50%),
and let the validation dataset include all the other records. Obviously, we
will have fewer lapse occurrences to validate the algorithm, which is however
trained on much more relevant information. We will use this approach in
the application of this chapter.
Finally, we will use the following fields: Maturity, Sex, Age, NoPremium,
LnPremium, AlphaCost, BetaCost, GammaCost, LnReserve, LnSumAssured,
LnTermBonus, MinGuarRate, DeltaReturn and Lapse (besides an ID vari-
able to identify the different records).
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4.5.2 Lapse prediction

In our framework, lapse prediction means using the predictors identified in
Subsection 4.5.1 as inputs for some machine learning tool to return an esti-
mation of the lapse probability (Lapse). We will start by using the standard
classification tree, and then we will switch to more stable methods such as
logistic regression, bagging, random forest and boosting.
CARTs were described in Subsection 3.4.3. Full classification trees can be
actually built until the very last leaf, because they separate records into
two classes only. By contrast, full regression trees could not be built since
the algorithm would tend to allocate each single record to one specific leaf,
which is useless. This is the reason why one can always try to build the
full classification tree, which will classify training records perfectly. In
our case, the algorithm leads to the misclassification error by number of
splits in Figure 4.10 (for sake of clarity, only the first 40 splits have been
reported). You can see the typical shape of the validation error against that
of the training error. While the latter constantly decreases as expected, the
former is rather stable and does not show relevant decrease after the first
split. As a consequence, the best pruned tree is identified by the first split
(black dashed line in Figure 4.10), while the minimum error tree is identi-
fied by the first 19 splits (grey dashed line in Figure 4.10). The difference
in error is around 1%, but the misclassification error is very high for both,
that is, 43,5% and 42,5% respectively. Actually, they are not so far from
the random model error, which is 50% (in other words, if we try to classify
the training records just by chance, the error will converge to 50%, which is
the proportion of lapse and non-lapse in the oversampled training dataset).
Such a problem is even more evident looking at the ROC curves (Figure 4.11
and 4.12) and the decile charts (Figure 4.13 and 4.14). While the training
AUC is very close to 100% (probably, it is not exactly 100% because of few
records sharing the same features but different lapse decision), the valida-
tion AUC is around 54%. This is a very poor result in terms of accuracy
as well as stability, but it is not so surprising since it represents a typical
drawback of CARTs. In fact, trees are too dependent on the characteristics
and the structure of the underlying data such as few extreme outliers, order
of the records, predictors with close relevance, inconvenient pruning and so
on. This rigidity might lead to degenerate or almost-degenerate results like
ours.
The easiest way to fix it all at once is represented by logistic regression.
Traditional linear correlations between the target variable and the predic-
tors are formally useless in this case, but that is still based on a linear
regression model. To some extent, we can still assume that the higher the
correlations, the better the fitting. Figure 4.7 includes the full correlation
matrix. Regarding the correlations with Lapse, all of them seem relatively
low, but the related t-statistics (last red row in Figure 4.7) reveals that most
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Fig. 4.8: Minimum error classification tree

Fig. 4.9: Best pruned classification tree
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Fig. 4.10: Classification tree - training and validation error varying by num-
ber of splits

Fig. 4.11: Lapse ROCs
for CT (training dataset)

Fig. 4.12: Lapse ROCs
for CT (validation dataset)

Fig. 4.13: Lapse deciles
for CT (training dataset)

Fig. 4.14: Lapse deciles
for CT (validation dataset)
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of them - those with t-statistics greater than 2,575 - are significant at 99%
confidence level. At the same time, however, there is a number of strong mul-
ticollinearities that should be reduced as much as possible before the regres-
sion. Therefore, we exclude Maturity, NoPremium, AlphaCost, LnReserve
and LnTermBonus in order to avoid the highest correlations among predic-
tors (yellow cells in Figure 4.7).
Besides the intercept, the stepwise selection kept Age, BetaCost, GammaCost,
LnSumAssured and DeltaReturn. Notice that GammaCost does not seem to
be significantly correlated to the lapse decision in Figure 4.7, but it is se-
lected in the last step in Figure 4.15. This is probably due to the theoretical
misalignment between the linear correlation coefficient and the logistic re-
gression. Moreover, notice that LnPremium is not included although it is the
most correlated predictor to the lapse decision (see Figure 4.7). The step-
wise logistic regression returns the results in Figure 4.15. The explanation
is within the correlation matrix once again: LnPremium is very correlated
with Age and LnSumAssured (among others). We could have taken them
out before the regression, but the stepwise selection itself recognized it. As
soon as Age and LnSumAssured are selected by the model, LnPremium will
lose most of its predictive power, leading to its rejection.
All in all, the logistic regression returns a training AUC around 69% and
a validation AUC around 65%, which are significantly different to those of
the classification tree. As expected, logistic regression is much less prone to
overfitting and distortions, leading to a worse training performance, but a
better validation performance.
After logistic regression, we want to use the machine learning tools intro-
duced in Section 4.4. Both bagging and random forests reduce variance and
overfitting by bootstrapping rather than pruning. Bootstrap works around
two major drawbacks of CARTs: the data dependency and the pruning per-
formance.
Figure 4.16 shows the convergence of the bagging algorithm over the first
50 weak learners. It converges to a training AUC around 80% and a val-
idation AUC around 72%, which are significantly greater than the logistic
regression AUCs. This can be due to a number of reasons. First and fore-
most, there could be nonlinear relationships caught by the bagging algo-
rithm but ignored by the logistic regression. A second possibility may be an
excessive conservatism in variable selection: indeed, the logistic regression
used only six predictors, while the bagging included them all. However,
we should observe that most of the rejected variables demonstrated mul-
ticollinearity issues, which cannot be accepted in a regression framework.
Further, the stepwise selection excluded uncorrelated variables such as Sex

and MinGuarRate (see Figure 4.7), so they could hardly explain a significant
part of 7% gap in AUC if included in the model.
Once the convergence has been observed, we should choose the number of
weak learners to keep. It can be done in several ways as long as they are not
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Fig. 4.15: Regression summary after stepwise selection
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Fig. 4.16: AUC convergence
for the bagging algorithm

Fig. 4.17: AUC convergence
for the random forest

Fig. 4.18: AUC convergence
for the AdaBoost at depth 1

Fig. 4.19: AUC convergence
for the AdaBoost at depth 2

Fig. 4.20: AUC convergence
for the AdaBoost at depth 3

Fig. 4.21: AUC convergence
for the AdaBoost at depth 4

Fig. 4.22: AUC convergence
for the AdaBoost at depth 5
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so many to cause computational issues. For sake of simplicity, we choose the
number of weak learners with the highest AUC, that is, 40 (black dashed
line in Figure 4.16).
Such a number of weak learners will be also used as a starting point for
the random forest. Recall from Subsection 4.4.2 that the difference between
bagging and random forest is that the latter introduce randomness in the
choice of predictors. We will bag 40 weak learners for 100 series of random
predictors (it should guarantee the convergence just like before), producing
a total of 400 weak learners. As explained in Subsection 4.4.2, the num-
ber of predictors is generally set equal to the square root of the number
of all the predictors in the dataset, that is,

√
13 ' 4. Figure 4.17 shows

the convergence of the random forest algorithm over the 100 series of ran-
dom predictors. The training AUC and the validation AUC converge to
about 77% and 64% respectively. In particular, the latter is much more
in line with the logistic regression’s training AUC. The random forest can-
not outperform the bagging trees because there is likely no “hidden” tree
configuration besides that from the bagging algorithm. In other words, the
random forest performance is strongly affected by all the 4-predictor series
that do not include the most important predictors. As a result, we get a
slightly lower accuracy as compared to the logistic regression and even a
significantly higher variance as the gap between the training AUC and the
validation AUC: 4% for the logistic regression against 13% for the random
forest.
After the random forest, we will finally apply the boosting algorithm in
its most common form for classification, that is, AdaBoost (see Subsection
4.4.3). It is not a bootstrap-based method, rather it assigns higher weights
(i.e., priority) to the misclassified records at each step, and the following
weak learner focuses especially on those. While the “weakness” of a ran-
dom forest’s learners is due to the reduction of predictors, the “weakness”
of the boosting’s learners is due to the reduction of their depth. Specifi-
cally, we will limit the growth until the kth level, where k = 1, . . . , 5. Just
like for the bagging algorithm, we will consider 50 weak learners at most.
Figures 4.18-4.22 demonstrate the convergence of the method regardless of
the depth. As expected, the greater the depth, the greater the accuracy on
the training dataset. However, what is much more interesting is that the
validation AUC does not seem related to the depth. Whatever the chosen
depth, the validation AUC converges to about 70%, although lower depth
could make the convergence slower, for instance, in Figure 4.18 or 4.20). In
our case, the validation AUC at the 50th weak learner generally returns the
best accuracy, except at depth 1 (see Figure 4.18). The greatest validation
AUC corresponds to the 50-weak-learner ensemble at depth 5, so we will
use it for comparison with other methods. However, this is only one of the
possible choices: given that the same accuracy is shared by less deep and/or
less numerous ensembles, which are computationally advantageous, we may
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Fig. 4.23: Lapse classification
for LR (training dataset)

Fig. 4.24: Lapse classification
for LR (validation dataset)

Fig. 4.25: Lapse classification
for BT (training dataset)

Fig. 4.26: Lapse classification
for BT (validation dataset)

Fig. 4.27: Lapse classification
for RF (training dataset)

Fig. 4.28: Lapse classification
for RF (validation dataset)

Fig. 4.29: Lapse classification
for ABT (training dataset)

Fig. 4.30: Lapse classification
for ABT (validation dataset)
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easily choose lower depth and/or number of weak learners.
As a conclusion to this subsection, we will summarize the results obtained
from the different methods. Figures 4.23-4.30 report the classification ma-
trices for each of them, both training and validation step. In this case, we do
not need to align the cut-off values since the dataset has been oversampled,
so the natural choice is always 0,5. On the training dataset, the perfor-
mance of the logistic regression is clearly poorer than the others. Actually,
the advantage of these ensembles is their extreme flexibility to catch any
type of dependency among variables. However, part of this variance is often
noisy information, so that it will be probably lost in the validation step.
This is the reason why there is always a remarkable gap between the train-
ing performance and the validation performance in each of the ensembles,
while such a gap is negligible in logistic regression. Of course, stability is
the major benefit of regression methods, which seldom experience significant
overfitting, unless no variable selection is performed even if many variables
bring very little information.
On the other hand, some ensembles seem to work better when it comes
with accuracy. Although the false-positive percentages (as well as the over-
all misclassification error) on the validation dataset are quite close with
each other - about 34%-36% - notice that the false-negative error can be
quite different. It changes from 45,66% of the random forest to the 36,36%
of the bagging algorithm. This is exactly what causes the gaps in ROC
curves and decile charts in the validation step. The plots are reported in
Figures 4.31-4.34: the logistic regression performance seems comparable to
the random forest performance as much as the bagging performance seems
comparable to the boosting performance. In particular, the decile chart in
Figure 4.34 demonstrates that the logistic regression and the random forest
predict lapses about 2,25 times more often than a random method, while
the bagging and the boosting algorithms predict lapses nearly 3,5 times (on
average) more often than a random method.
However, notice the evident differences in the training ROC curves (see
Figure 4.31): it is not surprising that the best accuracy relates to the less
stable methods. From this perspective, we should certainly choose the bag-
ging trees rather than the boosting trees, if we want to save the improvement
in accuracy avoiding high instability levels.
A last relevant result relates to the variable importance, which is defined by
the percentage of reduction in misclassification error thanks to the inclusion
of each variable in the ensembles. That is reported in Figure 4.35 for bagging,
random forest and boosting (logistic regression is not included because of
its different conceptual nature and the preliminary variable selection, which
make any comparison harder - if not even insignificant), which seem to be
relatively aligned. Moreover, it is worth comparing the Figures 4.7 and 4.15
with that variable importance. First of all, notice that the variables selected
by the stepwise algorithm in Figure 4.15 are some of the most important
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Fig. 4.31: Lapse ROCs
(training dataset)

Fig. 4.32: Lapse ROCs
(validation dataset)

Fig. 4.33: Lapse deciles
(training dataset)

Fig. 4.34: Lapse deciles
(validation dataset)

ones, except for GammaCost, which is however the less significant with p-
value 0,0183. As expected, there are a number of predictors excluded by the
regression in spite of their high correlation with Lapse, but considered im-
portant by the ensembles. They include Maturity, NoPremium, LnPremium,
LnReserve and LnTermBonus. Unsurprisingly, the most important variable
is the (natural logarithm of) premium amount, LnPremium, which indeed
corresponds to the highest correlation with Lapse.
All in all

• the logistic regression guarantees the highest level of stability

• bagging and boosting lead to more accurate predictions

• boosting causes more severe instability and overfitting than bagging

so we will use the lapse prediction provided by the bagging algorithm for
our profit analysis.
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Fig. 4.35: Variable importance percentages

4.5.3 Profit analysis

Using bagging trees to predict lapses has been already suggested in other
studies such as Loisel et al. (2011) and Jamal (2016), although they were
based on different datasets. A wide range of results can be analysed by
integrating the predictions returned by the bagging algorithm and the asset-
liability model described in Subsection 4.3. In this section, we try to quantify
the impact of dynamic PHB modelling on a traditional deferred capital tariff
from the Italian insurance market.
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Fig. 4.36: Profit metrics
by annual fair premium
(EURO STOXX 50 case)

Fig. 4.37: TVOG metrics
by annual fair premium
(EURO STOXX 50 case)

Fig. 4.38: Profit metrics
by minimum guaranteed rate
(EURO STOXX 50 case)

Fig. 4.39: TVOG metrics
by minimum guaranteed rate
(EURO STOXX 50 case)

The calculation process will be split as follows:

1. calculation of the predictors by scenario simulation

2. lapse prediction through the bagging algorithm by scenario simulation

3. calculation of the lapse-dependent profit by scenario simulation

which are indeed independent with each other.
The results come from N = 1000 economic scenarios based on the stochastic
model in (4.1), together with the related bond and equity scenarios. The
initial set of parameters encompasses the assumptions in Figures 4.1, 4.3,
4.4 and 4.5. Profit and TVOG will be analysed varying by some of those
parameters, that is, annual fair premium (P ), minimum guaranteed rate
(%), initial average coupon (c) by equity investment and equity percentage
(1− b) by equity investment.
A first relevant analysis should involve the policyholder reaction to an in-
crease in premium, one of the most important lapse risk factors according
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to Figure 4.35. Remember that the reserve is proportional to the sum as-
sured, which is proportional to the premium, that is, an increase in pre-
mium will impact two further important variables such as LnReserve and
LnSumAssured (LnTermBonus would be also impacted, if it were not zero).
Figure 4.36 compares D[ce, p(ce)], D[N, p(ce)], D[N, p(N)] and D[N, t∗(N)]
when the annual premium varies from the initial 1000 to 3000. Take into
account that the increase primarily affects the fair premium, so the final
impact on the annual premium payments, which are impacted by loading
and costs, is even greater. Also, the increase in fair premium leads to a
proportional increase in the initial sum assured and thus in the reserve.
Basically, an increase in premium should increase the profit, and this is ex-
actly what happens. However, D[N, p(ce)] and D[N, p(N)] are quite closed
to each other all along their increment, suggesting that the probabilistic ap-
proach does not lead to a strong impact of the dynamic PHB. On the con-
trary, such an impact is more visible with D[N, t∗(N)], and TV OG[N, t∗(N)]
grows much faster than TV OG[N, p(ce)] and TV OG[N, p(N)] in Figure 4.37.
As long as the premium increase remains tolerable - around 2600 - the sur-
render activity shows up smoothly, and D[N, t∗(N)] keeps increasing, but
after that threshold the policyholder reaction is so immediate to offset the
profit of the contract. Probably, in case of better economic conditions, the
policyholder tolerance would be higher, or the premium amount would not
be so important in lapse prediction, but in this particular case it could really
lead to surrender en masse. Notice that this does not occur for D[N, p(N)],
because the usage of the probabilities smooths the results.
In particular, the impact on TV OG[N, t∗(N)] is well explained by Figure
4.60. Even in the basic scenario with annual premium 1000, the average
lapse year is around the tenth policy year, which is enough to reduce the
average profit from about D[ce, p(ce)] = 3500 to about D[N, t∗(N)] = 2000.
Even if the minimum guaranteed rate does not seem to be an important
variable according to the Figure 4.35, it may be worth noting how it can
impact the profit metrics. It is shown in Figure 4.38. Even at guaranteed
rate 0%, the gap between D[N, p(ce)] and D[N, p(N)] as well as between
D[N, p(N)] and D[N, t∗(N)] is quite large: it should be caused by the ac-
tual market conditions as well as other fixed tariff features. Indeed, all the
three profit metrics decrease somewhat in parallel as the guaranteed rate
increases, and this is also reflected in the TVOG (see Figure 4.39). Such a
similar shape is due to the low importance of the minimum guaranteed rate,
which cannot materially impact the lapse rate.
Given the regularity of the decrease in D[N, t∗(N)], we expect a regular in-
crease in average lapse year. Looking at Figure 4.61, it approximately grows
in a linear fashion from about 8,5 years to about 11,5 years.
So far we focused our attention on tariff-related variables, which cannot
change during the life of the contract. However, the crediting rate is es-
pecially a function of the fund performance. Given that DeltaReturn is
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Fig. 4.40: Profit metrics
by initial average coupon
(FTSE MIB case)

Fig. 4.41: TVOG metrics
by initial average coupon
(FTSE MIB case)

Fig. 4.42: Profit metrics
by initial average coupon
(EURO STOXX 50 case)

Fig. 4.43: TVOG metrics
by initial average coupon
(EURO STOXX 50 case)

Fig. 4.44: Profit metrics
by initial average coupon
(S&P 500 case)

Fig. 4.45: TVOG metrics
by initial average coupon
(S&P 500 case)
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Fig. 4.46: Profit metrics
by equity percentage
(FTSE MIB case)

Fig. 4.47: TVOG metrics
by equity percentage
(FTSE MIB case)

Fig. 4.48: Profit metrics
by equity percentage
(EURO STOXX 50 case)

Fig. 4.49: TVOG metrics
by equity percentage
(EURO STOXX 50 case)

Fig. 4.50: Profit metrics
by equity percentage
(S&P 500 case)

Fig. 4.51: TVOG metrics
by equity percentage
(S&P 500 case)
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among the most important variables in predicting surrender activity (see
Figure 4.35), we will consider variations in the fund-related parameters, in
order to observe how the profit metrics and the lapse year are impacted by
the market condition.
On the base of Figure 4.3, the initial average performance of the bond com-
ponent is 3%, but now we let it change between 0% to 10% adjusting the
coupon rates of the three BTPs by ±1%. Notice that these parameters are
used in the first policy years only, since new bonds will be bought as soon
as the initial bonds mature. New bonds will return the new (stochastic) for-
ward rate though. As a consequence, Figures 4.40-4.45 show an increase in
profit and the related decrease in TVOG as the initial coupon rate increases.
At the same time, D[N, p(ce)], D[N, p(N)] and D[N, t∗(N)] get closer and
closer to D[ce, p(ce)], and this is especially evident in Figure 4.44. In this
case, the minimum guaranteed rate has small impact on profit because of
the higher returns guaranteed by S&P 500 (see Figure 4.4) as well as the
growing initial coupon rate. As we can see in Figure 4.62, the higher the
initial coupon rate, the later the policyholder’s lapse activity, and this also
contributes to the increase in D[N, t∗(N)] towards D[ce, p(ce)].
However, Figure 4.62 reveals some gap between the average lapse year among
the three different equity investments. While the curves for EURO STOXX
50 and S&P 500 appear approximately parallel, the curve for FTSE MIB
grows more irregularly. In fact, it shares the same average lapse year of the
EURO STOXX 50 case when the coupon rate is zero, but the gap steadily
increases proportionally to the coupon rate. Indeed, when the initial bond
yield component is quite low, the policyholder lapses relatively early, as soon
as he/she can find higher yields on the market. This especially occurs for
low-return equity investments like FTSE MIB and EURO STOXX 50 (see
Figure 4.4) since bond yields have the major impact on the fund perfor-
mance.
The last set of parameters considered in our analysis involves the equity
allocation percentage of the fund. Since Italian segregated funds may in-
corporate just a minor equity investment (and real estate, which we do not
consider here), typically upper-bounded at 20%-30%, we assume 1 − b ∈
[0%, 20%]. We also repeat the analysis for the three different equity indexes
in Figure 4.4.
A first, strange effect we should explain is well evident in Figure 4.46 above
all. When the equity percentage is low, D[N, p(ce)] is slightly greater
than D[ce, p(ce)]. Theoretically, this is not admissible, because D[N, p(ce)]
is affected by the rate guarantee in the disadvantageous scenarios, while
D[ce, p(ce)] is affected by the certainty equivalent scenario only. The direct
consequence of this distortion is the negative TVOG in Figure 4.47 for the
same low equity percentages. However, this anomalous gap is quite slight,
probably due to the frequent negative-rate scenarios, which is a quirk of the
Gaussian model, so we will not investigate it further.
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Fig. 4.52: D[N, p(N)]
by initial average coupon
and equity investment

Fig. 4.53: TV OG[N, p(N)]
by initial average coupon
and equity investment

Fig. 4.54: D[N, p(N)]
by equity percentage
and equity investment

Fig. 4.55: TV OG[N, p(N)]
by equity percentage
and equity investment

Fig. 4.56: D[N, t∗(N)]
by initial average coupon
and equity investment

Fig. 4.57: TV OG[N, t∗(N)]
by initial average coupon
and equity investment
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Fig. 4.58: D[N, t∗(N)]
by equity percentage
and equity investment

Fig. 4.59: TV OG[N, t∗(N)]
by equity percentage
and equity investment

Fig. 4.60: Average lapse year
by annual fair premium
(EURO STOXX 50 case)

Fig. 4.61: Average lapse year
by minimum guaranteed rate
(EURO STOXX 50 case)

Fig. 4.62: Average lapse year
by initial average coupon
and equity investment

Fig. 4.63: Average lapse year
by equity percentage
and equity investment
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Without any equity component, profits (see Figure 4.54 and Figure 4.58)
and TVOGs (see Figure 4.55 and Figure 4.59) are obviously equal, slightly
above 3000 and around 500 respectively. Notice that it is in line with the
total loading from the contract, that is, 1000 × 15% × 20 = 3000, since
the crediting rate matches the deflator whereas no investment profit comes
from any equity component. Average profit strongly decreases as the equity
allocation grows regardless of the market index and the profit metric. The
main reason is well represented by the Figure 4.63: whereas the policyholder
tends to lapse later during the life of the contract if the equity component
is residual, when it is approximately above 5% the average lapse year stabi-
lizes at about 10-10,5 years (depending on the market index) since he/she
starts profiting from high-yield equity scenarios, while being protected by
the guarantee in low-yield scenarios. Such a persistent behaviour seems to
be worth more than the lapse itself if the equity component is, indeed, mate-
rial. Naturally, the policyholder’s persistence in downward scenarios means
a more and more significant loss for the company.
Reasonably, the only average loss occurs when investing in FTSE MIB (see
Figure 4.46 as well as Figures 4.54 and 4.58), which yields an average neg-
ative return as reported in Figure 4.4. Such a return allows for a further
phenomenon, which is less evident with more profitable equity investments.
Figure 4.46 shows that D[N, p(ce)] D[N, p(N)] could be even smaller than
D[N, t∗(N)] for relatively high equity percentages - higher than 16%. This
may sound counter-intuitive, but the reason is quite straightforward. If the
portfolio is affected by the negative returns of some assets, it will be sustain-
able as long as the losses are absorbed by the loadings. If it is not the case,
the company will realize losses until maturity potentially. Paradoxically, it
would benefit from the eventual lapse of the policyholder, because it would
avoid the losses of the remaining policy years. All in all, the full lapse at the
end of the year t∗ is beneficial as compared to the probability-based lapse,
which keeps the contract in force until maturity. This effect is also reflected
on the TVOG in Figure 4.47, showing that it gets lower in the time-to-lapse
approach by high equity percentages.

4.5.4 TVOG decomposition

A last result to mention regards the relative impact that an active PHB may
have on the TVOG of an insurance contract. In effect, it may be negligible
in some situations, whereas it could require some pricing adjustment in oth-
ers.
It is worth clarifying that the TVOG definition implicitly considered so far
is a real-world definition, because the return of the assets is always adjusted
by a spread (represented by the parameters dx and dy for the bonds) or
a risk premium (i.e., µS for the equities). Of course, this is not in line
with risk-neutral frameworks such as Solvency II, but the concept of real-
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Fig. 4.64: TV OG[N, p(N)]
guarantee-PHB split
by annual fair premium
(EURO STOXX 50 case)

Fig. 4.65: TV OG[N, t∗(N)]
guarantee-PHB split
by annual fair premium
(EURO STOXX 50 case)

Fig. 4.66: TV OG[N, p(N)]
guarantee-PHB split
by minimum guaranteed rate
(EURO STOXX 50 case)

Fig. 4.67: TV OG[N, t∗(N)]
guarantee-PHB split
by minimum guaranteed rate
(EURO STOXX 50 case)

world TVOG is rather significant as long as one uses it to assess real-world
performances of single products (for instance, it may be useful to calibrate
surrender penalties in pricing). However, take into account that a real-world
TVOG is theoretically lower than a risk-neutral TVOG, because spreads and
risk premiums should contribute to higher profits.
It is worth recalling that TV OG[N, p(ce)] includes the impact of the mini-
mum guaranteed rate, but not that related to dynamic PHB. On the con-
trary, TV OG[N, p(N)] and TV OG[N, t∗(N)] include both the effects. This
is basically the reason why we can assume that D[N, p(N)] and D[N, t∗(N)]
are smaller than D[N, p(ce)], just like the various plots in Subsection 4.5.3
have shown.
The gap between TV OG[N, p(ce)] and both TV OG[N, p(N)] and TV OG(t∗)
is explained by PHB only, and it represents a measure for the surrender op-
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tion’s value, say VPHB. In formulas, we can write

TV OG[N, p(N)] = TV OG[N, p(ce)] + VPHB(p) (4.64)

TV OG[N, t∗(N)] = TV OG[N, p(ce)] + VPHB(t∗) (4.65)

and it is interesting to study the impact of each component across differ-
ent scenarios and parametrizations as a percentage of TV OG[N, p(N)] and
TV OG[N, t∗(N)] respectively:

1 =
TV OG[N, p(ce)]

TV OG[N, p(N)]
+

VPHB(p)

TV OG[N, p(N)]
(4.66)

1 =
TV OG[N, p(ce)]

TV OG[N, t∗(N)]
+

VPHB(t∗)

TV OG[N, t∗(N)]
. (4.67)

This is represented in Figures 4.64-4.78 for each of the parametrization we
have already considered in Subsection 4.5.3.
First, the PHB component gets smaller and smaller as the annual premium
increases (see Figures 4.64-4.65). Given that the premium amount is a
rather important variable in lapse prediction (see Figure 4.35), that may
sound counter-intuitive. However, higher premiums lead to higher guaran-
teed sum assured. All in all, the absolute difference in TVOG is rather
constant regardless of the premium amount, while the certainty equivalent
profit increases much more steeply. This effect implies greater guarantee
components by higher premiums. Nonetheless, if premiums are low enough,
the PHB component may be greater than 40% for TV OG[N, p(N)] and even
60% for TV OG[N, t∗(N)].
Similarly, the PHB component decreases linearly as the minimum guar-
anteed rate increases (see Figures 4.66-4.67). With minimum guaranteed
rate 0%, the PHB impact is higher than 70% for TV OG[N, p(N)] and al-
most 90% for TV OG[N, t∗(N)], which is not surprising since the guarantee
barely plays a role in the TVOG determination. Nonetheless, the greater
the guaranteed rate, the more significant its impact on TVOG, the less sig-
nificant the PHB impact on TVOG. At high guarantees, the policyholder
has much fewer reasons to lapse, and the TVOG will be entirely function
of the guarantee itself. In our analysis, however, the smallest PHB impact
on the TVOG is observed when the minimum guaranteed rate is equal to
2%. In Figures 4.66 and 4.67, the TVOG is split between a guarantee rate
component around 80% and 60% against a PHB component around 20%
and 40%.
Figures 4.68, 4.70 and 4.72 as well as Figures 4.69, 4.71 and 4.73 look rel-
atively similar. As the initial average coupon from the bonds in the seg-
regated fund increases, the PHB impact slightly grows regardless of the
equity investment. In particular, the smallest PHB components appear by
the riskiest indices and the lowest coupon rates. For instance, Figure 4.68
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Fig. 4.68: TV OG[N, p(N)]
guarantee-PHB split
by initial average coupon
(FTSE MIB case)

Fig. 4.69: TV OG[N, t∗(N)]
guarantee-PHB split
by initial average coupon
(FTSE MIB case)

Fig. 4.70: TV OG[N, p(N)]
guarantee-PHB split
by initial average coupon
(EURO STOXX 50 case)

Fig. 4.71: TV OG[N, t∗(N)]
guarantee-PHB split
by initial average coupon
(EURO STOXX 50 case)

Fig. 4.72: TV OG[N, p(N)]
guarantee-PHB split
by initial average coupon
(S&P 500 case)

Fig. 4.73: TV OG[N, t∗(N)]
guarantee-PHB split
by initial average coupon
(S&P 500 case)
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Fig. 4.74: TV OG[N, p(N)]
guarantee-PHB split
by equity percentage
(FTSE MIB case)

Fig. 4.75: TV OG[N, t∗(N)]
guarantee-PHB split
by equity percentage
(FTSE MIB case)

Fig. 4.76: TV OG[N, p(N)]
guarantee-PHB split
by equity percentage
(EURO STOXX 50 case)

Fig. 4.77: TV OG[N, t∗(N)]
guarantee-PHB split
by equity percentage
(EURO STOXX 50 case)

Fig. 4.78: TV OG[N, p(N)]
guarantee-PHB split
by equity percentage
(S&P 500 case)

Fig. 4.79: TV OG[N, t∗(N)]
guarantee-PHB split
by equity percentage
(S&P 500 case)
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reports a PHB component around 20% by coupon rate 0%. This is rea-
sonable, because, from the perspective of the policyholder, it represents the
best condition to profit of the guarantee option embedded in the contract.
On the other hand, the PHB component can reach and exceed 50% when
the equity indices is less risky and the coupon rate is high enough such as in
Figure 4.72. In the time-to-lapse approach (see Figures 4.69, 4.71 and 4.73),
the PHB component is even more significant, and regularly overcomes the
guarantee component, reaching 80% in Figure 4.73.
In general, the reduction effect in the guarantee component is more evident
for lower coupon rates. As the coupon rate increases, the split between the
two components tends to stabilize at some level. Referring to the PHB com-
ponent, such a level is around 40-50% and 70-80% in the probability-based
approach and time-to-lapse-based approach respectively.
Figures 4.74, 4.76 and 4.78 as well as Figures 4.75, 4.77 and 4.79 show sim-
ilar shapes as well. When the equity component is residual, the TVOG
comes from PHB only, but remember we used an initial average coupon of
3% against a minimum guarantee rate of only 1%, that is, there is no im-
pact from the guarantee in the first policy years (almost) regardless of the
economic scenario. It can even lead to a negative TVOG for the guarantee
component, for instance, by an equity component of 2-4%. Then, the intro-
duction of a significant equity component increases the investment risk of the
fund, thus the value of the guarantee option, and slows surrender activity
down. In the hypothetical case of 100% investment in equity, the policy-
holder has no motivation to lapse: while he/she benefits from any upside
in any equity scenario - by definition, more favourable than the correspon-
dent government bond scenario - he/she feels protected by the guarantee in
any downside scenario. Nonetheless, we don’t need 100% equity to observe
that effect: Figures 4.74, 4.76 and 4.78 shows guarantee components around
100% at a level of 20% invested in equity.
All in all, except for some specific situations such as high premium amounts
(see Figure 4.64) or high equity percentages (see Figures 4.74, 4.76 and
4.78), the PHB component is always quite relevant and sometimes even
greater than the guarantee component. For instance, it can be the only
TVOG component by very low equity percentages (see Figures 4.74, 4.76
and 4.78). In such cases, neglecting dynamic PHB is practically meaning
that our TVOG estimation is zero or very close to zero. This cannot be an
acceptable simplification in light of our results. In fact, the PHB may be
a significant component of the TVOG in a number of scenarios, conditions
and parametrizations.
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4.6 Limitations, extensions and conclusions

Although the analysis of this chapter is based on a specific, proprietary
dataset, it provides us with a realistic idea of the relative impact of dynamic
PHB. According to the CRISP-DM standard for the data mining process
(see Section 1.2), the chapter can be formally broken as follows:

C1 Business understanding : Section 4.1 and 4.2

C2 Data understanding : Subsection 4.5.1

C3 Data preparation: Subsection 4.5.1

C4 Modelling : Section 4.3 and Subsection 4.5.2

C5 Evaluation: Subsection 4.5.3 and 4.5.4

C6 Deployment : none.

More specifically, in Section 4.3 we referred to a simplified ALM model, the
same as in Aleandri (2016). Without a doubt, a real ALM model would be
much more accurate and somewhat less questionable, because it would allow
(at least theoretically) for a correct calculation of the segregated fund return
as the ratio of revenue to average reserve. Actually, our model implicitly
assumes that the market-value-based asset total return coincides with the
balance-sheet-based segregated fund return: although it is a good proxy,
they are not equivalent.
In particular, we do not account for available-for-sale securities in portfolio,
that is, all those securities (whether bonds or stocks) that the company may
trade at its own discretion to realize gains or losses. In fact, we consid-
ered held-to-maturity securities only, although insurance companies gener-
ally hold available-for-sale securities as well. On the other hand, segregated
fund allocations tend to be quite stable among insurance companies, in or-
der to guarantee stable returns. This is the reason why we can accept our
simplifications, avoiding a number of complications that would be beyond
the scope of the research.
Even if we recognize that some important variables have not been included
among the predictors of the PHB (e.g., unemployment rate and policy-
holder’s salary), our results are globally in line with those of other similar
studies. Our analysis has brought out some typical risky profiles and ra-
tional behaviours. Positive correlation between age and lapse tendency is
confirmed: oldest people surrender more than younger people. At the same
time, higher premiums make policyholders more prone to lapse, which is
quite plausible. The performance of the contract plays an important role
as well. Indeed, when the contract cannot return a yield comparable to
the actual market yields, lapse is more likely. To some extent, it proves
the presence of rational behaviour of the policyholders since higher return
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discrepancies can be either due to poor segregated fund returns (leading to
an arbitrage-oriented behaviour) or higher bond spreads (leading to a crisis-
oriented behaviour).
The Section 4.5.4 completed the analysis by focusing on the effective impact
of dynamic PHB modelling on the TVOG. In particular, all the histograms
in Figures 4.64-4.79 reveal how significant the unique behaviour of a policy-
holder can be on the profit valuation. Most of the time, indeed, the TVOG
due to PHB covers a significant portion of the total TVOG. In other terms,
the TVOG calculated without dynamic PHB assumptions might materially
underestimate the total TVOG. We should be aware of the fact that it is due
to current economic conditions as much as intrinsic features of the specific
policyholder. Both of them should be taken into account for a comprehensive
and prudential profit valuation.

4.6.1 Key conclusions for actuarial practitioners

This last application firstly aimed to show the potential instability of many
machine learning techniques such as decision trees. When using them, ac-
tuaries should always remember that any model other than regression does
not guarantee variance minimization. In practice, this means that overfit-
ting is a major issue in data science, and needs to be properly addressed. By
contrast, regression models suffers from the opposite problem, that is, un-
derfitting: while they are structured to minimize variance, they can hardly
reduce bias.
Nonetheless, this chapter is also aimed to provide a solution to the prob-
lem of overfitting, beyond the usual tuning of meta-parameters. In data
science, ensembles are often preferred over standalone techniques precisely
because they guarantee a higher level of stability, maintaining the advantage
in terms of flexibility and accuracy. Indeed, we demonstrated that bagging
trees materially reduced overfitting in lapse rate estimation as compared to
a single classification tree.
However, actuaries should take into account the considerable loss in inter-
pretability when using ensembles. As we pointed out in this chapter, single
trees offer an intuitive, tree-shaped illustration of relationships among vari-
ables, while this is no longer available as soon as a number of different trees
are combined (regardless of the combination rule). Even though there is a
range of tools to improve result interpretation (e.g., variable importance),
the black-box effect may be unacceptable, even in the presence of a relevant
increase in accuracy. This is especially true in an industry like insurance,
where result communication is often crucial.



Chapter 5

Final Thoughts

In the light of the current technological evolution in finance and insurance,
actuaries need to embrace topics and methods which are seldom part of their
toolkit. Even if they are popping up now thanks to the major advancements
in data availability and computational power, they are based on ideas devel-
oped many years ago in academia. At that time, however, practical reasons
prevent their applicability in industry, which has always preferred simplicity
over accuracy. This is true in insurance and actuarial practice as well. In
spite of the significant progresses in the last decade, there is still room for
improvement. This work was indeed meant to provide a practical introduc-
tion to the most common topics in data science with an eye to potential
enhancements in the insurance sector.
In Chapter 2, we described some ways to use unsupervised learning for data
preparation as a preliminary step before supervised learning. For instance,
cluster analysis helped us to detect the most informative groups of records,
while association rules determined which features could most likely lead to
rider purchase. Nonetheless, the main results of that chapter relates to the
renewal rate prediction in third-party liability insurance and the detection
of the features that affect it.
Chapter 3 demonstrated how alternative machine learning techniques such
as decision trees can improve the accuracy of a classical actuarial exercise:
non-life claim reserving. At the same time, it showed as well that this is not
always the case. Indeed, while decision trees could outperform regression
models in claim payment amount prediction, no improvement was possible
for closing delay estimation. Indeed, as opposed to GLMs, those alternative
techniques do not provide any theoretical guarantee of “minimal variance”
or “best fitting”, but their flexibility can sometimes lead to better perfor-
mance.
Using the same techniques to exploit such a gain in accuracy for lapse rate
estimation in Chapter 4 too, we instead faced their main pitfall: instability.
This gave an argument to introduce the concept of ensemble as a possible
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solution. In particular, bagging trees not only largely reduced the original
overfitting, but it even outperformed regression. As a consequence, its lapse
rate estimates were used for stochastic profit evaluation of a life product.
Setting several parametrizations, we observed the impact of dynamic poli-
cyholder behaviour on the profit in terms of TVOG, separating it from the
impact due to the minimum guaranteed rate.
All in all, the main goal of this dissertation is to provide actuaries with a
practical guide on data science, conveying the message that it can be useful
in the daily practice. Reading it, actuarial practitioners from any back-
ground should be able to understand the main data science concepts, the
data-driven approach based on dataset partitioning, the most common un-
supervised and supervised algorithms as well as their technicalities and, in
general, many useful details for the practice. More importantly, they can
figure out various ways to use data science as an enhancement of their daily
activity to tackle traditional problems. These include probability estimation
for actuarial assumptions (as we did in Chapter 2), claim amount prediction
for pricing as well as reserving (as we did in Chapter 3), risk-based capital
model refinement (as we did in Chapter 4) and so on. The case studies have
been structured to highlight advantages and disadvantages of data-driven
approaches. They should especially help actuaries to realize that data sci-
ence is neither better nor worse than traditional statistics. Instead, it is an
alternative to leverage available information and achieve higher accuracy or
new insights at the cost of potential instability and increased model com-
plexity.
Nevertheless, this work was not meant to be fully comprehensive. Many
other topics could have been included on the data science side as well as
the actuarial side. Subsection 1.6.2 has already mentioned a number of
out-of-scope methods such as regularized linear models and support vec-
tor machines. Additionally, a number of more recent topics are catching
on in data science, and researchers are already trying to exploit them in
insurance. They include unstructured data handling, natural language pro-
cessing, deep learning, image recognition and many others. For instance,
claim management cost in motor insurance could be largely reduced, if an
algorithm were able to assess the damage by parsing a simple picture of
the damaged vehicle. Another, tricky aspect of claim management is fraud
detection. First of all, fraudsters are extremely few (less than 1% according
to IABE Information Paper (2015)), and, more importantly, not all of them
succeed, so unsuccessful attempts will not be recorded as frauds, and poten-
tial fraudulent customer will not be recorded as fraudulent customers. The
major concern is indeed the detection of potential fraudulent customers, who
are likely to defraud in the future. These are some of the ideas representing
a different, higher level of research applied to insurance business, involving
unconventional data as well as unconventional techniques.
More specific actuarial research is being impacted as well. Some papers
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on actuarial case studies tackled with data science (many of them cited
throughout this dissertation) have already been published in the last few
years, while quality and quantity will quickly increase in the near future.
Without a doubt, non-life pricing represents one of the most successful ac-
tuarial applications, and data science is permanently part of the process
in several non-life companies. Nonetheless, many other topics are coming
out little by little: beside customer management, individual reserving and
policyholder behaviour, we should also mention interest rate modelling (see
Puri (2016)), mortality estimation (see Levantesi et al. (2019)) and capital
valuations (see Castellani et al. (2019)), among others. Future applications
may include strategic asset allocation, strategic discretionary profit shar-
ing and many others: the opportunities are potentially limitless, as long as
proper data is available.
In fact, the insurance landscape is changing, and so the actuarial profes-
sion, but this should be intended as an enhancement of the typical actuarial
profile rather than a mere shift of skills. Data science should complement
traditional actuarial topics rather than replace them, because it is not only
about a set of algorithms and methods, but it is an entirely new approach
to solve problems. The emphasis throughout these pages on concepts like
data manipulation, training and validation, accuracy and variance, does not
relate to any specific algorithm, but a broad data-driven perspective, which
turns out to be necessary dealing with big data above all. As explained in
IFoA (2018), such an enhancement will be primarily visible in six aspects of
the daily actuarial practice:

• data quality : as soon as data-driven techniques are widely proven
to perform better than traditional ones, data quality will improve
as a consequence, leading to greater comfort in actuarial modelling,
whether traditional or non-traditional;

• data sources: although actuaries are used to work on plain, numerical
datasets, machine learning potentially opens up opportunities for ac-
tuaries to explore alternative data sources, pushing them out of their
comfort zone, and possibly leading them to new insights;

• modelling techniques: as shown throughout this dissertation, data-
driven techniques - whether standard or customized - can outperform
traditional techniques in terms of accuracy, and, to some extent, lead
to new insights and drive business decisions;

• problem solving : a greater variety of techniques and methods can lead
to new approaches to solve common problems, for instance, unsuper-
vised learning, backtesting with data science tools, machine-learning-
based data manipulation and so on;
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• analysis speed : when data quality is high and tools are automatized,
the whole process gets agile enough to avoid huge effort on cleaning
data and launching calculations, so that actuaries can invest much
more time in productive activities such as result interpretation;

• data visualization: reporting and communication to non-actuarial au-
dience, one of the most important skills for actuaries, can materially
improve by using new data visualization techniques.

Another, less immediate benefit to actuaries does not relate to their cur-
rent daily practice. Rather, it relates to the possibility of expanding the
profession into new areas in the future. Actuaries have the unique chance
to exploit the huge amount of opportunities offered by data science. The
insurance industry is improving in that direction, and they should lead the
change, accepting new challenges rather than merely relying on tradition.
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sors Prof. Susanna Levantesi (Università “La Sapienza”, Rome) and Dr Joseph Lo
(Institute and Faculty of Actuaries, London) for their continuous support and pre-
cious feedbacks since the very first draft of this dissertation. Also, special thanks
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