

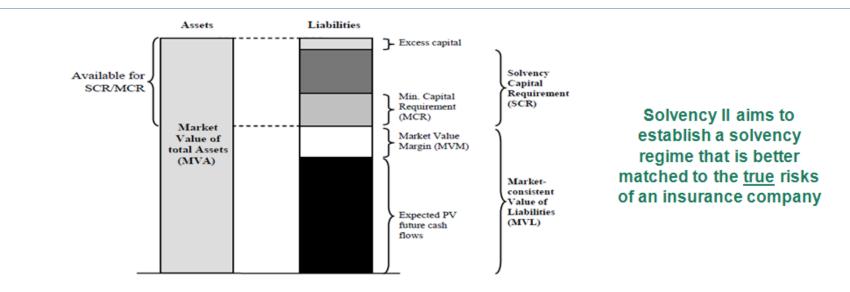
GIRO conference and exhibition 2010 Ben Zehnwirth

Solvency II & Long Tail Liabilities

12-15 October 2010

- We provide our solution to the Solvency II one-year risk horizon, SCR, Technical Provisions (TP) (Fair Value Liabilities), Market Value Margins (Risk Margins) for the aggregate of long tail LOBs
- The solution is non-recursive, non-circular, tractable and satisfies all the directives (requirements)
- IFRS 4 requirements in respect of fungibility and ring-fencing is discussed
- Three types of correlations between LOBs
- How do we know if two LOBs have the same economic drivers?
- Is the economic inflation a principal driver of long tail liability calendar year trends?

- Two LOBs written by the same company rarely have the same trend structure (including in the calendar year direction) and often process (volatility) correlation is either zero or very low. Reserve distribution correlation is often zero and if significant quite low.
- No two companies are the same in respect of trend structure, and process (volatility) correlation is often zero (for the 'same' LOB).
- No company is the same as the industry, unless it is a very large proportion of the industry.
- All the above are demonstrated with real life data.

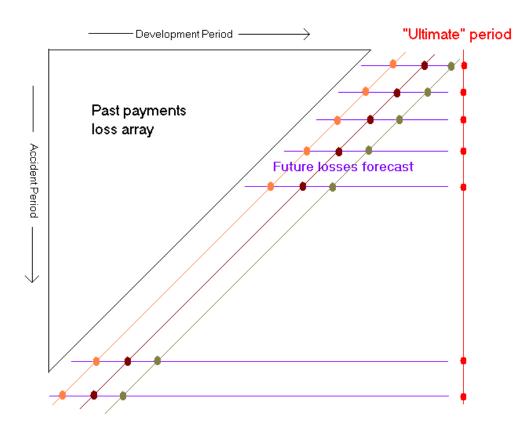

- SII metrics for the aggregate of real life six LOBs compared with SII metrics for the most volatile LOB to illustrate amongst other things risk diversification of SCR and (MVM component) of TP
- Undiscounted reserves for the aggregate of six LOBs
 - = Technical Provisions +Solvency Capital Requirement (SCR)
 - = total liability in Economic Balance Sheet,

using a risk free rate of 4% and a spread of 6%.

- No need for additional capital in this example due to risk diversification!
- QIS5 allows for risk diversification credit.
- Conditions for consistent estimates of prior accident year ultimates and SII risk measures on updating. This will explain how to avoid model error "distress".

- Which probability distributions are required to compute the various risk measures for the aggregate of multiple LOBs?
- VaRs and T-VaRs
- Process Variance versus Parameter Uncertainty
- Reserve risk, underwriting risk and the combined risk
- The ultimate year risk horizon- conceptually much simpler
- Calendar year Payment stream probability distributions
 - what are the drivers?

Solvency II – Economic Balance Sheet



Ann Hagen in "Solvency II : Brave new world:

"Doing the job

Under Solvency II, the way that work is carried out will change. For example, Solvency II is likely to require different actuarial techniques from the ones currently used. Technical provisions will be estimated as a probability-weighted average of expected future cash flows, taking into account the time-value of money and including a risk margin. Many of us are estimating claims reserves using traditional deterministic actuarial techniques, primarily relying on incurred claims data. Under Solvency II, not only will we need to discount these reserve estimates, requiring projected payment patterns, we will also need to demonstrate a deep understanding of the uncertainty of those reserves. We will additionally be required to apply the same approach to evaluating unexpired risk liabilities currently allowed for in the uncertaind premium reserves."

Actual payments are made by calendar year

Summing future losses along the calendar year axis produces projections of the cash-flow, and the actual calls on the reserves. This is the dimension in which solvency issues arise.

Using cell distributions and correlations we can compute the distributions for each future year's cash flow.

Solvency II one-year risk horizon: satisfies three conditions - Summary of decomposing the directives- What are the basic elements?

- Risk Capital is raised at the beginning of each year;
- The analyses are conditional on the first (next) calendar year being in distress (99.5%);
- At the end of the first year in distress, the balance sheet can be "restored" in such away that the company has sufficient technical provisions (fair value of liabilities) to continue business or to transfer the liabilities to another risk bearing entity.

Here follow some relevant articles that lead to above mentioned three conditions

The Concept of Risk - The Fair Value of Liabilities

The Solvency II Framework Directive

- Article 76: The value of technical provisions shall correspond to the current amount insurance and reinsurance undertakings have to pay if they were to transfer their insurance and reinsurance obligations immediately to another insurance or reinsurance undertaking
- Article 77: The value of technical provisions shall be equal to the sum of a Best Estimate and a Risk margin
- The Best Estimate shall correspond to the probability-weighted average of future cash-flows, taking into account the value of money (expected present value of future cash-flows), using the relevant risk-free interest rate term structure.

The Concept of Risk - The SCR

The Solvency II Framework Directive

Article 101: The Solvency Capital Requirement (SCR) shall... correspond to the Value-at-Risk (VaR) on the basis own funds¹⁾ ... subject to a confidence level of 99.5% over a one-year period.

 Initial Capital covers at least the potential change in the Fair Value under severe adverse conditions, represented by the 99.5% percentile of the range of possible Fair Values at the end of the selected solvency one-year time horizon; adverse conditions represent a distress scenario for the company.

1) Essentially, basis own funds defined as the excess of assets over liabilities, both assessed at market value (or capital market consistent value, where a market does not exist)

The Concept of Risk - The Fair Value of Liabilities

- The Best Estimate shall be gross, without deduction of the amounts recoverable from reinsurance contracts and special purpose vehicles. Those amounts shall be calculated separately ... (Cf. article 81)
- The Risk Margin shall be such as to ensure that the value of the technical provisions is equivalent to the amount that insurance and reinsurance undertakings would be expected to require in order to take over and meet the insurance and reinsurance obligations. (Cost of providing amount of eligible own funds.)¹

¹⁾ The cost of holding the SCR is assumed to attract a premium over the risk-free interest rate which is called the Cost of Capital

Definition of the One-Year Risk Horizon

For the one-year risk horizon, risk capital is raised at the beginning of each year.

- The cost of raising the risk capital, the **Market Value Margin (MVM)** or premium on the risk capital, also known as the **Risk Margin** is paid to the capital providers at the end of each year along with any unused risk capital.
- The sum of the MVMs and the Best Estimate of Liabilities (BELs) for each calendar year (>=2) is the Technical Provision (also referred to as Fair Value of Liabilities).

Definition of the One-Year Risk Horizon

 For an individual year (k; k>2), we can define:

```
TP(k) = BEL(k) + MVM(k);
```

where BEL(k) and MVM(k) are the Best Estimate of Liabilities and Market Value Margin for year k.

 Important note: for a future calendar year, k, BEL(k) and MVM(k) are additive; VaR(k) is not. We present a tractable solution to the one-year risk horizon that is not recursive or circular.

The Concept of Risk - The SCR

The Solvency II Framework Directive

Article 101: The Solvency Capital Requirement (SCR) shall... correspond to the Value-at-Risk (VaR) on the basis own funds¹⁾ ... subject to a confidence level of 99.5% over a one-year period.

 Initial Capital covers at least the potential change in the Fair Value under severe adverse conditions, represented by the 99.5% percentile of the range of possible Fair Values at the end of the selected solvency one-year time horizon; adverse conditions represent a distress scenario for the company.

1) Essentially, basis own funds defined as the excess of assets over liabilities, both assessed at market value (or capital market consistent value, where a market does not exist)

The Concept of Risk - The SCR

As detailed in the Insurance ERM analysis of Solvency II:

"The fair value balance sheet is one of the cornerstones of Solvency II, and its impact is not restricted only to the calculation of fair value assets and liabilities. The concept of market value margin (MVM), and the related one-year risk approach in the calculation of the solvency capital requirement (SCR), find their origin in this fair value driven approach: re/insurance companies should have enough capital on their balance sheet to cover the risks that can emerge over a 12-month timeframe, and allow for a (theoretical) transfer of all (contractual) liabilities at the end of this balance-sheet period. This means that companies have to be able to calculate the impact of such shocks on their end-of-year balance sheets, and value these in such a way that they can be transferred to a third party."

Risk Capital – CEIOPS excerpts

Consultation paper 75: Undertaking specific parameters for SCR

http://www.ceiops.eu/media/files/consultations/consultationpapers/CP75/CEIOPS-L2-Advice-Undertaking-specific-parameters.pdf

 3.55. The SCR is the difference between the basic own funds over the one year time horizon in the distressed scenario. This implicitly suggests that undertakings should analyse the difference between all component parts of the technical provisions under the stressed scenario, including the risk margin.

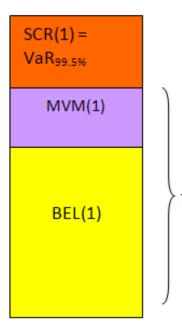
Definition of SCR

The above extracts lead to the following definition: the SCR for the one-year risk horizon is the Value-at-Risk for the first year plus the change in technical provisions (TP) in the subsequent years (suitably discounted), **conditional** on the first year being in distress.

```
SCR = VaR99.5%(1) + \DeltaTP(2) + \DeltaTP(3) + ... + \DeltaTP(n),
```

where n is the limit of run-off.

The Concept of Risk Horizon Perspective


Quantification Requirements- What do we need to compute SII metreics?

- For the calculation of the Technical Provisions, Market Value Margins and SCR for both the One-year Risk Horizon (and Ultimate Year Risk Horizon) for the aggregate of all long-tail LOB's and each LOB separately the following critical information is required:
 - Probability distributions of paid losses (liability stream) by calendar year (k =1,.,n) and their correlations, for each LOB and the aggregate of all LOB's
 - Probability distributions of total reserves for each LOB and the aggregate of all LOB's.
 - Probability distributions of the aggregate paid losses from calendar year k to calendar year n for each LOB and the aggregate of all LOB's. This is required for each k ranging from 1 to n, where complete run-off is achieved at the ultimate calendar year n
 - Conditional Probability distributions, conditional on the first (next) calendar year being in "distress".
- Armed with these distributions <u>any risk measure can be computed</u>, including VaR(k) for the paid losses (total loss) in calendar year k; and Market Value Margins, Technical Provisions and VaRs conditional on the first year in distress, for each LOB and the aggregate of all LOB's.

Risk Capital – One Year risk Horizon

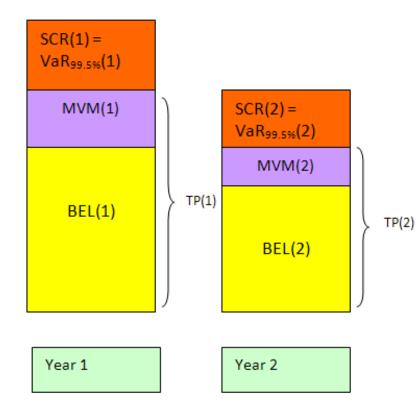
Simplest Case: Only One Year Runoff

 L_1 = projected losses for the year. This is a random variable.

$$BEL(1) = \frac{E(L_1)}{(1+d)^{0.5}}$$
 Where $d =$ interest rate. Losses are paid

uniformly through year, so we discount for half a year.

$$SCR(1) = VaR_{99.5\%}(L_1)$$
, i.e. $Pr(L_1 \le E(L_1) + SCR(1)) = 0.995$


MVM(1) is the cost incurred in having risk fund of SCR(1) available for the
 TP(1) year. It is paid to capital provider at end of year and so is discounted by a full year.

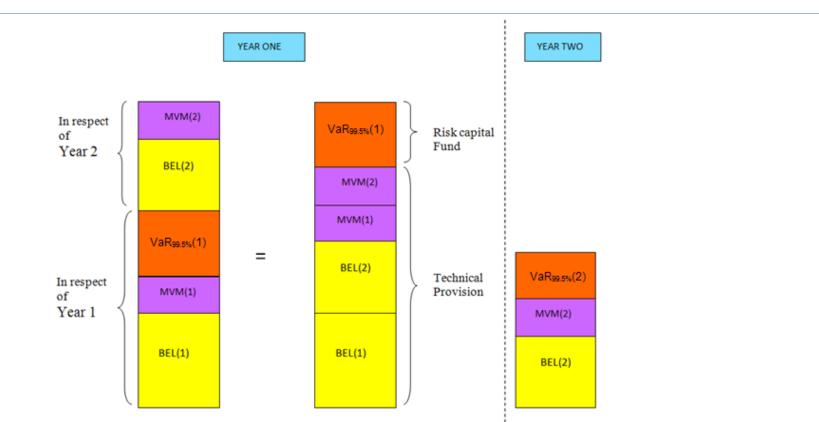
 $MVM(1) = \frac{SCR(1)*s}{(1+d)}$, if the interest on the risk fund is paid directly to capital provider, or $MVM(1) = \frac{SCR(1)*(s+d)}{(1+d)}$, otherwise.

TP(1) = BEL(1) + MVM(1). This is the Technical Provision and must be held in company own funds. We will also let, PV(k;d), or PV(k) be used to abbreviate the Present Value factor $\frac{1}{(1+d)^k}$

Risk Capital – One Year risk Horizon

Next Simplest Case: Two Year runoff, No correlation

 $BEL(1) = E(L_1) * PV(0.5)$ $BEL(2) = E(L_2) * PV(1.5)$

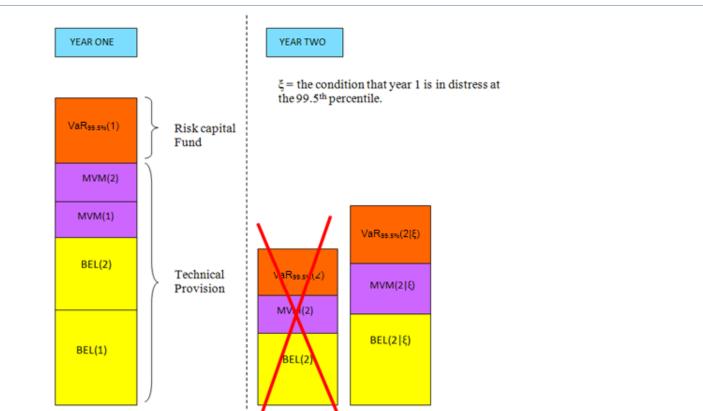

- $MVM(1) = VaR_{99.5\%}(1) * s * PV(1)$
- $MVM(2) = VaR_{99.5\%}(2) * s * PV(2)$

The Technical Provision (TP) at inception is the sum of the individual year TPs:

TP = TP(1) + TP(2)

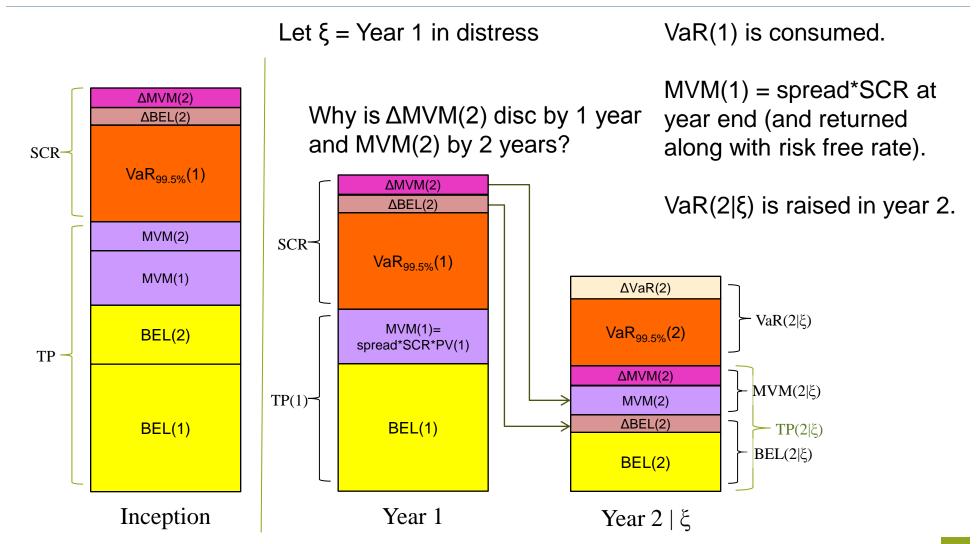
This amount needs to be available in company own funds to ensure that losses can be met up to a 99.5% or 1/200 risk level in each year. Aggregate losses up to the value of the mean are met out of *BEL* funds, excess losses are met from the *SCR* fund, access to which is financed by *MVM*.

Risk Capital – One Year risk Horizon

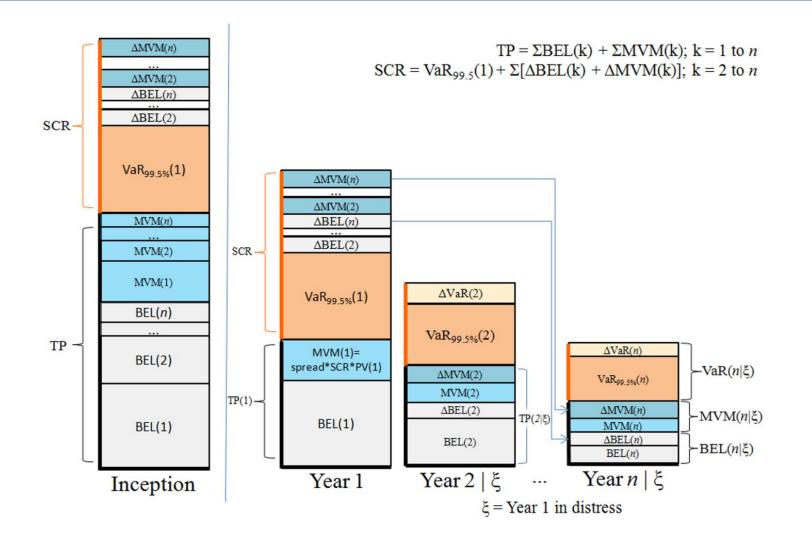

Two-year picture of accounts: In year 1 we require reserves to meet paid loss liabilities for years 1 and 2 and we also need to able to fund the cost of access to the risk capital funds for years 1 and 2, however we only need access to the year 1 risk fund. When year 2 begins our accounts reset, since any cost over-runs from year 1 were paid out of the risk fund and do not degrade our prepared reserves for year 2. *Provided the loss over-run is below* RC(1) = VaR_{99.5}(L_1).

Risk Capital – One Year Horizon

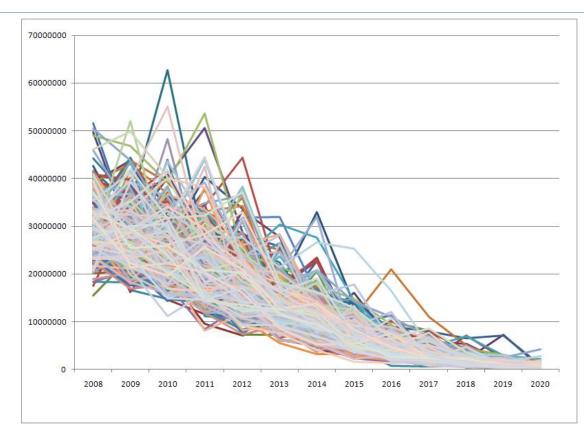
- This is fine, except for one thing:
 What if the distribution for the losses in year 2 has changed conditional on the losses in year one?
- Simply put, the previous picture assumes there is no correlation between the distributions for years 1 and 2. In other words, whatever the outcome observed after year 1 we are going to remain fixed on our previous course, full steam ahead


Typically calendar year distributions are positively correlated. The correlations are driven by parameter uncertainty.

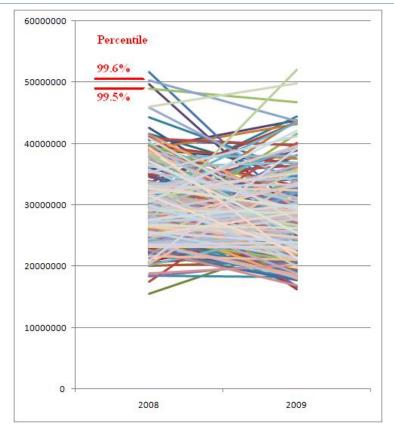
Risk Capital – One Year Horizon



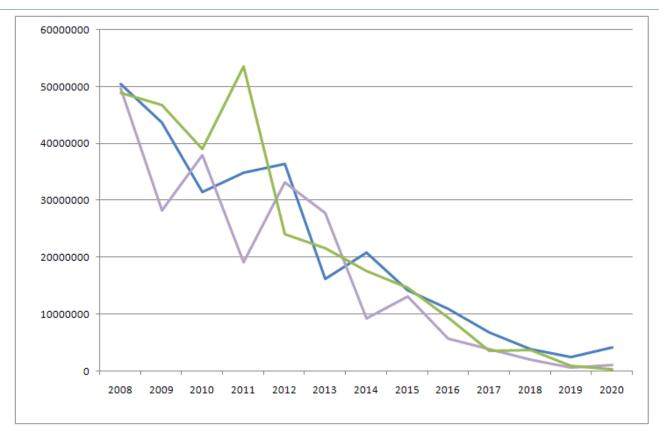
If year 1 is in distress at the 99.5th percentile, then our risk fund carries us over into year 2, but the conditional distributions are now different. Year 2 now must be re-evaluated in the light of conditional distributions and these increase the size of the BEL and the MVM, the cost of holding the risk fund. We need to include these adjustments in the year 1 risk fund.


Two-year runoff with first year in distress

N-year run-off (Correlated)

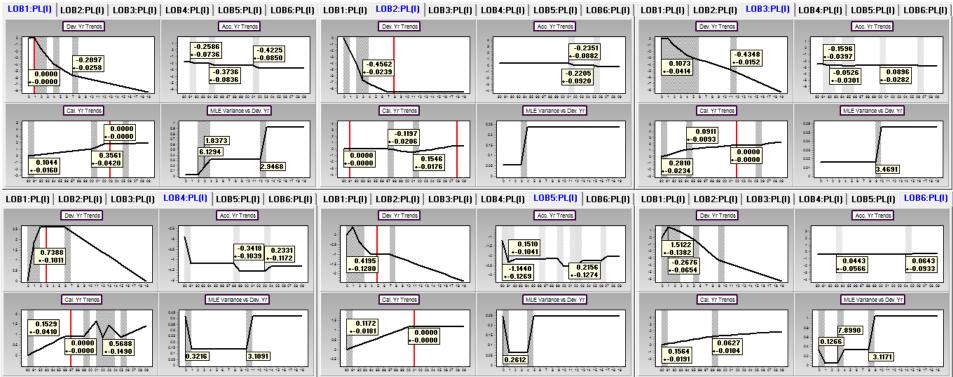


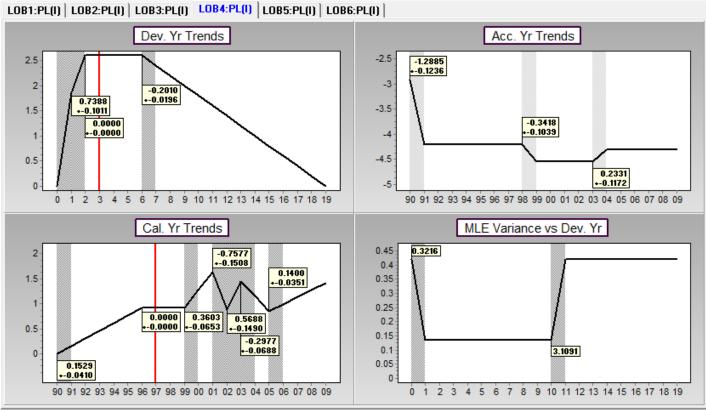
Conditional Statistics from Simulations


Begin with a large number of simulations of the entire forecast table. This provides an equal number of sample paths through all future calendar years.

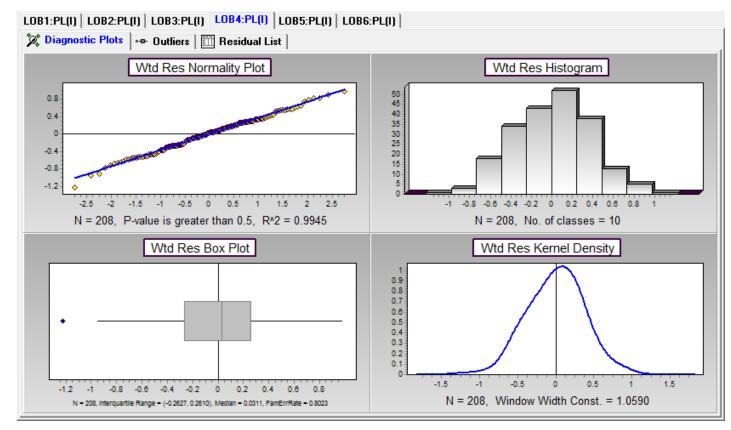
Conditional Statistics from Simulations

Determine the sample paths corresponding to the distress scenario. If this is "next year at 99.5th percentile", then these paths belong in the [99.5, 99.6) order interval.


Conditional Statistics from Simulations


Restricting attention to only these sample paths we can then calculate any conditional statistic, such as BEL(k)| ξ , MVM(k)| ξ , VaR(k)| ξ etc.

Trends and volatility are unique to each LOB


• LOB4 is the most volatile of the LOBs

Model for LOB 4

Diagnostics for LOB4 illustrating normality satisfied

• Forecast table for LOB4

- Black:
 - Fitted mean

• Blue:	
---------	--

- Observed
- Red:

StandardDeviation(log-normal)

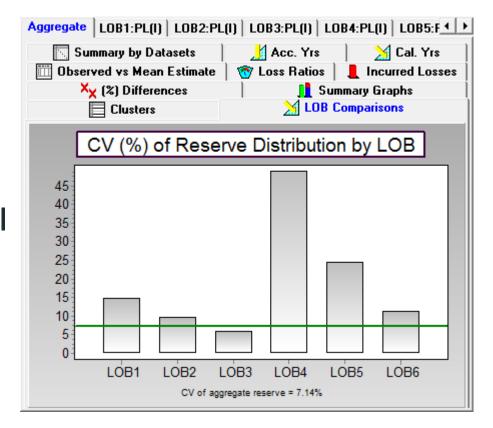
		Ac	cident	Period v	s Develo	opment F	Period				
	Cal. Per. Total	0	1	2	3	4	5	6	7	8	Γ
	3,048	16	68	162	186	214	247	284	268	254	
2004	3,086	40	63	132	243	350	233	115	110	107	
2004 2005 2006 2007 2008 2009 Cal. Per. Total ∢	2,127	14	87	209	240	276	319	368	347	329	Γ
2005	1,926	15	32	152	236	394	128	152	147	144	
2006	2,318	16	102	246	283	326	376	435	411	389	
	2,341	20	44	270	300	131	155	185	181	178	
	2,559	20	127	305	352	406	470	543	514	487	
2007	2,926	13	122	262	142	168	200	240	236	232	
	2,864	21	137	329	380	439	508	588	557	528	
2008	2,454	7	132	133	157	187	225	271	267	264	
	3,243	24	155	372	430	498	577	669	634	602	
2009	3,808	49	64	154	183	220	266	323	319	317	
	Total Fitted/Paid		2010	2011	2012	2013	2014	2015	2016	2017	
Cal. Per.	47,219		3,649	3,974	4,100	4,182	4,198	4,136	3,969	3,823	
Total	47,449		594	732	861	996	1,128	1,246	1,334	1,429	

SII metrics for the aggregate of six LOBs compared with SII metrics for the most volatile

LOB- risk diversification of SCR and TP

• Forecast table for the aggregate of the six LOBs

LOB1:PL(I) LOB2:PL(I) LOB3:PL(I) LOB4:PL(I) LOB5:PL(I) LOB6:PL(I) Aggregate Accident Period vs Development Period Cal. Per. Total A. 0 1 2 3 4 5 6 7 8 287.031 95,735 101.359 36,115 17,279 9,935 7.361 6.040 4.984 4,194 2004 271.241 94.027 112.007 39,137 12.810 17.635 6.816 741 621 536 280,482 97,461 115,058 41,050 19,640 11.298 8,438 6.946 5,758 4,298 2005 77,596 127,377 39,731 22,406 277,690 10,942 1.059 871 738 548 306,715 104,752 124,282 44,460 21,295 12,301 9,192 7,628 5,619 4,226 2006 362,204 142,541 128.978 46,573 17,422 1,592 1,175 985 718 541 100,486 118,963 42,746 9,023 6,662 319,815 20,666 12,018 4,955 3,780 2007 323,149 100,455 116,901 38,555 2,638 1,597 1.176 852 638 502 127.831 329.853 107.790 45.668 22.003 12,790 8.556 6.289 4.675 3,590 2008 348,822 122,154 114,366 5,190 2,822 1,754 1,138 812 612 496 109.831 344.119 130,910 47.000 22,729 11.857 7,994 5.912 4.426 3,430 2009 100.708 14,562 311.387 5,455 2,950 1,642 1.078 780 603 506 Total Fitted/Paid 2010 2011 2012 2013 2015 2016 2017 2014 Cal. Per. 4,601,940 243,927 118,931 76,350 51,163 37,784 28,882 22,533 18,015 Total 4.613.404 17,216 7,745 5,060 3,320 2,527 2,128 1,941 1,880 1 **T** ٠ 📄 Þ 1 Unit = \$1.000


Fitted mean

Black:

- Blue:
 - Observed
- Red:

Standard
 Deviation

- LOB4 is the most volatile of the six LOBs
- Aggregate CV is 7.14%
- Substantially more Solvency II risk capital required if LOB4 was written on its own. It has a CV of 49%

Liability stream by calendar year and calendar year correlations for the Aggregate of the six LOBs

Aggregate	LOB1:PL(I)	LOB2:PL	(I) LOB3:PL(I) LOB4:PL(I)	L I I	Aggrega	te LOB1:P	L(I) LOB2:F	PL(I) LOB3:	PL(I) LOB4	:PL(I) I 🔳		
🔟 Observed vs Mean Estimate 🛛 🔞 Loss Ratios						🔟 Observed vs Mean Estimate 🛛 🐨 Loss Ratios							
Lincurred Losses						L Incurred Losses Xx (%) Differences							
👖 👖 Sum	mary Graphs	📄 📃 CI	usters 📔 🔀	LOB Comparise	<u></u>	🔄 👖 Si	ummary Grap	ohs 📃	Clusters	🔀 LOB Co			
📃 Sun	nmary by Data	sets	🧾 Acc. Yrs	🔀 Cal. Y	'rs	S	Summary by [) atasets	🔰 Acc. '	Yrs 🔀	Cal. Yrs		
Summary	Risk Capita	Allocation	Correlation:	Correlations (• •	Summa	ary Risk Ca	pital Allocati	on Correlat	ions Correla	ations (💶		
	Cale	endar Yr	Summary	,		Rese	erve Fore	cast Cor	relations	Between	Periods		
Calendar	Mean	Standard	CV	Cum. Payment			(4	Aggregat	e - Cal. Ye	ears)			
Yr	Outstanding	Dev.	Outstanding	as % of total			2010	2011	2012	2013	2014 ^		
2010	243,927	17,216	0.07	34.98		2010	1	0.320725	0.318196	0.296910	0.2723		
2011	118,931	7,745	0.07	52.04		2011	0.320725	1	0.427020	0.407322	0.3785		
2012	76,350	5,060	0.07	62.98		2012	0.318196	0.427020	1	0.481196	0.4560		
2013	51,163	3,320	0.06	70.32		2012	0.296910	0.407322	0.481196	1	0.5027		
2014	37,784	2,527	0.07	75.74		2013	0.272319	0.378531	0.456023	0.502708	1		
2015	28,882	2,128	0.07	79.88		2014	0.236240	0.333324	0.411348	0.479875	0.5449		
2016	22,533	1,941	0.09	83.11		2015	0.193064	0.277063	0.352047	0.475875	0.5254		
2017	18,015	1,880	0.10	85.70		2010	0.153067	0.223763	0.294180	0.389858	0.3254		
2018	14,751	1,905	0.13	87.81		2017	0.118873	0.178258	0.294180	0.345492			
2019	12,378	1,978	0.16	89.59							0.4615		
2020	10,314	2,033	0.20	91.07	-	2019	0.092231	0.143331	0.205347	0.309547	0.4313 0.4099 T		
		1 Unit = 9	\$1,000			∢ □	111/3/115	11119437	1179171	11 784797	н <u>д</u> пчч •		

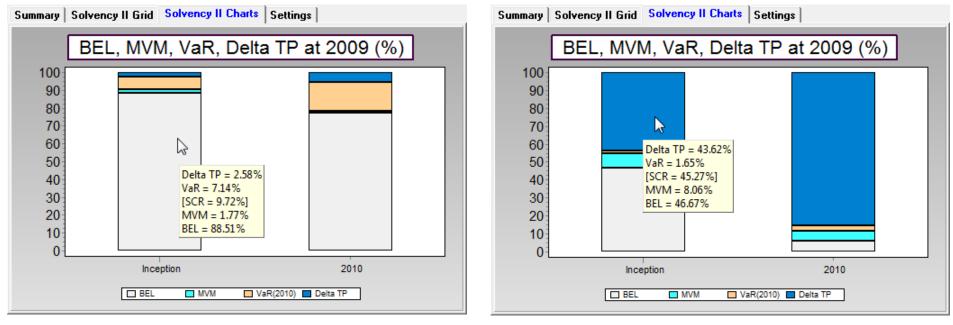
Liability stream by calendar year and calendar year correlations for LOB4- long tail with high correlations

× _× (%) D				curred Losses										
Acc.		🗙 (%) Differences 🛛 👖 Summary Graphs 🛛 🏹 Forecast Settings						│						
	Yrs 🚺	Cal. Yrs	🗰 Observe	ed vs Mean Estin	nate			🔀 Cal. Yrs		erved vs Mea				
Summary	Risk Capita	I Allocatior	Correlation	s Correlations (logs)	Summa	ary Risk Ca	pital Allocati	on Correlat	ions Correla	ations (lo			
	Cale	endar Yr	Summary	1		Res	erve Fore	cast Cor	relations	Between	Period			
Calendar	Mean	Standard	cv	Cum. Payment			(1	_OB4:PL(l) - Cal. Y	ears)				
Yr	Outstanding	Dev.	Outstanding	as % of total			2010	2011	2012	2013	2014			
2010	3,649	594	0.16	4.66		2010	1	0.494236	0.525858	0.545366	0.5563			
2011	3,974	732	0.18	9.74		2011	0.494236	1	0.601325	0.626761	0.6417			
2012	4,100	861	0.21	14.98		2012	0.525858	0.601325	1	0.678266	0.6966			
2013	4,182	996	0.24	20.32		2013	0.545366	0.626761	0.678266	1	0.7333			
2014	4,198	1,128	0.27	25.69		2014	0.556340	0.641704	0.696699	0.733333	1			
2015	4,136	1,246	0.30	30.97		2015	0.561181	0.648984	0.706382	0.745049	0.7703			
2016	3,969	1,334	0.34	36.04		2016	0.561237	0.650213	0.709177	0.749337	0.7761			
2017	3,823	1,429	0.37	40.93		2017	0.557348	0.646722	0.706616	0.747785	0.7757			
	3,701	1,538	0.42	45.66		2018	0.548954	0.637882	0.698039	0.739714	0.7683			
2018	3,701													
2018 2019	3,595	1,651	0.46	50.25		2019	0.539896	0.628170	0.688370	0.730362	0.7595			

One-year risk horizon Aggregate of six LOBs

- Aggregate Solvency II capital required (Technical Provisions + SCR) is the same as undiscounted BEL
- Bulk of SCR is the VaR for next year (2010)

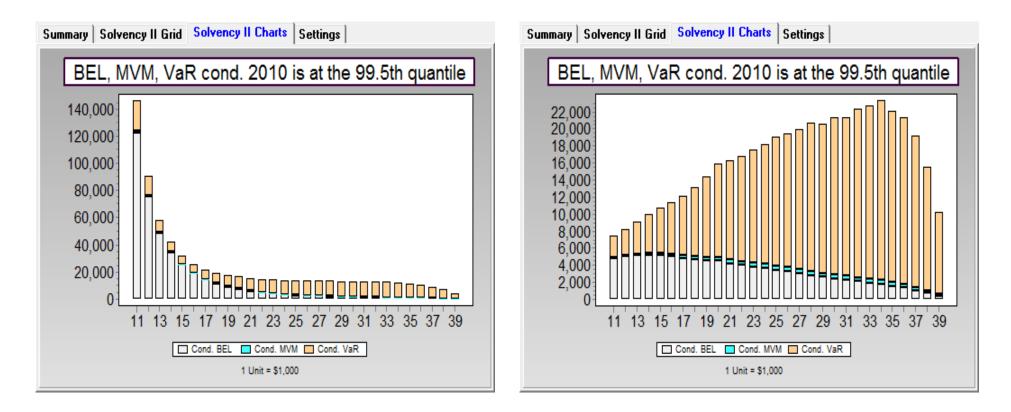
Metrics S	Metrics Summary			MVM, SCR and TP as				
	Value	%		% of BEL				
BEL	609,492	98.03		% of BEL	% of Undisc. BEL			
MVM	12,223	1.97	SCR	10.98	9.60			
Technical Provision	621,715	100.00	MVM	2.01	1.75			
			TP	102.01	89.16			
VaR(2010)	49,160	73.46	MVM + SCR	12.99	11.35			
Delta TP	17,761	26.54	TP + SCR	112.99	98.75			
SCR	66,922	100.00		112100	00110			
Technical Provision	621,715	90.28						
SCR	66,922	9.72						
TP + SCR	688,637	100.00						
1 Unit =								


• All calculations assume: risk free = 4% and spread = 6%

One-year risk horizon LOB4

- Solvency II capital required (Technical Provisions + SCR) for LOB4 is substantially higher than for undiscounted BEL
- Bulk of SCR is Delta TP –
 TP + SCR 112,939 100.00 1 Unit = \$1,000
 capital required to restore the balance sheet should the next year be in distress

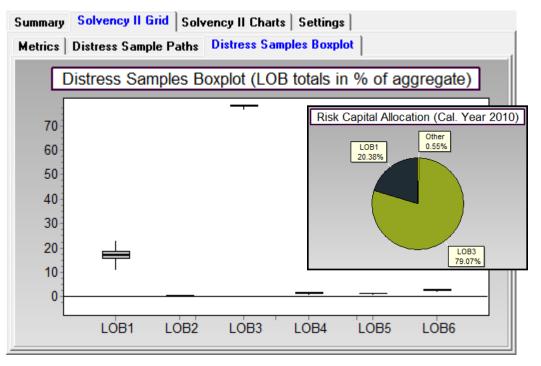
Metrics S	Metrics Summary			MVM, SCR and TP as				
	Value	%		% of BEL				
BEL	52,713	85.28		% of BEL	% of Undisc. BEI			
MVM	9,101	14.72	SCR	96.99	65.33			
Technical Provision	61,814	100.00	MVM	17.27	11.63			
			TP	117.27	78.98			
VaR(2010)	1,862	3.64	MVM + SCR	114.25	76.96			
Delta TP	49,263	96.36	TP + SCR	214.25	144.31			
SCR	51,125	100.00		211120				
Technical Provision	61,814	54.73						
SCR	51,125	45.27						
TP + SCR	112,939	100.00						


One-year risk horizon Comparing the aggregate of six LOBs with LOB4

Aggregate of six LOBs

LOB4 only

One-year risk horizon Comparing the aggregate of six LOBs with LOB4

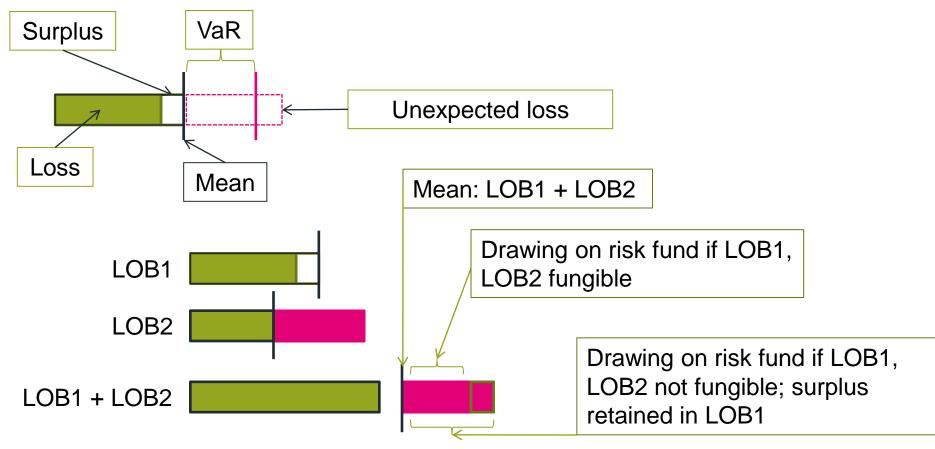

Aggregate of six LOBs

LOB4 only

One-Year risk horizon Aggregate of six LOBs

Which LOB is in distress if the aggregate is in distress?

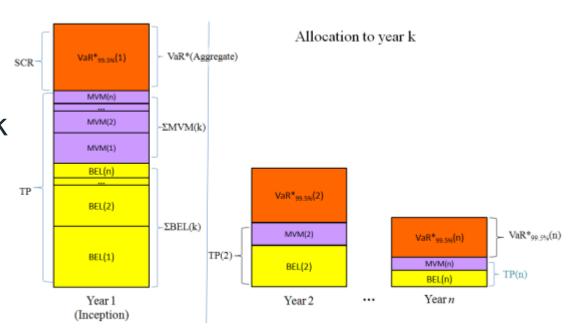
- LOB3 and LOB1 are in distress if the aggregate is in distress
- Why? LOB3 and LOB1 have the bulk of the payments in the distress year (inset).



Ultimate-year risk horizon Aggregate of six LOBs

- MVM is calculated based on the VaR 'to run-off' for each calendar year
- MVM is around 10x the one-year risk horizon's MVM

Metrics S	ummary	'	MVM, SCR and TP as % of						
	Value	%		BEL					
BEL	609,492	83.50		% of BEL	% of Undisc. BEL				
MVM	120,447	16.50	SCR	29.43	25.73				
Technical Provision	729,939	100.00	MVM	19.76	17.27				
			ТР	119.76	104.68				
Technical Provision	729,939	80.27	MVM + SCR	49.20	43.00				
SCR	179,393	19.73	TP + SCR	149.20	130.40				
TP + SCR	909,332	100.00	,						
1 Unit =	\$1,000								
ummary Ult. Risk H	lorizon Grid	Ult. Risl	k Horizon Charl	s Setting	J \$				
	ſ	BEL. M	VM. VaR*						
BEL, MVM, VaR*									


Fungibility and Ring-fencing by example – drawing on the risk fund

 In the case of fungibility the risk fund is smaller since it is expected to be supplemented by surpluses from other LOBs/portfolios.

Ultimate Year Risk Horizon

 Allocation of capital in the Ultimate Year Risk Horizon framework

Consistent estimates of prior year ultimates and Solvency II Risk Measures on updating

- Total reserve increases from year to year (with same accident (underwriting) exposure as previous year)
- What does a calendar year trend (inflation) of 5% imply in terms of estimates of prior year ultimates, loss reserves and premiums (per unit risk)?
- AXIOM

Calendar year trends (inflation) project (impact) both the prior and future accident (underwriting) years

Here is a simple example that illustrates the main ideas that reserve increases do not represent under-reserving. Indeed, they are necessary in order to maintain consistent estimates of prior year ultimates as the company writes new underwriting (accident) years).

Consistent estimates of prior year ultimates and reserve increases

- On a logarithmic scale the data were generated as follows
- Y(w,d) = 10 -0.3*d +0.05 (w+d-1) where w is the accident year 1,...,7 and d is the development year 0,..., 5.
- The numbers down each column increase by 0.05 on a log scale (approximately 5% annual). The numbers along each row decrease by 0.25 (=-0.3+0.05) on a log scale We have assumed that the paid losses run-off after five years. Even if this is the case for 1999, this may not be the case for subsequent accident years especially if inflation is 'high'

		<u></u>	ciuciit	CHOUV	s Develo	pinenti	cnou		
Cal. Per. T	otal	0	1	2	3	4	5	Reserve	Ultimate
1999	22,026	22,026	17,154	13,360	10,405	8,103	6,311	0	77,359
2000	40,310	23,156	18,034	14,045	10,938	8,519	6,634	6,634	81,325
2001	55,736	24,343	18,958	14,765	11,499	8,955	6,974	15,930	85,494
2002	68,999	25,591	19,930	15,522	12,088	9,414	7,332	28,835	89,878
2003	80,639	26,903	20,952	16,318	12,708	9,897	7,708	46,631	94,486
2004	91,085	28,283	22,026	17,154	13,360	10,405	8,103	71,048	99,331
Total Fitted	/Paid		2005	2006	2007	2008	2009	Total Reserve	Total Ultimate
Cal. Per. Total	358,796	i.	66,022	46,251	30,589	18,112	8,103	169,078	527,873
		-		1	Unit = \$1				Sector Covers In Case

Reserves and ultimates as at year end 2004

Reserves and ultimates as at year end 2005

		Ac	cident	Period v	s Develo	opment l	Period		
Cal. Per.	Total	0	1	2	3	4	5	Reserve	Ultimate
1999	22,026	22,026	17,154	13,360	10,405	8,103	6,311	0	77,359
2000	40,310	23,156	18,034	14,045	10,938	8,519	6,634	0	81,328
2001	55,736	24,343	18,958	14,765	11,499	8,955	6,974	6,974	85,495
2002	68,999	25,591	19,930	15,522	12,088	9,414	7,332	16,746	89,878
2003	80,639	26,903	20,952	16,318	12,708	9,897	7,708	30,313	94,486
2004	91,085	28,283	22,026	17,154	13,360	10,405	8,103	49,022	99,331
2005	95,755	29,733	23,156	18,034	14,045	10,938	8,519	74,691	104,424
Total Fitte	d/Paid		2006	2007	2008	2009	2010	Total Reserve	Total Ultimate
Cal. Per. Total	454,550		69,407	48,623	32,157	19,041	8,519	177,746	632,298
				1	Unit = \$1				

Reserve and Ultimate as at year end 2004 Reserve and Ultimate as at year end 2005

Accident	Mean	Ultimate		
Year	Reserve			
1999	0	77,359		
2000	6,634	81,325		
2001	15,930	85,494		
2002	28,835	89,878		
2003	46,631	94,486		
2004	71,048	99,331		
Total	169,078	527,873		

Accident	Mean	Ultimate		
Year	Reserve			
1999	0	77,359		
2000	0	81,325		
2001	6,974	85,495		
2002	16,746	89,878		
2003	30,313	94,486		
2004	49,022	99,331		
2005	74,691	104,424		
Total	177,746	632,298		

1	Ratio of year t ultimate to year t-1
	1.051267467
	1.051275745
	1.051266156
	1.051269499
	1.051277438
	1.051273016
	1.051266279
R	atio of Reserves

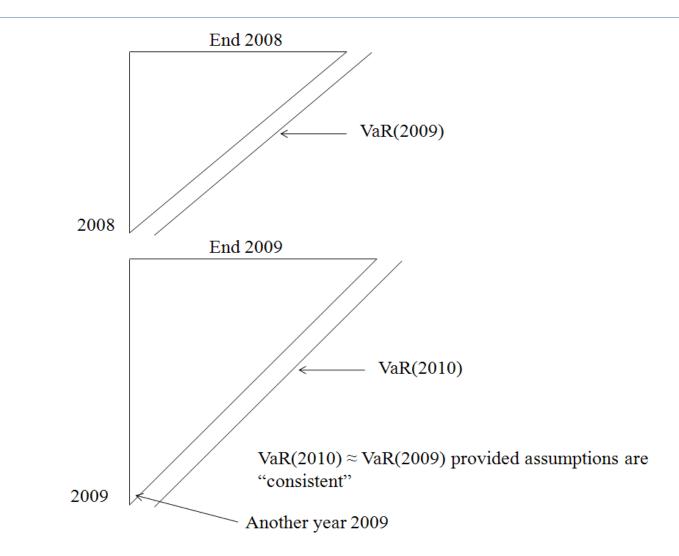
N.B.

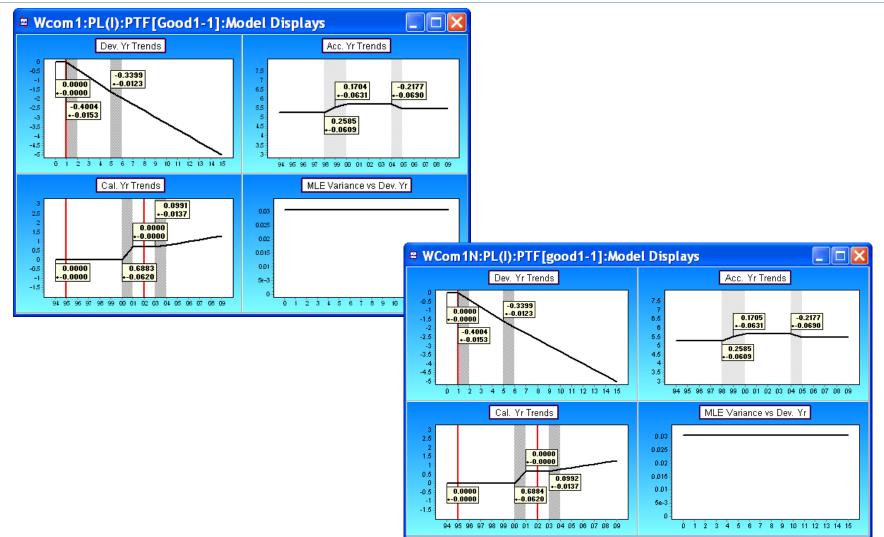
1. Estimtes of ultimate losses by accident year (1999- 2004) remain the same on update at end of 2005

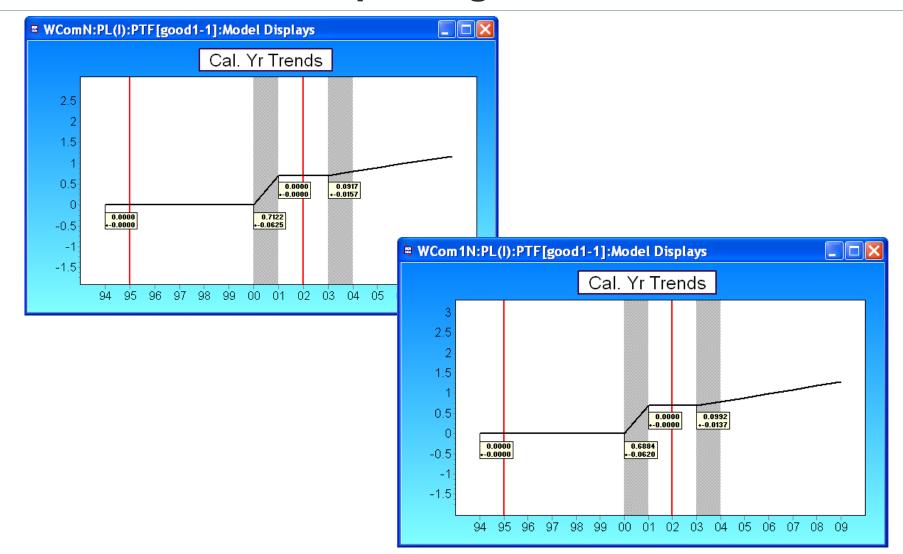
2. The ratio of ultimate for year t to year t-1 is 1.05

3. Increase in total reserves from 2004 to 2005 is 1.05

- Each year the company needs to increase its total reserves by at least 5%.
- The ultimates for prior accident years will remain consistent with each increase in total reserves.
- Each year the company needs to increase its premium (price) by at least 5%.
- Ultimates increase by at least 5% from one accident year to the next.
- These are not reserve upgrades


- Mack and related methods give inconsistent estimates of prior year ultimates (on updating) and inaccurate liability streams by calendar year.
- Bootstrapping the wrong model does not improve the model.


This was all explained on Wednesday!


Conditional Statistics on next calendar period-volatility in ultimates on updating.

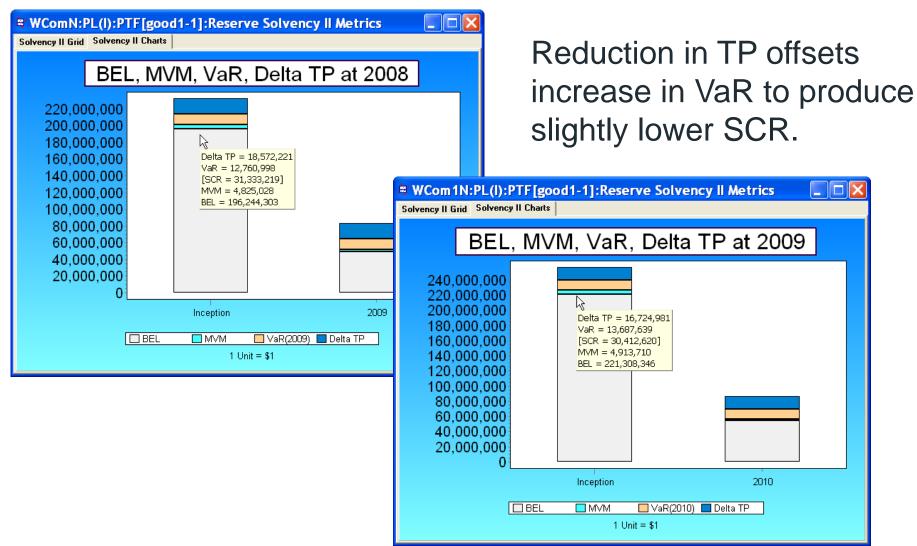
S	ummary	Correlations						
				Accider	nt Yr Summ	nary		
	A	Me	an	Standard	C	V	Cond. on Ne	xt Cal. Per.
	Acc. Yr	Outstanding	Ultimate	Dev.	Outstanding	Ultimate	Std.Dev. Data	+-Ult Data
	1977	0	762,544	0	****	****	0	0
	1978	15,636	904,658	563	0.04	0.00	0	563
	1979	43,506	1,063,438	1,345	0.03	0.00	670	1,166
	1980	80,544	1,082,678	2,346	0.03	0.00	1,299	1,954
	1981	132,421	1,134,615	3,879	0.03	0.00	2,120	3,249
	1982	197,504	1,142,118	6,832	0.03	0.01	3,600	5,806
	1983	295,738	1,191,438	9,513	0.03	0.01	4,948	8,124
	1984	533,391	1,557,619	17,902	0.03	0.01	9,135	15,396
	1985	1,044,410	2,217,858	36,157	0.03	0.02	18,420	31,114
	1986	1,812,559	2,823,737	64,160	0.04	0.02	33,062	54,986
	1987	2,964,299	3,460,499	108,346	0.04	0.03	56,671	92,343
	Total	7,120,007	17,341,201	234,706	0.03	0.01	113,886	205,224
					1 Unit = \$1			

Updating and monitoring

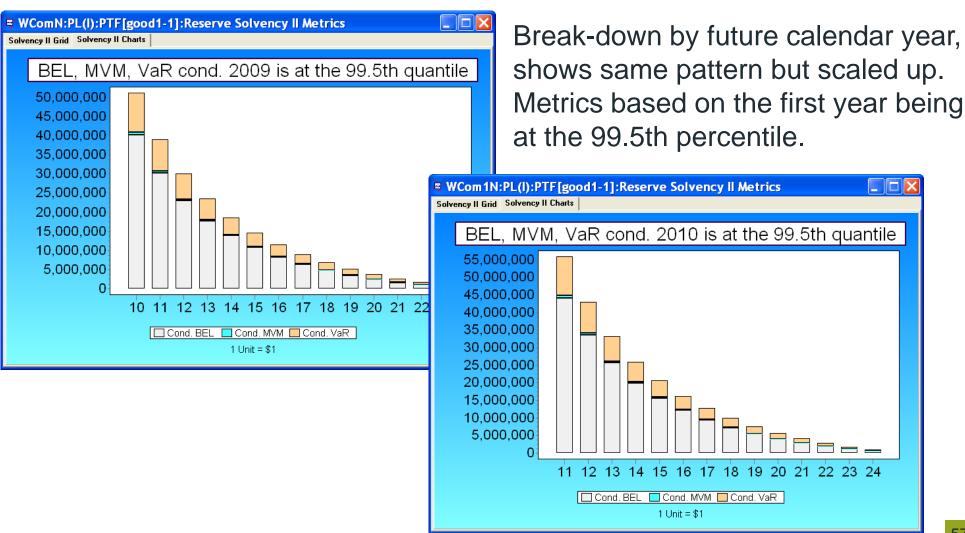
	🗟 WC	omN	I:PL(I):PT	F[good1-	-1]:	Reser	ve	PALD S	um 🔳				
	All Stati	istics	Cal. Yr: Total	Simulated V	alues	: Quanti	le S	Summary					
			S	Sample-B	ase	d Stat	is	tics					
	Cale	ndar	Sample	True	S	ample		Sample	True	<u>^</u>			
	Ye	ar	Mean	Mean	M	fedian		S .D.	S.D.				
	20	09	49,588,575	49,589,909	49	,357,193		4,444,220	4,447,017				
	To	tal	49,588,575	49,589,909	49	,357,193		4,444,220	***	~			
			1	1,000,000 Sir	èr V	Com	1 N		Elgood	1-11.Po	sor	ve PALD S	S
					_								
М	ean	R	eserve	e for	All 5	itatistics		al. Yr: Total	Simulated V	alues Qu	antile	Summary	
_								Sa	umple-Ba	ased St	tatis	stics	
	aler	109	r Year	2010					L				
S	anr	n	ximate		C	alendar		Sample	True	Sampl	e	Sample	Tru
J			Amal	/iy		2				24.1		a D	

Mean Reserve for Calendar Year 201 is approximately 10% higher than Mean reserve for 2009.

Sample-Based Statistics									
Calendar	Sample	True	Sample		Sample	True	^		
Year	Mean	Mean	Median		S.D.	S .D.			
2010	54,455,322	54,454,922	54,207,893		4,778,194	4,770,103			
Total	54.455.322	54.454.922	54.207.893		4.778.194	****	~		
	1	1,000,000 Sim	ulations. 1 Un	it	= \$1				

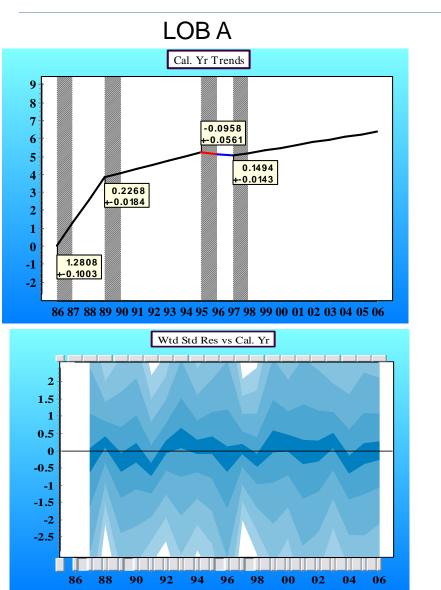

Consistent SII metrics on updating

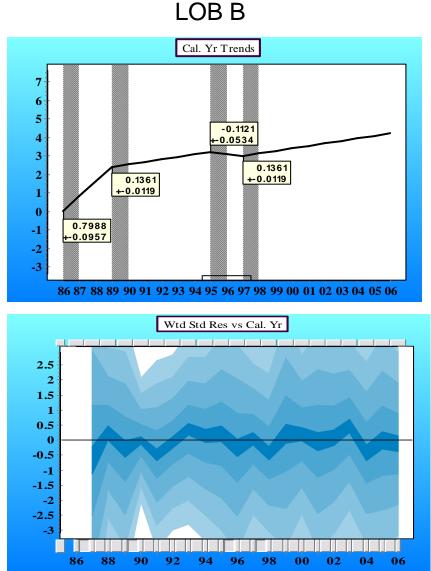
	🖶 WComN:PL(I):PTF[good1-1 📃 🗖 🔀							
	Solvency II Grid Solvency II Charts							
Summary Metrics Settings								
	Metric	s Summary						
	BEL	196,244,303	97.60%					
	MVM	4,825,028	2.40%					
	Technical Provision	201,069,331	100.00%					
	V aR(2009)	12,760,998	40.73%					
	Delta TP	18,572,221	59.27%					
	SCR	31,333,219	100.00%					
	TP + SCR	232,402,550						
		5.97% of BEL						
	10	Jnit = \$1						


WCom1N:PL(I):PTF[good1			
Summary Metrics Settings			
	Metrics Summary		
	BEL	221,308,346	97.83%
	MVM	4,913,710	2.17%
	Technical Provision	226,222,056	100.00%
	V aR(2010)	13,687,639	45.01%
	Delta TP	16,724,981	54.99%
	SCR	30,412,620	100.00%
	TP + SCR	256,634,676	
	SCR = 13.74% of BEL		
1 Unit = \$1			

Solvency II calculations with no discounting: MVM for 2010 is almost the same as for 2009, and so is SCR.

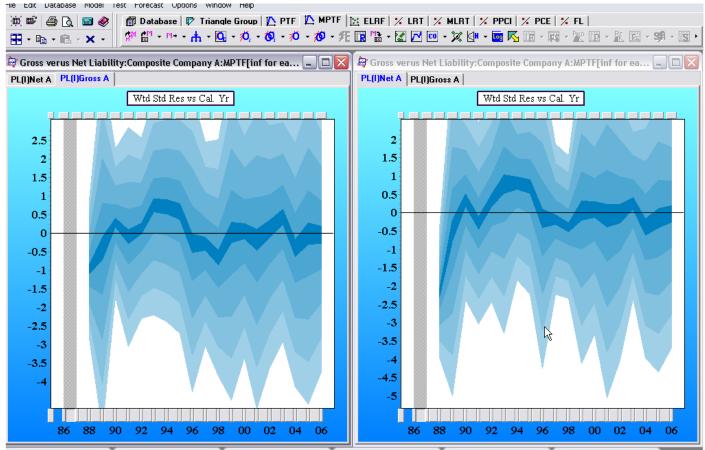
Consistent SII metrics on updating




Consistent SII metrics on updating

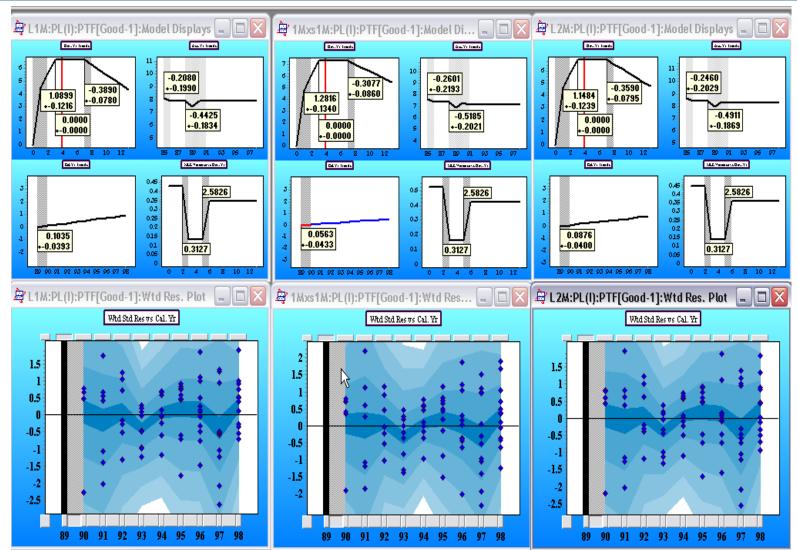
Two LOBs with common drivers- Example 1- same

calendar year trend structure and high process correlation of 0.85



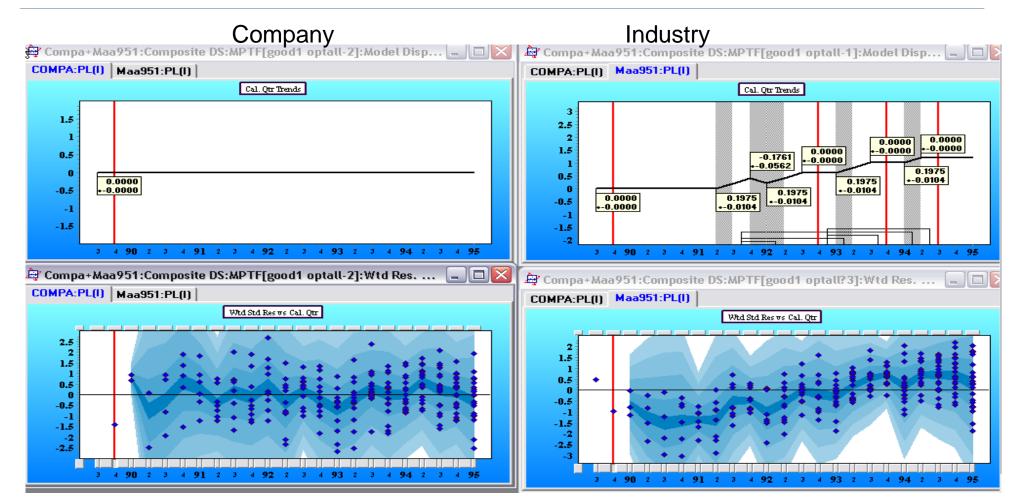
58

Two LOBs with common drivers- Example 1- same


calendar year trend structure and high process correlation of 0.85

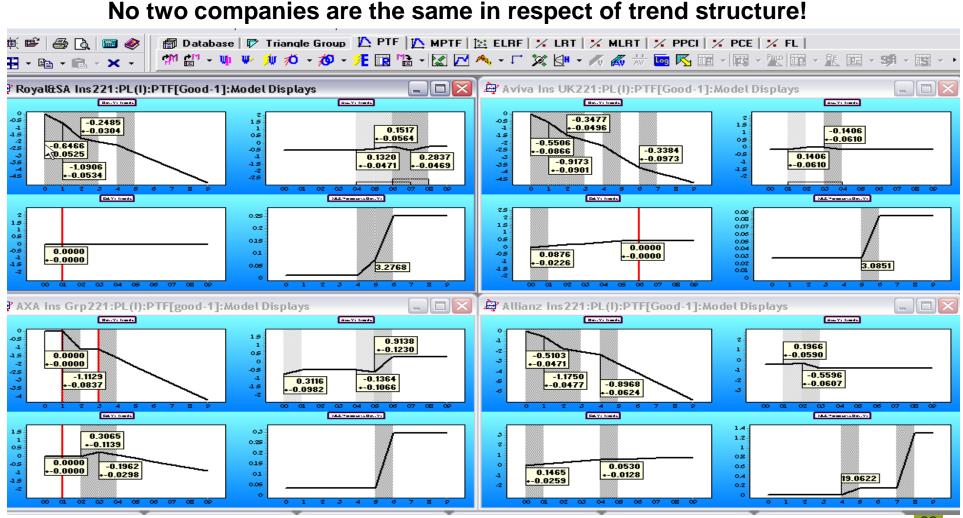
Process correlation adjusted for the average calendar year trend for each LOB = sum of trend correlation + process (volatility) correlation

Three LOBs with common drivers- Example 2

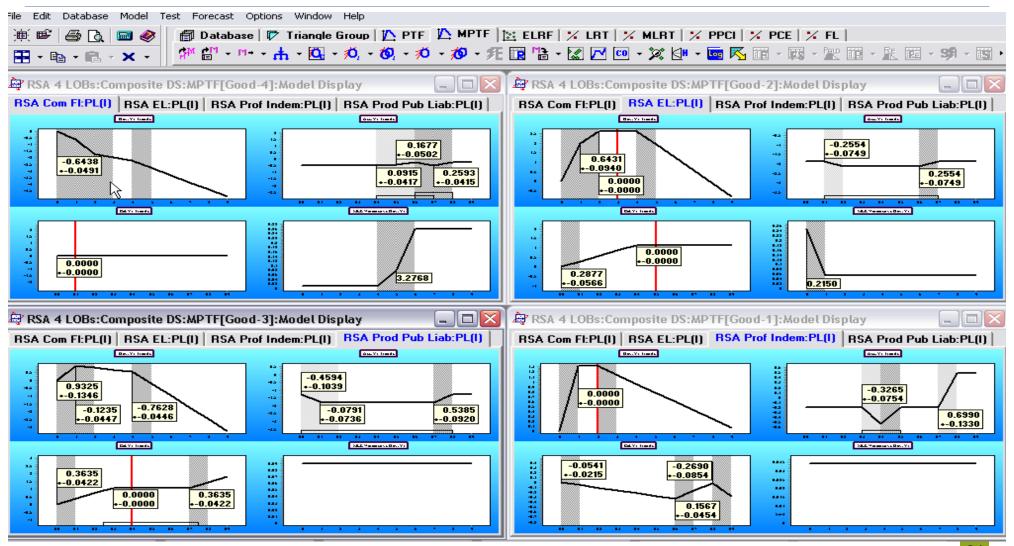

Identical trend structure and high process correlation exceeding 0.9!

Process correlation, trend correlation, same trend structure and reserve distribution correlation

- The above two examples are <u>not</u> different LOBs!
- The first is E&O D&O gross and net of reinsurance
- The second example involves three layers of a medical malpractice LOB; Lim 1Million, Lim 2Million and 1Mxs1M. The triangles are additive.
- Two LOBs written by the same company rarely have the same calendar year trend structure and often process correlation is either zero or very low. Reserve distribution correlation is much lower.
- No two companies are the same and process correlation often zero (for the 'same' LOB)
- No company is the same as the industry


Small company (exposure) versus industry auto BI New South Wales Australia

Calendar year trend for company is zero, whereas industry it is huge! (Company also has much higher process volatility)


S&P Syn Thesis 2010- RSA vs Allianz vs AXA vs Aviva Commercial:Fleets- each

normalized by number claims reported in dev period zero

S&P Syn Thesis 2010- RSA: Commercial Fleet vs Employers Liability vs

Professional Indemnity vs Product and Public Liability- no relationships!

There are four types of correlations between LOBs

1. Process (volatility) Correlation (that is, correlation between two sets of residuals)

2. Parameter Correlations

3. Same trend structure (especially along the calendar years)

4. Reserve distribution correlations

#1 induces #2. However, #3 is the 'worst' kind of relationship you can have between two LOBs as it results in very little, if any, risk diversification. It means that in terms of future calendar year trends the two LOBs move together, that is, a trend change in one LOB means a trend change in the other LOB, and is tantamount to the two LOBs having the same drivers. If two LOBs satisfy #3, then #1 and #2 are close to 1.

Fortunately, #3 we have only observed between layers of the same LOB, between segments of the same LOB, and between net of reinsurance and gross data (of the same LOB). #1, #2, #3 induce #4. #4 is typically much less than #1 in the absence of #3.

It is important to recognize that you cannot measure the relationship between two LOBs unless you first identify the trend structure and process variability in each LOB. It is only in the Probabilistic Trend Family (PTF) modelling framework that you can identify a parsimonious model that separates the trend structure in the three directions from the process variability.