The Actuarial Profession making financial sense of the future Life conference and exhibition 2010 Mark Pibworth, Legal & General and Roger Simler, Deloitte 7-9 November 2010 #### **Contents** - 1. Building blocks of capital models - 2. Key concepts explained - 3. Main approaches - 4. Illustration and kernel smoothing - 5. Comparison of methods - 6. L&G experience to date ### **Building blocks of capital models** #### Desired properties # Key concepts explained | Concept | Explanation | |---------------------------|---| | Correlation matrix | Matrix used to describe the dependence between pairs of random variables, eg lapse and interest rates | | Non linearity/interaction | Non-linearity describes the effect whereby the impact of stresses occurring together differs from the sum of the impacts of the individual stresses | | Copula | An approach by which the marginal distributions of a set of variables are combined together into a single multivariate distribution | | Marginal distribution | Distribution of one variable obtained when ignoring all other variables of the joint distribution | | Tail dependence | Measure of extreme co-movements in the tail of a joint distribution | ### **Overview of main approaches** | Method | Individual risk
calibration | Dependency
structure | Aggregation subject | Transformation | Output | |--|--|-------------------------|---|--|--| | Medium Bang | Assumed normal distribution. Mean and standard deviation calibrated. | Correlation Matrix | Vector of net asset stresses by risk factor | Medium Bang Consolidation at Y% Confidence Interval with no diversification | Capital requirement
at given confidence
level. Non-linearity
allowed for through
medium bang. | | Risk
Geographies | Elliptically
contoured
distributions (e.g.
Normal,
multivariate T) | Correlation Matrix | Vector of net asset stresses by risk factor | Likely locus Best estimate assumptions Least Solvent Jukely Event. "LSLE" | As above.Non-linearity picked
up directly. | | Input Copula
(Copula
applied to
marginal risk
distributions) | Marginal
distribution. | Copula | Marginal distributions of individual risk drivers | Marginal distributions of individual risks Copula Joint distribution of risk drivers Aggregated loss distribution | Full distribution of capital requirements. Non-linearity picked up directly | | Output Copula (Copula applied to loss distributions) | • As above. | Copula | Loss functions (P&L Impact) of individual risks | Loss functions of individual risks Copula Aggregated loss distribution | Full distribution of
capital
requirements. Non-linearity not
picked up. | ## **Aggregation with Variance/Covariance** | Method | Variance / Covariance | |------------------------------------|---| | Brief description | Similar to Standard Formula under Solvency II, based on a correlation matrix Most common method currently used by insurance companies to perform capital calculations (see CRO Forum, Jan. 2009), but leading companies are revisiting their choice of this method | | Risk factor modeling & calibration | Risks are elliptically distributed and are combined by using a variance / co-variance approach Assumptions required regarding the mean and standard deviations of the individual risks | | Process | Closed-form formula combining the capital requirement calculated for each risk factor at a given level of confidence using a correlation matrix Approximate adjustment can be made to allow for the non-linearity of different risks (so-called Medium Bang approach used in the UK, involving a combined scenario), but it remains ultimately arbitrary | | Outputs | The method produces a capital result at the required level of confidence. Results at different levels of confidence can be produced by repeating the calculation process Results fairly stable over time due to the simplicity of the method | | Key technical features | Non-linearity, fungibility restrictions and asymmetry are not picked up by the method Assumes that stress tests for risk factors correspond to the tail of the capital distribution | ### **Aggregation with Input Copulas** Marginal distributions of risks factors Copulc Aggregated loss distribution | Method | Copulas | |---|--| | Brief description | Monte Carlo approach This method combines the marginal distributions of risk factors using copula functions. Fed through an ALM model, these simulations are then used to produce a full distribution of capital requirements | | Risk factor
modelling &
calibration | Flexibility in assumed distributions of risk factors (including non-normal) and dependency structure A key challenge will be obtaining reliable data to calibrate each copula | | Process | A large number (e.g. 100,000) of scenarios are produced from the risk factor distributions Marginal distributions of risk factors are combined using copula functions The ALM model used for generating capital requirements is usually a simplified model (for example based on Replicating Portfolios or Formula Fitting), as many scenarios need to be run to achieve statistical convergence | | Outputs | Full distribution of capital requirements (does not assume that stress tests for risk factors correspond to the tail of the capital distribution) Results tend to be less stable over time as the approach is simulation based. They will need to be smoothed, which gives rise to a potential issue of managing the impact of smoothing | | Key technical features | Allowance can be made for non-linearity between risk factors through the use of an appropriate simplified ALM model Tail dependence and fat-tailed distributions can be allowed for Fungibility restrictions can be allowed for as the method is simulation based | # Aggregation with Risk Geographies | Method | Risk Geographies | |------------------------------------|--| | Brief description | Basically an enhancement of the Variance / Covariance + Medium Bang approach which enables the insurer to determine the exact scenario which would have the most severe financial impact on its balance sheet at a given level of confidence | | Risk factor modeling & calibration | Not restricted by particular choices of distributions or copulas However, most of the implementations to date have been in the variance-covariance framework | | Process | The most onerous scenario is determined by means of an iterative process of stress tests The result does not require Monte Carlo simulations of capital requirements and runs with full ALM model | | Outputs | The method produces a capital result at the required level of confidence. Results at different levels of confidence can be produced by repeating the calculation process The other main outputs are the risk scenarios (LSLE, MLRE) Results tend to be fairly stable over time as the approach is not simulation based | | Key technical features | Risks are combined in such a way that non-linearity is allowed for Allowance for fat tails, tail dependencies and fungibility restrictions is possible but sometimes requires adaptations | ### Illustration of Risk Geographies & Input Copulas #### Input Copula produce relatively smooth capital requirements | Business Unit | Risk Geographies | Input Copulas | | | | | | |--------------------------------------|------------------|---|---------|------------------|--|--|--| | | | Highest of 5 runs Lowest of 5 runs Lowest | | Lowest / Highest | | | | | BU 1 – Term Assurances | 5,746 | 5,744 | 5,729 | 99.7% | | | | | BU 2 – Annuities | 15,909 | 16,102 | 15,921 | 98.9% | | | | | BU 3 – Pensions | 8,659 | 8,896 | 8,708 | 97.9% | | | | | Diversification benefit | -11,761 | -12,053 | -11,754 | n/a | | | | | Total – post diversification (Group) | 18,553 | 18,689 | 18,604 | 99.5% | | | | #### However, identification of biting scenario is difficult Scenarios driving capital requirements (100,000 simulations) | Risk | Risk Geographies | Input Copulas | | | | | | |------------------------|------------------|---------------|--------|---------|--------|-------|--------| | | LSLE | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Range | | Interest | 0.15% | 0.77% | 0.68% | -0.60% | 1.80% | 1.93% | 2.53% | | Credit Spreads | 2.24% | 2.30% | 2.06% | 1.70% | 2.12% | 3.25% | 1.55% | | Equity Levels | -3.14% | 0.86% | -7.11% | -19.35% | -4.45% | 8.95% | 28.31% | | Asset Share Volatility | 5.43% | 6.27% | 7.59% | 5.33% | 13.70% | 2.20% | 11.49% | | Mortality Level | 2.77%/ | 7.48% | 5.83% | 0.60% | 5.06% | 3.04% | 6.88% | Requires a smoothing mechanism Kernel smoothing ### Kernel smoothing explained ### An example of Kernel smoothing #### Attribution using Euler method and driving scenarios produces widely varying capital amounts | Business Unit | Risk
Geographies | Input Copula (100,000 Simulations, Unsmoothed) | | | | | | | |------------------------|---------------------|--|--------|--------|--------|--------|---------------|--| | | | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Size of range | | | BU 1 – Term Assurances | 2,837 | 4,636 | 3,757 | 2,086 | 2,303 | 1,854 | 2,781 | | | BU 2 – Annuities | 13,601 | 13,219 | 12,289 | 10,112 | 14,143 | 19,914 | 9,802 | | | BU 3 – Pensions | 2,115 | 762 | 2,558 | 6,452 | 2,242 | -3,081 | 9,533 | | | Group | 18,553 | 18,617 | 18,604 | 18,650 | 18,689 | 18,687 | 85 | | #### Kernel smoothing reduces variability | Business Unit | Risk
Geographies | Input Copula (100,000 Simulations, Smoothed) | | | | | | | |------------------------|---------------------|--|--------|--------|--------|--------|---------------|--| | | | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Size of range | | | BU 1 – Term Assurances | 2,837 | 2,832 | 2,864 | 2,759 | 2,842 | 2,854 | 105 | | | BU 2 – Annuities | 13,601 | 13,531 | 13,571 | 13,809 | 13,567 | 13,689 | 278 | | | BU 3 – Pensions | 2,115 | 2,148 | 2,064 | 2,013 | 2,130 | 2,065 | 135 | | | Group | 18,553 | 18,512 | 18,500 | 18,581 | 18,539 | 18,608 | 108 | | ... meaning we are less exposed to random variations ### Comparison of methods considered **Risk Geographies & Input Copula selected** ### L&G experience to date #### Selection: - Monte Carlo with Input Copula and Risk Geographies chosen methods - Monte Carlo approach was prioritised due to automatic provision of full distribution of capital amounts, and prevalence of the approach - Also considered to be the most flexible method to implement and to address challenging Solvency II requirements such as extreme events and fungibility constraints ### L&G experience to date (continued) #### **Monte Carlo with Input Copula:** - Randomness of scenarios makes identification of "biting scenario" complex - Creates challenge for both attribution and communication to Boards - Algo out-of-the-box smoothing methodology initially used in place of flexible Kernel smoothing #### Risk geographies: - Build on hold pending completion of Monte Carlo - May be used as a validation tool