

Agenda

Acknowledgements

Calculation

- Tail Risk
- Extreme Loss

Communication

© 2010 The Actuarial Profession • www.actuaries.org

Acknowledgements

- Work carried out at the University of Kent
- Funded by the UK Actuarial Profession
- · Assisted by Fotis Fotiou
- Useful input from
 - The Extreme Events Working Party
 - ERM PEC Research and Thought Leadership Sub-committee

© 2010 The Actuarial Profession • www.actuaries.org.uk

Calculation of tail risk

- Two broad approaches
 - Tail correlation
 - ⇒what is the shape of the relationship in the tail?
 - Tail dependence
 - ⇒How much of the distribution is in the tail?
- · Expansion to higher dimensions

2010 The Actuarial Profession • www.actuaries.org

Tail correlation

- Broadly speaking, calculate correlation in a tail of the data
- · All correlation types can be used
 - Linear only valid for elliptical data
 - Rank versions probably more robust
- Multi-dimensional versions do exist...
 - Collapsing the relationship between more than to variables into a single statistic
- ...but often more than one version.

© 2010 The Actuarial Profession • www.actuaries.org.uk

Tail correlation - limitations

- Tail correlation looks by definition at the tail
 - What if the extreme values lie off the main diagonal?
 - What if there "arachnitude"?
- · Subjectivity also required
 - How is the tail defined?

Tail dependence

- · Broadly speaking, consider
 - The proportion of observations in a tail...
 - ...relative to the maximum proportion possible
- Again several versions
- Most popular is the coefficient of tail dependence
- C(u,u)/u, as u tends to zero (for lower measure)
- Main issue: always zero for Gaussian copulas
- Transforms exist...
- ...but with similar issues

© 2010 The Actuarial Profession • www.actuaries.org.uk

Tail dependence

- · Broadly speaking, consider
 - The proportion of observations in a tail...
 - ...relative to the maximum proportion possible...
 - ...defined as C(u,u)/u

© 2010 The Actuarial Profession • www.actuaries.org.u

Tail dependence

- Again several versions
- Most popular is the coefficient of tail dependence
- C(u,u)/u, as u tends to zero (for lower measure)
- · Main issue: always zero for Gaussian copulas
- Transforms exist...
- ...but with similar issues

Tail dependence - alternative

- Why not use C(u,u)/u...
- ...but use a finite value for u?
- · This introduces subjectivity...
- · ...but can at least be used for all copulas
- Why not also consider for higher dimensions...
- ...e.g. C(u,u,u)/u?

2010 The Actuarial Profession • www.actuaries.org.

Extreme loss

- Tail association important for model development...
- ...but risk of loss often of more concern
- Two key measures
 - Probability of ruin
 - Economic cost of ruin
- Former is proportion of observations below the ruin line...
- ...whilst latter is the average value of those observations

© 2010 The Actuarial Profession • www.actuaries.org.uk

Extreme loss - issue

- · Given these measures are in money terms...
- ...how do you treat different risks consistently?
- Need a definition of loss
- · Approach depends on whether assessing
 - current exposure to loss
 - appropriate exposure to risks

Definitions of loss - current exposure

- Interested in risks currently faced
- Ruin line parameter L defined as critical level of total loss
- L is maximum loss acceptable from two, three or more, even all, sources
- Can be defined in absolute terms or as change in value.
- Define X₁,X₂,...,X_N where N is number of risks being considered concurrently
- Consider losses from these risks with all others being held constant

© 2010 The Actuarial Profession • www.actuaries.org.uk

12

Definitions of loss – appropriate exposure

- · Interested in appropriate allocation between different risks
- Notional threshold loss from risk combinations needed
 - e.g. £10 per £100 invested for two risks
- Distributions of losses for different combinations of risk exposures then be determined
 - e.g. if threshold loss from two risks is £10 per £100 invested and two risks being considered 1 and 2, probability of ruin can be calculated for combinations of £ W₁ and £ W₂ = £(100-W₁)
- Can be extended to higher dimensions...
- ...and used in calculation of efficient frontiers

2010 The Actuarial Profession • www.actuaries.org.

Scatter Plot

- Real Liabilities/All IL Gilts Nominal Liabilities/All Gilts
- Real Liabilities/+15 Year IL Gilts Nominal Liabilities/+15 Year Gilts
- Real Liabilities/All Gilts
- Real Liabilities/+15 Year Gilts
- 7. Nominal Liabilities/All IL Gilts
- 8. Nominal Liabilities/+15 Year IL Gilts
- 9. Real Liabilities/Nominal Liabilities 10. UK Equities/Europe ex UK Equities
- 11. All IL Gilts/ +15 Year IL Gilts 12. All Gilts/+15 Year Gilts
- 13. All IL Gilts/ All Gilts
- $14. \ +15 \ Year \ IL \ Gilts/All \ Gilts$
- 15. All IL Gilts/+15 Year Gilts 16. +15 Year IL Gilts/+15 Year Gilts
- Black = two risk assets
- White = one asset, one liability
- Grey = two matching assets

© 2010 The Actuarial Profession • www.actuaries.org.uk

14

Bar Chart

- Real Liabilities/All IL Gilts Nominal Liabilities/All Gilts All IL Gilts/+15 Year IL Gilts 3.
- All Gilts/+15 Year Gilts
- Real Liabilities/+15 Year IL Gilts Nominal Liabilities/+15 Year Gilts
- Europe ex UK Equities/UK Equities
- Real Liabilities/All Gilts
- All IL Gilts/All Gilts
- 10. Real Liabilities/Nominal Liabilities

- Black = two risk assets
- White = one asset, one liability
- Grey = two matching assets

© 2010 The Actuarial Profession • www.actuaries.org.uk

Balloon Plot

- All IL Gilts/+15 Year IL Gilts
- All IL Gilts/All
- Europe ex UK Equities/UK Equities
- 4. Nominal Liabilities/+15 Year Gilts Nominal Liabilities/+15 Year Gilts
- Real Liabilities/Nominal Liabilities

- Black = low risk
- White = high risk

16

Sunflower Plot

- Real Liabilities/All IL Gilts Nominal Liabilities/All Gilts
- 3. Real Liabilities/+15 Year IL Gilts
- Nominal Liabilities/+15 Year Gilts
- Real Liabilities/All Gilts Real Liabilities/+15 Year Gilts
- Nominal Liabilities/All IL Gilts
- Nominal Liabilities/+15 Year IL Gilts
- Real Liabilities/Nominal Liabilities
- 10. UK Equities/Europe ex UK Equities 11. All IL Gilts/+15 Year IL Gilts 12. All Gilts/+15 Year Gilts
- 13. All IL Gilts/ All Gilts
- 14. +15 Year IL Gilts/All Gilts
- 15. All IL Gilts/+15 Year Gilts
- 16. +15 Year IL Gilts/+15 Year Gilts

- White = low risk
- Black = high risk

Ruin Plot

© 2010 The Actuarial Profession • www.actuaries.org.uk

Contact details

Paul Sweeting

- paul.j.sweeting@jpmorgan.com
- p.j.sweeting@kent.ac.uk