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Abstract: Both investment and insurance markets can show
phenomena known as tail dependency. Two lines of business can
appear to operate independently most of the time, but in adversity all
lines deteriorate together. Even if we can estimate well the loss ratio for
each class of business, how can we capture the correlation structure?
This note proves some background on techniques for introducing
correlations between lines of business. It answers the key questions:
� How can a user introduce correlations between arbitrary

distributions?
� Does the chosen methodology matter?

Workshop attendees will have the opportunity to run simulations live,
examining the effect of different correlation structures on the
distributions of losses, capital required, and allocation of capital
between lines. The workshop will also consider ways of calibrating
correlation structures to historic loss information.
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Introduction – Two Examples

In this introduction, we look at two examples that illustrate the main
points in the paper. The first example illustrates the problem of
generating jointly correlated variables. The second example illustrates
how the choice of correlation structure can have an impact on
calculated risk measures – we give an example where the economic
capital required to support a business becomes 5 times larger when a
correct structure is used.

Introductory Example I: Correlated Exponential Distributions

An insurance company considers total claims on two lines of business.
In each case, the line of business loss is assumed to have an
exponential distribution with mean €1000. The two distributions are
also required to have a 50% correlation.

And this is the tricky bit. How can we generate exponentially distributed
variables with a chosen correlation? Are there general algorithms,
which work for a wide range of distributions and correlations?

After much thought, we remember that an exponential distribution with
mean 2 is the same as a χ2

2 distribution, that is, the sum of two
squared normal distributions. Our two loss distributions L1 and L2 could
therefore be generated as follows:

L1 = €500 * [ Z1
2 + Z3

2 ]
L2 = €500 * [ Z2

2 + Z3
2 ]

where Z1, Z2 and Z3 are independent standard normal variates.

This solution is a special case, limited only to exponential distributions
and to correlations of 50%. We made some arbitrary choices – would
other ways of putting the variables together give different results for the
combined claims across the two lines?

What we need is a generic approach, which will work for arbitrary
distributions and correlation structures. It is this, which we set out in the
remainder of the paper.

Introductory Example II: Uncorrelated Normal Profits

Let us consider a business wishing to evaluate its need for capital. The
business has two operating units. Each operating unit generates a
profit (positive or negative) with respective means of €100 and €120.



The profits are believed to enjoy normal distributions, with zero
correlation and standard deviations of €60 and €80 respectively. The
business is interested in evaluating how much capital it needs, in order
to have a 99% chance of staying solvent.

On the face of it, this is a simple value at risk calculation. If the two
operating unit profits are independent normal with zero correlation, then
by the usual Pythagoras result, the sum will also be normal with mean
€220 and standard deviation €100. According to the normal distribution,
the 1%-ile level is 2.33 standard deviations below the mean. One year
in 100, we might find a net profit of €220 - €233, that is -€13. Therefore,
to keep the probability of failure down to 1% the business needs to start
the year with an additional €13 of capital.

The business decides to back-test its capital requirement against its
own data. After extensive experience and back testing, the insurer is
able to validate the two normal distributions, and also the zero
correlation. However, with €13 of capital, the business finds that
historical failure rate would have been 2.4%, not 1% as predicted. In
order to reduce the probability to 1% they would need to find €67 of
capital – more than 5 times larger than originally budgeted.

We can explain the discrepancy in terms of how the normal
distributions are put together. On further investigation, the two lines are
indeed uncorrelated, but are not independent. The quants tried to
improve on their original model, and this was their alternative, which
better fitted the historic data.

line 1 profit = €100 + €60 * Z
line 2 profit = €120 ± €80 * Z

where Z is a standard normal variate, and the choice of  ± is made
independently of Z. This plainly gives two uncorrelated normal
distributions with the stated means and standard deviations. However,
the two lines of business are certainly not independent, because the
same value of Z applies to each line. For example, if we observe that
line 1 has a profit of €130, then we can see that Z= ½ and so the line 2
profit must be either €80 or  €160.

When line 1 has an extreme profit, the line 2 will also show an extreme
profit. The combined distribution is a mixture of

N(€220, €1402 ) if “+” applied
N(€220, €202) if “-” applied



It is the first of these distributions, with the €140 standard deviation,
which gave rise to the worst loss events, and which accounts for most
of the capital requirement.

This example has illustrated how correlation may be an inadequate
measure of the relationship between two variables. There are a number
of questions we have left unanswered. One of these is whether the
independent normal model gives the most optimistic capital
requirements, or whether it lies in the middle of a plausible range of
dependency structures.

Ways of Introducing Correlations

There are many direct ways of introducing correlations into a model of
an enterprise. It is preferable to explain correlations in terms of
business drivers and known causal mechanisms. For example, the
correlation between the price of a bond and market interest rates,
arises because the bond price is the present value of its future cash
flows. It is usually better to model this known link directly, rather than
trying to piece together a historic correlation structure.

In an insurance context, many mechanisms can give rise to
correlations between different lines of business. Three of the more
important effects are:
� Perils, which can generate losses on many policies at once,

covering more than one class of business. Examples include
natural hazards such as storms, man-made events such as the
World Trade Centre, and wide ranging legal or political changes.

� Cycles in the market price of insurance, reflecting the availability
of capital in the industry or in the competitive environment.

� Macro economic effects such as movements in currency
exchange rates or changes in inflation trends, which can affect
the size of claims when converted to a single accounting
currency.

It is wise to seek first the known business correlations. This frequently
accounts for most if not all the correlations seen in historic loss ratios.
Where all the known effects have been stripped out, and a residual
correlation remains, we need to resort to statistical correlation methods
to calibrate a model.



A Class of Algorithms for Correlated Variables

After having exhausted those correlations we can explain, we will
typically have a data set adjusted for known effects. If this adjusted set
still contains significant correlations, we must resort to data-based
modelling tools.

In this section, we outline an algorithm for generating a correlated pair
of variables. For illustrative purposes, we consider generating 1000
simulations from a bivariate distribution. We specify two required
marginal distributions and a required correlation ρ.

The algorithm:

� Simulate X1(n) independently from marginal distribution 1, for n
= 1 to 1000

� Simulate X2(n) independently from marginal distribution 2, for n
= 1 to 1000

� Sort X1 into increasing order, so X1(1) ≤ X1(2) … ≤ X1(1000)
� Likewise, sort X2 likewise into increasing order
� Generate pairs {Z1(n), Z2(n)} for n=1 to 1000 independently

from a “suitable” bivariate distribution with correlation ρ. This is
sometimes (but not strictly correctly) called the “copula
distribution”.

� Fill an array R1(1) … R1(1000) with the integers 1 through 1000,
such that R(n)=n for each n

� Likewise, create an array R2(1 to 1000) with R2(n) = n
� Sort the array Z1 while simultaneously rearranging the array R1

to follow the reordering of Z1. After this sort, the array Z1 will be
in increasing order, but the elements of R1 will point to the
original sequence of Z1 prior to sorting. Thus, for example, R1(1)
will contain the original simulation number, which produced the
smallest value of Z1. The values R1(1) through R1(1000) are
now some permutation of the integers from 1 to 1000.

� Likewise, sort Z2 while simultaneously rearranging R2
� Define an array Y1 by Y1(R1(n)) = X1(n) for each n from 1 to

1000
� Likewise, define by Y2(R2(n)) = X2(n)
� The pairs {Y1(n), Y2(n) } now have the required marginal

distributions, and are correlated as required.



Some observations on the Algorithm

Let us first verify whether the algorithm works.

The output array Y1 is a permutation of the generated array X1. Y1
therefore has the same marginal distribution as X1, as required.
Likewise Y2 has the required marginal distribution.

Furthermore, we can see that the correlation of {Y1, Y2} reflects the
correlation of the copula distribution {Z1, Z2}. To see how this works,
lets look at some extreme examples.

If copula variables Z1 and Z2 are 100% correlated, then the largest
observation of Z1 happens in the same simulation as the largest Z2.
Suppose this happens in original simulation 567. Before sorting,
Z1(567) and Z2(567) are the largest observations of Z1 and Z2
respectively. And of course, before sorting, R1(567)=R2(567)=567.
Now we do the sorting. After sorting Z1 with corresponding changes in
R1, Z1(1000) becomes the largest observation of Z1, with R1(1000) =
567 moving with it. By the same logic, we also see R2(1000) = 567.
Then finally, we can see that Y1(567) = Y1(R1(1000)) = Z1(1000) and
Y2(567) = X2(1000). This means that the largest observation of Y1 is
still associated with the largest Y2. The same argument applies for the
second largest Y1, right down to the smallest Y1. We have obtained a
set of simulations where Y1 is an increasing function of Y2.

In the same way, if the copula variables Z1 and Z2 are -100%
correlated then we will see that Y2 is a decreasing function of Y1. If Z1
and Z2 are independent, then so are Y1 and Y2.

We can also see a limitation of the method. Even if the copula variables
are 100% correlated, the final variables Y1 and Y2 might not be. For
example, suppose Y1 has a normal distribution and Y2 has a gamma
distribution. Our algorithm could express Y2 as an increasing function
of Y1. But to get 100% correlation between Y1 and Y2, we would need
a linear relationship. This we cannot have – if Y1 were normal and Y2
were a linear function of Y2, then Y2 would have to be normal, instead
of gamma.

This highlights the most important limitation of the technique so far. We
have a tool, which generates correlated random variables with arbitrary
distributions. What we need is a way of predicting the correlations that



will come out of the algorithm. The trouble is that that the out-coming
correlations are not the same as the input correlations. We will revisit
this issue when we look at alternative measures of association.

Suitable Multivariate Copula Distributions

There are a number of standard copula distributions in the literature,
including those by Cook and Johnson (1981) and many more
references in Embrechts, Lindskog and McNeil (2001) and in Wang
(2001). Genest and McKay (1986) describe a family of copulas, which
they name as “Archimedean”. Many of these families possess a single
(scalar) parameter, which determines the degree of dependence
between all pairs of components. For a two dimensional distribution this
is fine- the parameter is a measure of correlation or something like it.
For multivariate distributions, we have more of a problem, because the
same parameter must apply to every pair. This imposes symmetry,
which may not be desirable. For example, an insurer might want to
introduce a high correlation between motor and household loss ratios,
with a smaller correlation between these and employers' liability.

Cambanis, Huang and Simons (1981) investigate a broader family of
copulas, the so-called elliptically contoured distributions. A multivariate
elliptically contoured distribution is characterised by a density function
of the form:

� �)x()x(1)x(f 1T ��� ���

�

�
�

The function φ must satisfy certain conditions, under which the
distribution has mean µ and variance-covariance matrix Σ.

Special cases of elliptically contoured distributions include the normal
distribution and multivariate t distribution. The advantage of elliptically
contoured distributions is that we can specify a full variance-covariance
matrix. We can therefore accommodate situations where users wish to
specify pair wise correlations between several lines of business.

Elliptically contoured distributions have a number of elegant properties,
and are generally easy to simulate from.

A General Algorithm
This section provides a construction for creating a random vector X,
whose components have zero mean, unit standard deviation and a
given correlation matrix �. To generate a k-dimensional vector X, we
need the following parameters:



(i) a scalar random variable H distributed on the real line, with mean 1
and standard deviation σH
(ii) a symmetric positive definite k-by-k correlation matrix ρ whose
diagonal elements are 1.
(iii) a non-centrality k-vector u with uTρ-1u ≤ 1. This necessarily implies
that  |ui| ≤ 1 for each i.

Our algorithm is then as follows:
(iv) generate H and a multivariate normal Z independent of H with
mean 0 and variance-covariance matrix ρ-uuT

(v) define X = (H-1) σH
 -1u + H1/2.Z

It is straightforward to verify that this algorithm does indeed produce a
vector X with zero mean, unit standard deviation and correlation matrix
ρ. If u=0 we have an elliptically contoured distribution.

Measures of Association

To specify a multivariate distribution, we need a way of capturing how
related a pair of distributions are.

The classical method of measuring association is the linear (pearson)
correlation, defined using variances and covariances as:

pearson correlation = 
)Y()X(

)Y,X(
VarVar

Cov

We have already seen than that the copula algorithm does not
preserve pearson correlations. Models would be easier to construct if
we used association measures which monotone transformations
preserve.

One such measure is the spearman rank correlation, sometimes called
spearman’s rho. This is defined in a similar way to the pearson
correlation, except that each observation of X or Y in a sample is first
replaced by its rank. For example, we would replace the smallest
observation of X by 1, then next smallest by 2 and so on, applying this
also to Y. The resulting correlation measure is invariant under
monotone transformations of X and Y. It is only the order of the
observations that matters.

It is useful to consider a transformation of spearman’s correlation as
follows. Let FX denote the marginal cumulative distribution function of
X, and FY that of Y. Then both FX(X) and FY(Y) have uniform
distributions, with mean 1/2 and variance 1/12. The pearson correlation
of FX(X) and FY(Y) is precisely the spearman correlation of X and Y.



Now let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent
observations from the bivariate distribution (X, Y). The spearman
correlation of X and Y is:

� �

� �� �
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We can deduce similar expressions for the other quadrants of possible
combinations of X1, X2, Y1 and Y3, making use of such identities as
P{X2<X1} = ½. Denoting the spearman correlation by ρ, we can deduce
that:
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An alternative measure of association is kendall’s tau. This is defined
by looking at the ordering possibilities for the two pairs (X1, Y1), (X2,
Y2). Denoting kendalls tau by τ, the corresponding definitions (based on
Kendall and Stuart, 1979) are:
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Spearman’s rho and kendall’s tau are concordance measures. This
means they have a number of useful properties as follows (selected
from a longer list in Scarsini, 1984, defining concordance measures):
� the concordance lies between –1 and 1
� the concordance of X with itself is +1, and with –X is –1



� the concordance of X with Y is the same as the concordance of
Y with X

� independent variables have zero concordance
� the concordance of X with –Y is minus the concordance of X

with Y
� the concordance is unaffected by monotone transformations of X

and Y

In addition, with some ingenuity we can identify rho and tau analytically
for multivariate normal distributions. The results for kendall’s tau also
extend to elliptically contoured distributions.

Calibration Issues

We now consider some alternative ways of calibrating multivariate
dependency structures. We consider first the problem assuming class
of copula functions is given, and then move on to examine how a
copula class might b chosen for calibration.

Let us suppose first then than a class of copula functions has been
given. For each pair of variables, we wish to specify a measure of
association, and then back-solve to give a distribution with that
property. The contenders for the measure are pearson correlation,
spearman’s rho and kendall’s tau. Pearson correlation is the best
known, but is also the most awkward as it is not preserved by the
monotone transformations. Next in line is spearman’s rho – moderately
well known but also invariant under monotone transformations. This is
still difficult to calculate for some copula distributions, so a simulation
based trial and error process may be required. Kendall’s tau is least
familiar but also the most tractable, in that it is known analytically for a
wide class of copula distributions, including all elliptically contoured
distributions.

In a multivariate context, we can face the problem that the chosen
measures of association between many pairs of variables cannot be
assembled into a single copula of the chosen family. This is similar to
the problem with linear correlations, estimating correlation matrices that
are not positive definite. However, in the case of linear correlations, we
are at least assured that an attempt to estimate correlations from a
single data sample (as opposed to correlations taken from series of
different lengths or otherwise different sources) will result in a
consistent matrix. Alas, this is not guaranteed in the case of
spearman’s rho or kendall’s tau – experience shows that infeasible
matrices crop up often with real data, especially with high dimensional
problems. I can offer no magic solution to this, other than ad-hoc



adjustments until the matrix is feasible.. The range of feasible matrices
depends on the form of copula chosen – and it may be that some forms
are more forgiving than others of extreme input matrices. Further work
is needed in this area.

We now move on to the tricky aspect – choosing a copula function. In
practice, the normal copula serves as a convenient default. So we need
to look for reasons not to choose the normal copula.

The most fashionable aspect of non-normality is the measure defined
by Joe (1997) as tail dependence. Tail dependence is defined in terms
of limiting behaviour of probability functions close to 1. The normal
distribution has zero tail dependence, even if the correlation is positive
(but less than 1). If we could demonstrate positive tail dependence for a
data set, this could be a good reason to reject normal copula
structures. Unfortunately, such limits are difficult to estimate robustly
from finite data sets. This is because of the limiting operations involved.

Instead, I propose examining a set of measures I call quadrant
correlations. Unless someone else has defined these independently, I
believe this is the first time quadrant correlations have been described
in the literature.

For simplicity, let us assume that X and Y have been scaled to have
zero mean and unit standard deviation. Then the pearson correlation is
defined by
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These plainly add up to the pearson correlation. Both �++ and �-- are
positive, the other two quadrant correlations being negative. For a
given distribution family (for example, normal) these will all be
determined by the pearson correlation. A test for a normal correlation
structure is therefore whether the quadrant correlations bear the correct
relation to the overall correlation, consistent with the normal
distribution.

For problems involving copulas, it is more convenient to deal with
spearman rank correlations. The same concepts of quadrant



correlations carry over. We can define the first quadrant spearman rank
correlation by the expectation:

� � � �� �0,)Y(Fmax,0,)X(Fmax12 2
1

Y2
1

XXY ���
�� E�

Other quadrant spearman rank correlations are similarly defined. The
constants of 1/2 and 1/12, which appear here, are required in order to
transform the cumulative distribution functions to mean zero and unit
standard deviation. Note that in addition to testing normality, we can
test for elliptically contoured distributions, for which correlations in
opposite quadrants are equal.

As before, we can express quadrant spearman rank correlations in
terms of probabilities of independent samples. Specifically, suppose
that X1 and X2 are independent and identically distributed with
cumulative distribution function F. Suppose also that each X has
median zero, so that F(0) = 1/2. Then we can see that

max {F(X1) - ½ , 0} = Prob{ 0 ≤ X2 ≤ X1 │X1}
min {F(X1) - ½ , 0} = -Prob{ 0 ≤ X1 < X2 │X1}

Taking this and similar results, we can now identify the four quadrant
spearman rank correlations:
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These spearman correlations plainly have parallels in the world of
kendall’s tau. We can therefore define the quadrant kendall’s taus as:
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For multivariate normal distributions, we can evaluate both the
quadrant rank correlations and the quadrant kendalls taus analytically
using trigonometric functions.



Conclusions

There are several steps in determining appropriate dependency
structures for correlated random variables. We have found the following
procedure to be workable in practice:

� Investigate known economic or business causal links, which
could account for observed dependencies

� Adjust the data for known causal links, and calibrate marginal
distributions for the adjusted data

� Examine the remaining residuals for evidence of dependencies;
if there is little evidence then assume independence as a null
hypothesis

� If there is evidence of dependency, use quadrant rank
correlations to examine evidence for non-normal copulas

� Use normal copulas in the absence of evidence to the contrary
� Otherwise, examine quadrant rank correlations for evidence of

non-ellipticity
� Calibrate an appropriate copula function to replicate observed

quadrant rank correlations
� Some overall adjustments may be required to ensure the desired

correlation matrix is consistent.
� Simulate dependency structures using the algorithm outlined in

this paper.
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