DRIVING THE PENSION FUND

By Professor S. Benjamin, M.A., F.I.A., F.I.S., A.S.A., F.B.C.S.
[Presented at the Seminar, 'Applications of Mathematics in Insurance, Finance and Actuarial Work', sponsored by the Institute of Mathematics and Its Applications, the Institute of Actuaries, and the Faculty of Actuaries, held at the Institute of Actuaries, 67 July 1989.]

Abstract

In an earlier paper the control characteristics of the aggregate method of funding were displayed by way of its response to a spike, step and random variation in the earned rate of interest, together with a simple intuitive method of setting the valuation rate of interest.

The projected unit method is analysed here in the same way. A further algorithm is developed which aims at driving an opening fund and contribution rate to a desired fund and contribution rate in n years, using the smoothest path of contribution rates.

1. INTRODUCTION

Actuaries have several methods of controlling the funding of pension schemes. There is, however, very little formal comparison between the methods. If it were possible to consider two pension schemes which were identical in all respects except for the method of funding, and we had the complete histories laid before us, what criteria would we use to decide which method of funding had done the better job?

Control engineers have tried to specify certain desired properties of any particular control system in order to judge how well it is behaving according to the desired properties. One approach which they use is to put certain signals into the system and to look at the characteristics of the output signals. Typical input signals are a spike, a step, a ramp, a sine-wave, and a random input.

These names explain themselves. A simple but instructive approach assumes that the system is in a steady state before the input signal; the disturbance to the output signal is then analysed.

Some of the characteristics of the output signal which they watch are:
(1) how long the output signal takes to return to (e.g. within 95% of) its previous level;
(2) when any initial overshoot takes place;
(3) how large the initial overshoot is;
(4) how much the system multiplies the variance of the input.

If the system is a linear system then the effects of different input signals are additive.

2. PENSION FUNDING

In a paper entitled 'An Actuarial Layman looks at Control Theory' (1984) ${ }^{(3)}$ the author examined the characteristics of the 'aggregate' method of funding where the balance between the future liabilities and the fund in hand is spread as a level contribution rate over the working lifetime of the existing members. In this paper we do the same for a method, which is now in common use, known as the 'projected unit' method. In this method the contribution consists of two parts:
(1) the 'future service' contribution rate pays for the cost of benefits which accrue over the following year;
(2) the 'past service' contribution rate spreads any balancing surplus or deficit evenly over a period of years, e.g. 20 years.

3. MODEL FUND for the agGregate methol

We simplify considerably. Also the monetary unit is $C £$ (i.e. $£$ at constant prices), that is allowing for price/salary inflation.

Model Fund

Membership: 1 person at each age 25 to 64: the person aged 65 each year retires and is replaced by someone aged 25.
Mortality and other Decrements: Nil.
Benefit: Lump sum at age 65 of $C £ 40$.
Contributions: The same absolute amount in C£ for each member.

Control System

Funding Method: 'Aggregate funding', i.e. the actuarial valuation each year assumes no new entrants and calculates a single contribution amount p.a. for each member until retirement or until the next valuation.
Funding Basis: The valuation rate of interest is a real rate of interest and is the average of the last m years of the earned real rate of interest on the fund.
Input Signal: Earned real rate of interest each year.
Output Signal: The recommended contribution rate.

Notation

$j_{t}=$ earned real rate of interest in year t.
$F_{t}=$ amount of fund at end of year t.
$i_{t}=$ valuation rate of interest in valuation at end of year t.
$c_{t}=$ contribution recommended as a result of the valuation at the end of year t, to commence in year $t+1$.

Contributions are paid at the beginning of the year. Retirements and new
entrants take place immediately before a valuation and immediately before the next year commences.

We have:

$$
\begin{equation*}
F_{t}=\left(F_{t-1}+40 c_{t-1}\right)\left(1+j_{t}\right)-40 \tag{1}
\end{equation*}
$$

At the valuation at the end of year t :
present value of future benefits

$$
\begin{equation*}
=40 a_{40}^{(i)} \tag{2}
\end{equation*}
$$

present value of future contributions

$$
\begin{equation*}
=c_{t}\left(40+39 v_{t}+38 v_{t}^{2}+\ldots+v_{t}^{39}\right) \tag{3}
\end{equation*}
$$

where

$$
v_{t}=1 /\left(1+i_{t}\right)
$$

Hence the recommended contribution rate will be

$$
\begin{equation*}
c_{t}=\frac{40 a_{40}^{(i)}-F_{t}}{40+39 v_{t}+38 v_{t}^{2}+\ldots+v_{t}^{39}} . \tag{4}
\end{equation*}
$$

Write

$$
\begin{align*}
X_{40} & =40+39 v+38 v^{2}+\ldots+v^{39} \\
& =\frac{40-a_{40}}{1-v} . \tag{5}
\end{align*}
$$

From (6) we have $\quad c_{t}=\frac{40 a_{40}^{(i)}-F_{t}}{X_{40}^{\left(i_{0}\right)}}$

$$
\begin{equation*}
F_{t}=40 a_{40}^{\left(i_{i}\right)}-c_{t} X_{40}^{\left(i_{i}\right)} \tag{6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F_{t-1}=40 a_{40}^{\left(t_{2}-1\right)}-c_{t-1} X_{40}^{\left(t_{t-1}\right)} \tag{7}
\end{equation*}
$$

Substituting from (7) and (8) into (1) and rearranging we have

$$
\begin{equation*}
c_{t}=\frac{40 a_{40}^{(i)}-\left(40 a_{40}^{\left(t_{t}-1\right)}-c_{t-1} X_{40}^{\left(i_{t}-1\right)}+40 c_{t-1}\right)\left(1+j_{t}\right)+40}{X_{40}^{\left(t_{0}\right)}} . \tag{9}
\end{equation*}
$$

In a steady state with $\dot{j}_{t}=0$ we shall have $i_{t}=0$ and $c_{t}=1$.
Present value of future benefits $=40 \times 40$

$$
\begin{aligned}
& =1,600 \\
& =-820 \\
& =780 \\
& =780
\end{aligned}
$$

Present value of future contributions $=40+39+\ldots+1$
Balance $=$ Fund
Check: retrospectively, Fund $=1+2+\ldots+39$
In a steady state with $j_{t}=1 \%, i_{t}=1 \%$ we have
$c=810$
$F=727 \cdot 104$.

We note that the new entrant contribution rate is given by
i.e.

$$
\begin{aligned}
40 v^{40} & =c \ddot{a}_{40} \text { at } 1 \% \\
c & =810 \text { as above } .
\end{aligned}
$$

4. MODEL FUND FOR THE PROJECTED UNIT METHOD

The difference from the aggregate method is that we have the total contribution c_{t},

$$
c_{t}=c_{t}^{f}+c_{t}^{p}
$$

where

$$
\begin{aligned}
& c_{t}^{f}=\text { future service contribution, and } \\
& c_{t}^{p}=\text { past service contribution } .
\end{aligned}
$$

Assuming benefit accrues uniformly for the purposes of the past/future service split

$$
\begin{aligned}
c_{t}^{f} & =\frac{v_{t}+v_{t}^{2}+\ldots+v_{t}^{40}}{40} . \\
& =\frac{a_{40}^{(i)}}{40} .
\end{aligned}
$$

Spreading past service surplus/deficit over a fixed term of n years

$$
\begin{aligned}
c_{t}^{p} & =\frac{X_{40}^{\left(i_{i}\right)}-40-F_{t}}{40\left(1+v_{1}+v_{t}^{2}+\ldots v_{1}^{n-1}\right)} \\
& =\frac{X_{40}^{(i)}-40-F_{t}}{40 \ddot{a}_{n}^{(i)}}
\end{aligned}
$$

which gives

$$
F_{t}=X_{40}^{(i)}-40-40 \ddot{a}_{n}^{(i)} c_{t}^{p} .
$$

The progress of the fund F, is given by

$$
F_{t}=\left[F_{t-1}+40\left(c_{t \ldots 1}^{p}+c_{t-1}^{f}\right)\right]\left(1+j_{t}\right)-40 .
$$

Substituting in this equation for $c_{t-1,1}^{f}, F_{t}$ and F_{t-1} gives the recurrence relationship between c_{t}^{p} and c_{t-1}^{p}

$$
\begin{aligned}
c_{t}^{p}= & =\left\{X_{40}^{\left(i_{0}\right)-X_{40}^{\left(t_{t}-1\right)}\left(1+j_{t}\right)+40\left(1+j_{t}\right)-a_{40}^{\left(i_{0}-1\right)}\left(1+j_{t}\right)}\right. \\
& \left.+\left(1+j_{t}\right)\left(a_{n}^{\left(i_{t-1}\right)}-1\right) c_{t-1}^{p}\right\} / 40 \ddot{a}_{n}^{\left(i_{1}\right)} .
\end{aligned}
$$

As in the earlier paper we suppose that our rule for setting the valuation rate of
interest is the intuitive one, to take the average of the rates earned in recent years, i.c.

$$
i_{t}=\left(j_{t}+j_{t-1}+\ldots+j_{t-m+1}\right) / m .
$$

For a spike input we put

$$
\begin{aligned}
j_{t} & =1 \%, t=0 \\
& =0 \text { otherwise }
\end{aligned}
$$

For a step input we put

$$
j_{t}=1 \%, t>0 .
$$

Taking $n=20$ as the period for spreading the past service contribution and $m=5$ as the period of a veraging earned interest rates to obtain the valuation rate, for a spike we obtain the output shown in Table 1. Thus the recommended contribution rates in the first year's response to the spike will be

past service	$0-.0370=-.0370$
future service	$1-.0399=.9601$
total contributions	$1-.0769=.9231$.

The deviations in Table 1 are plotted in Figure 1. A step change leads to the deviations shown in Table 2 and Figure 2.

It will be noticed that the immediate output for the first year is the same for a step as for a spike, because at that stage we cannot distinguish between them.

The corresponding outputs for the aggregate method for a spike and a step are given in Tables 3 and 4 and Figures 3 and 4.

5. LINEARIZATION

We denote a small change in j_{i} (from $\left.j_{i}=0\right)$ by Δj_{r}, and similarly we denote Δi_{r}, Δc_{r}^{p} and Δc_{r}^{f}.

We also denote

$$
\begin{aligned}
\ddot{a}_{n}\left(\Delta i_{t}\right) & =\ddot{a}_{0}^{n}+\ddot{a}_{1}^{n} \Delta i_{t} \\
a_{40}\left(\Delta i_{t}\right) & =a_{0}^{40}+a_{1}^{40} \Delta i_{t} \\
X\left(\Delta i_{t}\right) & =X_{0}+X_{1} \Delta i_{t}
\end{aligned}
$$

where a_{0}, a_{1}, X_{0} and X_{1} are constants.
We have found the recurrence relationship between c_{t}^{p} and c_{t-1}^{p}. We can similarly find the relationship between Δc_{t}^{p} and Δc_{t}^{p}, resulting from Δj_{r} as in the earlier paper for the aggregate method.

After much algebra we find

$$
\Delta c_{t}^{r}=A \Delta i_{t}+B \Delta i_{t-1}+C \Delta j_{t}+D \Delta c_{t-1}^{p}
$$

where, recalling $\ddot{a}_{0}^{40}=40$ and $\ddot{a}_{1}^{n}=n$

$$
\begin{aligned}
& A=\frac{X_{1}}{40 n} \\
& B=-\left[\frac{a_{1}^{40}}{40 n}-\frac{X_{1}}{40 n}\right] \\
& C=-\frac{X_{0}}{40 n} \\
& D=\frac{n-1}{n} .
\end{aligned}
$$

Using the Z transform we have

$$
\left(1-D z^{-1}\right) \Delta c_{z}^{n}=\left(A+B_{z}-1\right) \Delta i_{z}+C \Delta j_{z}
$$

We are also assuming
i.e.

$$
\begin{aligned}
& \Delta i_{t}=\left(\Delta j_{t}+\Delta j_{t-1}+\ldots \Delta j_{t-m+1}\right) / m \\
& \Delta i_{z}=\frac{1}{m}\left(\frac{1-z^{-m}}{1-z^{-1}}\right) \Delta j_{z}
\end{aligned}
$$

whence, after substitution and putting

$$
P=\frac{A+B}{1-D}
$$

we find

$$
\Delta c_{z}^{p}=\left\{\frac{P}{m}\left(\frac{1-z^{-m}}{1-z^{-1}}\right)-\left(\frac{P D+B}{m}\right)\left(\frac{1-z^{-m}}{1-D z^{-1}}\right)+\frac{C}{1-D z^{-1}}\right\} \cdot \Delta j_{z}
$$

i.e. $\quad \Delta c_{z}^{p}=H_{z}^{p} \Delta j_{z}$.

A control engineer would consider adjusting the transfer function H_{z}^{p} to alter the characteristics of the control system. In particular he would look at the poles and zeros of the transfer function, treating it as a rational function of the complex variable z.

If Δj_{t} is a spike then $\Delta j_{z}=1$ and the solution becomes

$$
\begin{aligned}
\Delta c_{t}^{p} & =\frac{P}{m}+\left(C-\frac{P D+B}{m}\right) D^{t} \quad \text { for } t \leqslant m-1 \\
& =\left(C-\frac{P D+B}{m}\right) D^{t}+\left(\frac{P D+B}{m}\right) D^{t-m} \quad \text { for } t \geqslant m
\end{aligned}
$$

and the numerical results are very similar to those produced directly from the original equations.

More simply we have

$$
\Delta c_{t}^{f}=\frac{a_{1}^{40}}{40} \Delta i_{r} .
$$

Hence

$$
\Delta c_{z}^{f}=\frac{a_{1}^{40}}{40} \Delta i_{z}
$$

which becomes

$$
\Delta c_{z}^{f}=\frac{a_{1}^{40}}{40 m}\left(\frac{1-z^{-m}}{1-z^{-1}}\right) \Delta j_{z}
$$

For a spike we have the solution

$$
\begin{aligned}
\Delta c_{t}^{f} & =\frac{a_{1}^{40}}{40 m} & & \text { for } t \leqslant m-1 \\
& =0 & & \text { for } t \geqslant m .
\end{aligned}
$$

Corresponding solutions can be found for a step

$$
\Delta j_{z}=\frac{1}{1-z^{-1}}
$$

6. STATIONARY RANDOM INPUT

To assess the output from a stationary random input Δj_{l}, we find the ratio $\operatorname{var}\left(\Delta c_{t}\right) / \operatorname{var}\left(\Delta j_{i}\right)$.
If we express Δc_{z} in the form

$$
\Delta c_{z}==\left(h_{0}+h_{1} z^{-1}+h_{2} z^{-2}+\ldots\right) \Delta j_{z}
$$

then

$$
\Delta c_{1}=h_{0} \Delta j_{t}+h_{1} \Delta j_{t-1}+h_{2} \Delta j_{t-2}+\ldots
$$

and if $\Delta j_{t}, \Delta j_{t-1}$, etc., are independent identical random variables then

$$
\operatorname{var}\left(\Delta c_{t}\right)=\left(h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+\ldots\right) \operatorname{var}\left(\Delta j_{t}\right)
$$

Furthermore, but putting $\Delta j_{z}=1$, a spike, we see that $h_{0}, h_{1}, h_{2} \ldots$ form the resulting sequence of output signals.

The solution for Δc_{t}^{r} and Δc_{t}^{f} for a spike input were given above. We are interested in

$$
\Delta c_{t}=\Delta c_{t}^{p}+\Delta c_{t}^{f}=h_{t} .
$$

Write

$$
\begin{aligned}
& J=\frac{a_{1}^{40}}{40 m}+\frac{p}{m} \\
& K=c-\frac{P D+B}{m}
\end{aligned}
$$

$$
L=\left(\frac{P D+B}{m}\right) D^{-m}
$$

then

$$
\begin{array}{rlrl}
h_{t}=\Delta c_{t} & =J+K D^{t} \quad & \text { for } t \leqslant m-1 \\
& =(K+L) D^{t} & & \text { for } t \geqslant m
\end{array}
$$

whence $\operatorname{var}\left(\Delta c_{t}\right) / \operatorname{var}\left(\Delta j_{t}\right)=\Sigma h_{t}^{2}$

$$
\begin{aligned}
& =\sum_{t=0}^{m-1}\left(J^{2}+2 J K D^{\prime}+K^{2} I^{2 t}\right)+\sum_{t==m}^{\infty}(L+K)^{2} D^{2 \prime} \\
& =J^{2} m+2 J K\left(\frac{1-D^{m}}{1-D}\right)+K^{2}\left(\frac{1-D^{2 m}}{1-D^{2}}\right)+\frac{(L+K)^{2} D^{2 m}}{1-D^{2}}
\end{aligned}
$$

From this we obtain SD $\left.\left(\Delta c_{t}\right) / \mathrm{SD}\right)\left(\Delta i_{t}\right)$
With $n=20$, for various values of m we have

m	$\mathrm{SD}\left(\Delta c_{i}\right) / \mathrm{SD}\left(\Delta j_{i}\right)$
1	35
2	25
3	20
4	18
5	16
10	12
20	8
30	7

7. driving the pension fund

Here is an example where the ideas in control theory are used. Although the technique is simple, it is not standard. The example is given in terms of a pension fund, but it has found quite dramatic use for a mutual non-life fund where the problem seemed very difficult using ad hoc methods before the following approach was introduced.

Suppose we have a pension fund of amount F_{0}. Last year's contribution was C_{0}. Over the next 4 years (say) the outgo on benefits will be $B_{1}, B_{2}, B_{3}, B_{4}$. We want
the position of the fund at the end of the four years to be F_{4} in amount and the contribution amount in year 4 to be C_{4}.

The rate of interest is $j . J=1+j$.
We might choose C_{4} for instance to be the contribution required to bring the fund to a stationary state at the level F_{4}

$$
\text { i.e. }(F+C) J-B=F \text { whence } C=\left(B-F_{j}\right) / J \text {. }
$$

On the other hand we might choose C_{4} quite differently. F and C together describe 'the state' of the pension fund. We want 'to drive' the state from $F_{0} C_{0}$ to $F_{4} C_{4}$. Effectively $C_{0}, F_{0}, C_{4}, F_{4}, B_{1}, B_{2}, B_{3}, B_{4}$ (and j) are all given; we can control the system via C_{1}, C_{2}, C_{3}.

There are various types of control. Onc is 'bang bang' control, i.e. all or nothing. Another is 'minimum energy' control, i.e. the energy expended in driving from one state to another is minimal. We shall choose the latter and interpret it as aiming to minimize the change in contribution from year to year, i.e. as a maximum smoothness path; our criterion will be to minimize

$$
\begin{equation*}
\left(C_{1}-C_{0}\right)^{2}+\left(C_{2}-C_{1}\right)^{2}+\left(C_{3}-C_{2}\right)^{2}+\left(C_{4}-C_{3}\right)^{2} . \tag{10}
\end{equation*}
$$

There is an inherent constraint. It is that

$$
\begin{equation*}
F_{0} J^{4}+C_{1} J^{4}+C_{2} J^{3}+C_{3} J^{2}+C_{4} J-B_{1} J^{3}-B_{2} J^{2}-B_{3} J-B_{4}=F_{4} \tag{11}
\end{equation*}
$$

i.e. accumulated monies must equal F_{4}.

Re-write (11) in terms of unknowns C_{1}, C_{2} and C_{3} and knowns:

$$
\begin{gather*}
C_{1} J^{4}+C_{2} J^{3}+C_{3} J^{2}+\left(F_{0} J^{4}+C_{4} J^{4}-B_{1} J^{3}-B_{2} J^{2}-B_{3} J-B_{4}-F_{4}\right)=0 \tag{12}\\
\text { or } C_{1} J^{4}+C_{2} J^{3}+C_{3} J^{2}+K=0 \tag{13}
\end{gather*}
$$

where $K=$ item in ().
Hence we want to minimize (10) subject to (13).
This is a standard problem in VIth Form text books on calculus. We introduce the dummy variable as a Lagrange multiplier and minimize the expression

$$
H=(13)+\lambda(10)
$$

with respect to C_{1}, C_{2}, C_{3} and λ, i.e we form

$$
\frac{\delta H}{\delta C_{1}}=0 \quad \frac{\delta H}{\delta C_{2}}=0 \quad \frac{\delta H}{\delta C_{3}}=0
$$

and using (13), obtain four equations in four unknowns and solve. λ itself is not of interest.

We obtain

$$
\begin{align*}
& \frac{\delta H}{\delta C_{1}}=J^{4}+2 \lambda\left(C_{1}-C_{0}\right)-2 \lambda\left(C_{2}-C_{1}\right)=0 \tag{14}\\
& \frac{\delta H}{\delta C_{2}}=J^{3}+2 \lambda\left(C_{2}-C_{1}\right)-2 \lambda\left(C_{3}-C_{2}\right)=0 \tag{15}\\
& \frac{\delta H}{\delta C_{3}}=J^{2}+2 \lambda\left(C_{3}-C_{2}\right)-2 \lambda\left(C_{4}-C_{3}\right)=0 \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
K+C_{1} J^{4}+C_{2} J^{3}+C_{3} J^{2}=0 \tag{13}
\end{equation*}
$$

We can rearrange the equations making $\frac{J^{2}}{2 \lambda}$ as the fourth unknown rather than λ.

$$
\text { Put } \frac{J^{2}}{2 \lambda}=L
$$

$$
\begin{aligned}
J^{2} L+2 C_{1}-C_{2} & =C_{0} \\
J L-C_{1}+2 C_{2}-C_{3} & =0 \\
L-C_{2}+2 C_{3} & =C_{4} \\
J^{2} C_{1}+J C_{2}+C_{3} & =-K / J^{2}
\end{aligned}
$$

We obtain 4 simultaneous linear equations in 4 unknowns $L_{1}, C_{1}, C_{2}, C_{3}$ from which to obtain $C_{1}, C_{2} C_{3}$.

Table 5 shows some numerical values to give the flavour of different situations. The first example is the basic example and shows a steady state. The (real) rate of interest is $j=02, \mathrm{~F}=623, \mathrm{C}=27$, and annual outgo is $\mathrm{B}=40$, hence

$$
(F+C) J-B=(623+27)^{*} 1 \cdot 02-40=623=F .
$$

The following examples start with over-funding, under-funding, high contributions and low contributions in different combinations and move to the steady position with minimum changes in contributions from year to year. The final example, Example 10, moves to a different steady state funding level with the original contribution rate.

More extreme examples can show negative contribution rates in the early years. If that is not acceptable they can be set to zero and the contributions for the remaining years can be left as variables for solution.

There is also no difficulty in extending the time horizon. The total 'energy' required to drive from the opening state to the final state is then less.

There may be an algorithm which eliminates negative values and allows for different time horizons, but a simple trial-and-see approach seems adequate.

It should be noted that if the time horizon is reduced then a further criterion of good design is required. Almost certainly this would be a limitation on the variation allowed within the solution set of contribution rates--corresponding to the limitation on power in an engineering system.

The difficulty we found using ad hoc methods was that if we wished to bring the fund up to a higher level and raised the contribution rate to do it quickly, then we were in danger of needing to reduce the contribution rate quite drastically after achieving the required level of, and in order to avoid continuing excessive, funds. The resulting sequence of contribution rates was not acceptable. The effect of different time horizons on the optional contribution path can be shown diagrammatically as in Figure 5.

ACKNOWLEDGEMENTS

I am indebted to J. A. Kamieniecki, J. E. Woods and M. Z. Khorasanee for carrying out the work for this paper to my specification.

REFERENCES

(1) Balzer, L. A. \& Benjamin, S. (1980). Dynamic Response of Insurance Systems with Delayed Profit/Loss sharing Feedback to Isolated Unpredicted Claims, J.I.A. 107, 513.
(2) Balzer, L. A. (1982). Control of Insurance Systems with Delayed Profit/Loss sharing Feedback and Persisting Unpredicted Claims, J.I.A. 109, 442.
(3) Benjamin, S. (1984). An Actuarial Layman looks at Control Theory. International Congress of Actuaries, 1984.

Table 1. Projected Unit Method: $\mathrm{n}=20: \mathrm{m}=5$: spike 1%

t	j_{t}	i_{t}	cpt 1 (\%)	cf 1 (\%)	$c p t f 1$ (\%)
0	. 01	. 002	-3.70	-3.99	-7.69
1	0	. 002	-3.31	--3.99	-7.30
2	0	. 002	-2.94	-3.99	-6.93
3	0	. 002	--2.59	-3.99	-6.58
4	0	. 002	-2.25	-3.99	-6.24
5	0	0	.71	. 00	. 71
6	0	0	. 68	.00	. 68
7	0	0	$\cdot 64$.00	. 64
8	0	0	. 61	. 00	$\cdot 61$
9	0	0	. 58	.00	$\cdot 58$
10	0	0	$\cdot 55$.00	. 55
11	0	0	. 52	. 00	. 52
12	0	0	. 50	. 00	. 50
13	0	0	. 47	-00	. 47
14	0	0	-45	. 00	. 45
15	0	0	. 43	. 00	. 43
16	0	0	- 40	. 00	. 40
17	0	0	-38	. 00	. 38
18	0	0	$\cdot 37$. 00	. 37
19	0	0	$\cdot 35$. 00	$\cdot 35$
20	0	0	. 33	. 00	. 33
30	0	0	- 20	. 00	- 20
40	0	0	-12	. 00	$\cdot 12$
50	0	0	. 07	. 00	. 07
99	0	0	. 01	$\cdot 00$	$\cdot 01$

cpt $1=$ deviation of past service contribution from 0 p.a.
cf $1=$ deviation of future service contribution from 1 p.a.
$c p f t 1=c p t 1+c f t$, i.e. total deviation from stationary contribution of 1 p.a.

Figure 1.

Table 2. Projected Unit Method: $\mathrm{n}=20: \mathrm{m}=5$: step 1\%

t	j_{1}	i,	$\text { cpt } 1$ (\%)	cf 1 (\%)	$\underset{(\%)}{c p t f 1}$
0	.01	. 002	-3.70	-3.99	-7.69
1	.01	. 004	-.7.05	--7.76	- 14.81
2	. 01	. 006	--10.03	--11.33	-21.36
3	.01	. 008	-12.67	-14.71	-27.38
4	. 01	. 01	--14.96	-17.91	- 32.87
5	. 01	. 01	-14.28	-17.91	-32.19
6	.01	. 01	-13.63	-17.91	-31.54
7	. 01	. 01	-13.01	-17.91	-30.92
8	.01	.01	--12.42	-17.91	-30.33
9	.01	. 01	-11.86	-17.91	-29.77
10	. 01	. 01	- 11.32	-17.91	-29.23
11	.01	.01	-10.80	-17.91	-28.72
12	. 01	. 01	--10.31	-17.91	--28.23
13	. 01	. 01	--. 9.84	-17.91	-27.76
14	. 01	. 01	--9.40	--17.91	-27.31
15	. 01	. 01	--. 8.97	-17.91	-26.88
16	. 01	. 01	-. 8.56	-17.91	-26.48
17	. 01	. 01	-8.17	-17.91	-26.09
18	. 01	. 01	-. 7.80	-17.91	-25.72
19	. 01	. 01	-7.45	- 17.91	-25.36
20	. 01	. 01	-7.11	-17.91	- 25.02
30	. 01	. 01	--4.47	-17.91	-22.38
40	- 01	. 01	--2.81	-17.91	-20.72
50	. 01	. 01	--1.76	-17.91	-19.68
99	. 01	. 01	-. 18	-17.91	-18.09

cpt $1=$ deviation of past service contribution from 0 p.a.
cft $1=$ deviation of future service contribution from 1 p.a.
$c p f t=c p t 1+c f t$, i.e. total deviation from stationary contribution of 1 p.a.

Projected unit method
$n=20: m=5$: step 1%

Figure 2.

Table 3. Aggregate Method:
$\mathrm{m}=5:$ spike 1%

t	${ }_{1}$	ct 1 (\%)
0	$\cdot 01$	-6.40
1	0	-6.08
2	0	-5.77
3	0	-5.48
4	0	-5.21
5	0	. 41
6	0	$\cdot 39$
7	0	-37
8	0	. 35
9	0	. 34
10	0	$\cdot 32$
11	0	. 31
12	0	. 29
13	0	. 28
14	0	. 26
15	0	25
16	0	. 24
17	0	23
18	0	. 21
19	0	- 20
20	0	-19
30	0	-12
40	0	. 07
50	0	. 04
99	0	. 00

ct $1=$ deviation of contribution
from 1 p.a.

Table 4. Aggregate Method:

$$
\mathrm{m}=5: \operatorname{step} 1 \%
$$

t	j_{1}	$c t 1(\%)$
0	.01	-6.40
1	-01	-12.47
2	.01	-18.21
3	.01	-23.60
4	.01	-28.65
5	.01	-28.21
6	.01	-27.79
7	.01	-27.39
8	.01	-27.00
9	.01	-26.63
10	.01	-26.28
11	.01	-25.95
12	.01	-25.63
13	.01	-25.33
14	.01	-25.03
15	.01	-24.76
16	.01	-24.49
17	.01	-24.24
18	.01	-24.00
19	.01	-23.77
20	.01	-23.55
30	.01	-21.84
40	.01	-20.77
50	.01	-20.11
99	.01	-19.10

ct $1=$ deviation of contribution from 1 p.a.

Figure 3.

Figure 4.

Table 5

C	C_{0}		C_{1}		C_{2}		C_{3}		C_{4}	
F		F_{0}		F_{1}		F_{2}		F_{3}		F_{4}
Example 1 C	27		27		27		27		27	
F		623		623		623		623		623
Example 2 C	27		$46 \cdot 1$		52.3		$45 \cdot 8$		27	
F		561		579.2		$604 \cdot 2$		623		623
Example 3 C	32		47.6		51.8		$44 \cdot 8$		27	
F		561		$580 \cdot 7$		605.2		623		623
Example 4 C	22		44.6		52.8		$46 \cdot 8$		27	
F		561		577.7		603.2		623		623
Example 5 C	22		25.5		27.5		28.0		27	
F		623		621.5		$622 \cdot 0$		623		623
Example 6 C	32		28.5		$26 \cdot 5$		$26 \cdot 0$		27	
F		623		624.5		624.0		623		623
Example 7 C	27		7.9		$1 \cdot 7$		8.2		27	
F		685		$666 \cdot 8$		$641 \cdot 8$		623		623
Example 8 C	32		$9 \cdot 4$		$1 \cdot 2$		$7 \cdot 2$		27	
F		685		$668 \cdot 2$		642.8		623		623
Example 9 C	22		6.4		$2 \cdot 2$		$9 \cdot 2$		27	
F		685		$665 \cdot 3$		640.8		623		623
Example 10 C	22		$100 \cdot 5$		126.0		99.5		22	
F		623		$698 \cdot 0$		800.5		878		878

Figure 5.

