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DERIVATION OF A NEW FORMULA FOR THE NUMBER OF

MINIMAL LATTICE PATHS FROM (0, 0) TO (km, kn) HAVING

JUST t CONTACTS WITH THE LINE my=nx AND HAVING

NO POINTS ABOVE THIS LINE; AND A PROOF OF GROSS-

MAN'S FORMULA FOR THE NUMBER OF PATHS WHICH

MAY TOUCH BUT DO NOT RISE ABOVE THIS LINE

BY M. T. L. BIZLEY, F.I.A., F.S.S., F.I.S.

WHITWORTH(1) deals in Chapter v of Choice and Chance with the problem of
finding the number of minimal lattice paths from (0, 0) to (k, k) which do not
cross the line y = x. By a lattice path is meant a path joining two points with
integral coefficients by a line composed of horizontal and vertical steps of unit
length. A minimal lattice path from (0, 0) to (x, y), say, is a lattice path where
the total number of steps is (x +y); in other words, all the steps are onwards.
In what follows minimal lattice paths only will be considered, and the words
' minimal lattice' will be omitted.

Although Whitworth deals only with the case where the boundary line (i.e.
the line which the path must not cross) is y = x, the more general case of a
boundary αy = x has been solved provided α is a positive integer (2), (3). The
number of paths from (0, 0) to (αl, l) which may touch but never rise above

αy=x is

Grossman (4) announced without proof in 1950 a formula for the number of
paths from (0, 0) to (km, kn) which may touch but never rise above the line
my = nx, where k is a positive integer and m and n are coprime positive integers;
thus (km, kn) is any point having positive integral coefficients. Grossman's
formula is

where

the sum extending over all positive integral ki such that ki 0 and If

k= 1 this takes the simple form

The object of the present note is to supply a proof of Grossman's formula and
to extend his result to cover also the problems of enumerating the paths which
(i) lie wholly below my = nx and do not touch it between (0, 0) and (km, kn), or
(ii) never rise above my = nx but touch it at just t points. The proof of Grossman's
formula is believed to be the first, and the extended results are thought to be
new.

Figs. 1 and 2 illustrate minimal lattice paths for the case k = 6, m = 4, n = 3.

The first half of this note, including the proof of Grossman's formula, was received
early in October 1953—too late for publication in the December number of the
Journal. The author has taken the opportunity afforded by the delay to pursue his
researches further and has added §§ IV and V. Eds. J.I.A.

Richard Kwan
JIA  80  (1954)  0055-0062 
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Fig. I

Fig. 2

DEFINITIONS

' Highest point.' A path will be said to have a highest point at a lattice point X
on the path if the line of gradient n/m through X cuts the y-axis at a value of y
not less than that corresponding to any other lattice point of the path. It is
conventional to regard the first point (0, 0) as not belonging and the final point
{km, kn) as belonging to the path. The paths in Figs. 1 and 2 have highest points
at X1, X2 and X3 . In Fig. 2 the highest points lie on the diagonal line my = nx.
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Such a path which contains no lattice points above the boundary line and has
t contacts with this line will be called a 'Φ -path with t contacts', t in the case of
Fig. 2 being 3. The number of such lattice paths will be denoted by Φk.t.

Let i.e. Φk is the number of paths from (0, 0) to (km, kn) which

may touch, but never rise above, the line my = nx. A path having this property
will be called a Φ-path.

Let ψk = Φk,1 i.e. ψk is the number of paths which lie wholly below, and do
not touch, the line my = nx except at (km, kn). A path having this property will
be called a ψ-path.

' Cyclical permutation.' A cyclical permutation of a lattice path is obtained
by removing a section of the path from (0, 0) to (r, s), say, and fitting it at the
other end of the path so that (0, 0) falls on (km, kn). The whole path is then
moved down and to the left so that (r, s) falls where (0, 0) had been and the
other end will now fall where (km, kn) had been. Figs. 1 and 2 illustrate a
cyclical permutation.

Two points may be noted: (1) the number of highest points on a path is not
affected by a cyclical permutation; (2) any path with t highest points can be
transformed into a Φ-path with t contacts by a cyclical permutation in exactly
t ways; each such cyclical permutation corresponds to bringing one of the
t highest points to position (km, kn). This is general even if the original path is
itself a Φ-path with t contacts. In this latter case one of the t cyclical permuta-
tions is the 'identical' cyclical permutation.

I. Now consider the (km + kn)Φk,t paths formed by permuting cyclically
in every possible way (including the identical cyclical permutation) all the
Φ-paths with t contacts. Every path with t highest points will be formed in this
way exactly t times. For if not this would mean that a path with t highest points
could be transformed by cyclical permutations into a Φ-path with t contacts in
other than t ways. Hence the number of paths with just t highest points is

( 1 )

Hence the total number of paths from (0, 0) to (km, kn), namely,

is the sum of (1) for all values of t, i.e.

i.e.

where

(2)

(3)

(4)

Now by definition a Φ-path with t contacts consists of t sections, each section
being a ψ-path (when considered in relation to its own starting and ending
points'). Hence

(5)

the sum extending over all ai such that ai>0 and If we write

...ad inf., (6)
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the right-hand side of (5) is the coefficient of xk in [P(x)]t. Hence the right-hand

side of (3) is the coefficient of xk in or in since

[P(x)Y has no term in xk if t>k; i.e. in —log[1 —P(x)] and this is true for all
values of k. It follows from (3) that

or (7)
ψk, the coefficient of xk in P(x), is easily deduced from the multinomial
theorem; hence ψk, the number of paths from (0, 0) to (km, kn) which lie wholly
below and do not touch my = nx, is given by

(8)

the sum extending over all ki such that ki 0 and

II. We have shown that Φk,t is the coefficient of xk in [P(x)]t . Using (7) we
have thus proved a new theorem, as follows:

' The number of minimal lattice paths from (0, 0) to (km, kn) which have
exactly t contacts with the line my = nx (not counting (0, 0)) and which have no
lattice points above this line is the coefficient of xk in

where

III. We easily deduce the value of Φk from this general theorem. By

definition and hence Φk is the coefficient of xk in

(9)or in

value is

i.e.

Therefore Φk is the coefficient of xk in

( 1 0 )

the sum extending over all kI such that is Grossman's formula.

RECURRENCE RELATIONS R Φk AND ψk

IV. The explicit formulae for Φk and ψk are
arithmetical computation, since they involve in 
of all the sets of values of ki . We can, howeve
functions investigated in this note to produce
Φk and for ψk; these relations have an intrinsi

since has no term independent of x. Since the sum (9) is

merely a geometric progression with common ratio its

ad inf. i.. , i.e.
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Differentiate each side of this identity with respect to x, multiply through by

since by definition we have

and so on,
from which successive values of Φk are easily calculated with the aid of a table of
binomial coefficients (e.g. the table by the writer, J.S.S. 10, 65).

Dealing similarly with the relation

we obtain for øk,

and so on.
These relations can be deduced directly by general reasoning from the

geometrical properties of the paths, and this was in fact the method by which
the writer first established proofs of the explicit formulae for Φk and ψk; this
method is, however, rather longer than that given in this note. The similarity
between the relations for Φk and those for ψk is striking.

As an example of the use of the recurrence relations, we have in the case
m = 3, n = 2,

Since Φk is the coefficient of xk in we have

and equate coefficients of successive powers of x; then,

whence
whence
whence
whence
whence
whence
whence
whence
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The explicit formulae are given by (10) and (8), and are

and it is easily verified that with F1 = 2, F2 = 21, F3 = 1001/3 and F4 = 12,597/2
these give the same values.

It is noteworthy that in the course of our investigation we have proved a very
remarkable theorem in number theory, namelv, that the sums

and

yield only integers. Bearing in mind that Fj is not generally an integer and
a fortiori Fkj/kj! is not an integer, this result is far from being obviously true.

THE CASE n=1

V. The problem of finding explicit formulae for Φk and ψk when n = 1 (in
which case the boundary line intersects each of the lines y=1,y = 2,y = 3, etc.,
at a lattice point) is much simpler than the general problem and, as mentioned
at the beginning of this note, has already been solved. It is, however, of interest
to investigate this case as follows:

A path from (0, 0) to (rm, r-1), where r is an integer, can cross the boundary
line my = x in a horizontal direction only at a lattice point. Let us classify the

paths according to the point at which they last cross the boundary

line in a horizontal direction. If for any path this point is (tm, t), the path consists
of (i) a section from (0, 0) to (tm-1, t) with no restriction regarding the
boundary, (ii) a single horizontal step from (tm - 1, t) to (tm, t) and (iii) a path
not crossing the boundary from (tm, t) to (rm, r-1). Hence the number of such

paths is since each of the Φr_t paths not crossing the boundary

from (tm, t) to (rm, r) ends with a vertical step and is therefore a distinct path
from (tm, t) to (rm, r - 1). Giving t the values 1, 2, ..., (r— 1) and remembering
that there are also Φr paths which do not cross the boundary at all, we have

or

and since when n=1,

we have
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Since this is true for all values of r we have identically

i.e.

or

where

and

and accents denote differentiation with respect to x.
We have also, in the general case, and hence in particular when n = 1,

whence

Combining these results,

Equating coefficients of xr,

when n=1.or

To find a formula for ψr when n = 1 we recall that in the general case we have
shown that

or

where

i.e

Hence

Also since

Combining these results

Equating coefficients of xr,

giving
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A simple identity satisfied by Φ is easily deduced from the foregoing argu-
ment. Since

and

i.e.

Adding xΦΦ' to each side and dividing through by xΦ(1+ Φ) we have

i.e.

the constant of integration vanishing. Hence

Since we have immediately the corresponding identity for ψ,
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