

GIRO conference and exhibition 2010 Hannes van Rensburg, Antony Dodson

Offshore Energy Insurance

Agenda

- Background and overview of Offshore Energy insurance
- Evolution of market pricing methods
- Developments to windstorm pricing (asset dispersion)?
- Future market environment post Deepwater Horizon

Science and Technology - Oil and gas formation

Science and Technology - Drilling

Science and Technology - Drilling units

Mobile drills (semi-subs, jack-ups....)

Science and Technology - Production

• Platforms / complexes

Pipelines

Subsea

Global Offshore Energy insurance market

Offshore Energy Insurance Gross Loss Ratios - as at 31 December 2009

Underwriting Year

Source: Lloyd's (incurred losses)

Evolution of market pricing methods

Overview Assureds, Perils and Insurance Coverage

Rating overview - Pre Ike

	Property Damage	Control of Well	LOPI / LOH	Liability	Clash (ex-wind)
Exposure	Sum insured	Well length	Maximum period x Maximum unit value	Revenue Sum insured No. of wells	Total complex value plus CoW limit, etc
Risk factors	Asset type Area Operator Water Depth Air gap (hurricane)	Well depth Area Well type Horizontal wells? Contractor	Oil price Day rates Asset type 	Operator Loss record Location Contract	See PD/CoW
Key policy terms	XS defined for 100% interest Separate hurricane limit/XS	Re-drill? Clean-up? UGBO? Contract terms Limit/XS	Waiting period	Limits DIC/DIL	Combined single limit Highest single XS

Rating Overview - Pre Ike

- Control of Well coverages triggered without loss of well control
 - Re-drill
 - Re-drill without re-drill
 - Seepage & pollution clean-up
- BUT coverages rated on well length
 - Not directly related to hurricane risk
 - Difficult to monitor aggregate exposure
- Post Katrina
 - Gulf of Mexico footage rates tripled
- Post Ike
 - windstorm pricing re-structured

Rating Overview - Post Ike

- Explicit windstorm and non-windstorm pricing
- Additional Cor
 - Scheduled
 - Rate applie
- Per windstorm
 - Based on p
 - Total asset
- Notional rates
 - 15-20% rat
 - Put the Ca

Rating using Cat models

Two different worlds

- + Simple rating structure (rate x exposure)
- + Consistency between accounts
- + Quick
- Cross-subsidies between accounts?
- Commercial influences easily mixed up with technical influences

- + Considers the details
- + Commercial influences are explicit
- Complexity reduces transparency and results are difficult to sense check
- Mostly calibrated at the micro-level
- Modelling the impossible? (eg non-PD coverages)
- Cat models have not always been right

Developments to windstorm pricing - Asset dispersion

The rating process

- 1. Identify new risk factor better differentiator
- 2. Measurable values of this factor rating factor levels
- 3. Calibrate rate relativities data and models

Windstorm example using Cat models

- 1. Asset spread
- 2. Spatial dispersion measure
- 3. Use Cat model to generate losses and calibrate premium adjustment factor

Asset dispersion - Example account

Asset dispersion - Another example account

Measures of asset dispersion

- Variance in two dimensions
- $\bar{\bar{A}} = \begin{bmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(X,Y) & \operatorname{Var}(Y) \end{bmatrix}$
- Trace is the sum of squared distance from the centroid
- Each point can be weighted (eg asset value)
- Other measures
 - Determinant, largest eigenvalue, nearest neighbour distance, ...

Improvements to rating - Sample portfolio

- 27 fictional accounts
 - Asset values scaled such that all accounts have the same total insured value
 - All asset types set as equal
 - Asset locations are real
 - ie. A one-way analysis
- All the accounts would notionally be charged the same premium
- All the accounts would have the same windstorm retention and windstorm limit

Improvements to rating - findings

Improvements to rating - findings

Conclusions - Sample portfolio

- Both variance and average burn (negatively) correlated with the asset dispersion
- Dispersion statistic can be used to adjust mean windstorm risk premium if Cat model not used in underwriting process
- Further extend the idea to adjust cost of capital based on portfolio dispersion:
 - Monitor aggregate exposures
 - Manage risk appetite, increase line sizes or price more aggressively

Current to future market situation – Deepwater Horizon

Deepwater Horizon – Background

• Where?

- Macondo prospect
- Mississippi Canyon
- 60km from shore

• Who?

- Operator: BP
- Joint Venture Partners:
 Anadarko
 - MOEX (Mitsui)
- Drilling Contractor: Transocean
- Drilling Rig: Deepwater Horizon
- Products:

Halliburton (cement) Cameron (BOP)

Deepwater Horizon Background

What and when? 4 June 22 April **30 April** 8 May Cap Deepwater Oil spill 1st attempt **28 May** successfully "Top kill" placed over Horizon reaches to cap the well fails leak sinks US shores fails 5,000 ROV trying to activate 20 April 26 April **19 September** Blow out preventer (BOP) 4,000 RoVs detect oil Transocean Blowout ignites leak from riser successfully 3.000 killing 11 and drill pipe. complete relief Drill pipe. rig workers 2,000 well and plug leak & riser Failure to 1,000 activate BOP Remotely operated vehicle (ROV) 0 BOP and Fluid ventina

wellhead

Diagram not to scale

Seabed

from drill pipe

Source: US Coast Guard

Deepwater Horizon – The cost

- \$1.5bn \$3bn insured loss
 - PD (Deepwater Horizon insured value = \$600m)
 - Control of Well, clean-up
 - Liabilities
 - Contingent liabilities?
 - D&O?
- \$20bn+ total cost
 - BP self-insured
 - Oil Pollution Act (OPA) 1990 Exxon Valdez
 - BP elected not to stand behind \$75m liability limit

Deepwater Horizon – The fallout

- Long lasting environmental damage?
- Tony Hayward leaves BP
- Deepwater drilling moratorium
- Increased regulation of the oil industry
- Legal challenges to "knock-for-knock" provisions
- Amendments to OPA 1990
 - Increased or unlimited liability?
- Increased demand for Liability and Control of Well limits
 - Rate increases (including RI)
 - New capacity entering the market?
 - New rating for offshore liabs?

Questions or comments?

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.

The views expressed in this presentation are those of the presenter(s).