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• The views expressed in this presentation are my personal 
views and in particular they should not necessarily be 
regarded as being those of my employer



22

Introduction

• Correlation and dependency structures are not intuitive 
concepts
– We have some intuition about the likelihood and the effect of 

a 1% increase in the interest rates on bonds with duration 3 
years

– We do not necessarily have an intuitive understanding of the 
meaning of a 30% correlation between two lines of business 
and its effect on the combined capital requirement. 

• Purpose of this presentation is to
– Improve our intuition of correlations and dependencies
– Investigate the link between common drivers and 

correlations and dependency structures
– Look at correlations and dependencies from different angles 

so that expert judgment can be improved
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Topics

1. Relation between common drivers and linear correlation
2. Measuring and comparing tail dependency
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1. Relation Between Common Drivers and 
Linear Correlation 
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Quiz

• We have two portfolios. 
• The distribution of annual un-inflated losses from each policy in each 

portfolio is assumed to have a lognormal distribution with 
– Mean 1,000
– 99.9th percentile 50,000
– Standard deviation 4,742

• All the policies in both portfolios are affected by only one common driver 
which acts on them in a similar way to that of inflation
– The value of this “inflation” factor is unknown
– The force of “inflation” is assumed to be normally distributed with 

mean 5% and standard deviation 6%
– The force of “inflation” is assumed to be independent of the size of the 

loss
• Have a guess about the correlation between the losses in these two 

portfolios
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Quiz

• Assume we had 10 years of historical loss data for the two 
portfolios
– Estimation error is very large

• Expert judgment
– High, medium, low correlation
– How do we decide whether it is low, medium or high?
– What value?
– What dependency structure? 

6
© 2010 The Actuarial Profession � www.actuaries.org.uk

www.actuaries.org.uk


77

Definitions and Reminder

• Reminder
• The first term can be interpreted as the un-diversifiable 

part of the variance and the second as the diversifiable
• Let          be identical and independent random variables 

which depend on the random variable
• The variable     could be any common driver of the 

random variables, e.g. inflation, catastrophic event, etc.
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Some Results

• The covariance of these two variables is

• But                       are i.i.d. random variables

• The correlation between these variables is

• In this case the correlation can be interpreted as the 
proportion of the un-diversifiable variance

• This formula can help us estimate the correlation
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Quiz: “back of the envelope calculation”

• For one policy
• Diversifiable standard deviation is very roughly 4,742
• Un-diversifiable standard deviation is very roughly

6%x1,000=60
• Diversifiable variance is very roughly 4,742^2
• Un-diversifiable variance is very roughly 60^2
• Correlation between two policies (not between portfolios)

is roughly 0.016%

• This compares with the exact correlation of 0.017%
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Variance of Portfolio

• Assume that the         represent the losses from a policy i 
and      the common driver. 

• Consider the losses            of a portfolio of n policies. The
variance of the portfolio is 

• The standard deviation per policy is 

• Note that the st.dev. per policy decreases as the portfolio 
increases and tends to the square root of the covariance 
as the number of policies goes to infinity
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Portfolios of n Policies

• Assume that the        represent the losses from the i-th
policy and      the common driver. 

• Consider the losses of two portfolios          of n policies 
each.

• Applying similar calculations as in previous slides you can 
show that

• Note that in this case the correlation increases as the size 
of portfolio n increases and 

• This is because the diversifiable process risk is diversified 
away and the un-diversifiable part of the variance 
increases as proportion of the total variance 
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Quiz: “back of the envelope calculation”

• For a portfolio of 5,000
• Diversifiable variance per policy is very roughly

4,742^2/5,000
• Un-diversifiable variance per policy is very roughly 60^2
• Correlation between two policies (not between portfolios)

is roughly 44.5%

• This compares with the exact correlation of 45.8%
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Quiz: Numerical Results
Standard Deviation per Policy
• The following graph shows the st.dev. per policy for different sizes of 

portfolio and values of the st.dev. of the force of inflation
• St.dev. per policy decreases but not according to the square root law 

and tends to a fixed value of the un-diversifiable risk
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Quiz: Numerical Results
Linear Correlations
• The correlations between two portfolios of equal 

size are shown in the graph
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Linear Correlation Between Two Portfolios
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Portfolios of Different Sizes

• In the more general case where one portfolio has n 
policies and the other m policies, the correlation is

• which again increases as the sizes of the portfolios 
increase and tends to 1 as n and m tend to infinity
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Example 1 (as in quiz)

• Consider a portfolio of policies
• The losses of each policy follow a lognormal distribution.

– with mean of 1,000 and 
– 99.9th percentile 50,000

• The policies are affected by a common factor which for convenience 
we call “inflation”. 
– The force of “inflation” d is assumed to follow a normal distribution.
– The “inflation” factor has a lognormal distribution. 
– The losses of a policy is denoted by 

– where X follows a lognormal distribution. 

• We assume that 
– the policies are not affected by any other common factor.
– given the value of the common factor the losses of each policy are 

independent and identically distributed
– the force of inflation and the size of losses are independent

deX ⋅
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Example 1

• The formulae for the variance and correlation of portfolios 
in the earlier slides apply and for this example it can be 
shown that

where d is the force of inflation 
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Example 1: Correlations between portfolios of different 
sizes

• The force of inflation is assumed to have mean 5% and 
st.dev. 6% and follow a Normal distribution

• The following table shows the correlation between losses 
of portfolios of different sizes

18
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1 100 1,000 5,000 10,000 100,000 1,000,000
1 0.0% 0.2% 0.5% 0.9% 1.0% 1.3% 1.3%

100 0.2% 1.7% 4.9% 8.7% 10.2% 12.5% 12.9%
1,000 0.5% 4.9% 14.5% 25.7% 30.1% 36.9% 37.9%
5,000 0.9% 8.7% 25.7% 45.8% 53.6% 65.7% 67.5%

10,000 1.0% 10.2% 30.1% 53.6% 62.8% 77.0% 79.0%
100,000 1.3% 12.5% 36.9% 65.7% 77.0% 94.4% 96.9%

1,000,000 1.3% 12.9% 37.9% 67.5% 79.0% 96.9% 99.4%
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Linear Correlation Estimator Distribution

• Historical data would not have necessarily been of great 
help

• In our example, if 
– portfolios consisted of 5,000 policies each
– the st. dev. of the force of inflation was 6%

• Then correlation would be 45%
• If we had 10 years data the distribution of the linear 

estimator is shown in the next slide
• The range is too wide to be of any use
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Linear Correlation Estimator Distribution

• 10 Years’ data
Distribution of Linear Correlation Estimator

10 Years Data
True Correlation is 45%
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Linear Correlation Estimator Distribution

• 20 Years’ data
• The range is narrower, but it does not look a lot better

Distribution of Linear Correlation Estimator
20 Years Data

True Correlation is 45%
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Reinsurance

• In our example assume that 
– each of the portfolios consist of 5,000 policies
– The st.dev. of inflation is 6% and normally distributed
– Losses in excess of 25,000 (99.6%-ile) are covered by reinsurance 

with no additional premiums, reinstatements, etc.
• Ignoring reinsurance the correlation is around 45%
• With the above reinsurance in place, correlation is around 67%
• In this case reinsurance reduces the diversifiable component of the 

variance and correlation increases
• If “inflation” was the common driver for large losses only, then the 

effect of reinsurance may be reduction in the correlation
• Correlations of gross and net losses may differ
• The effect of reinsurance depends on whether increases or decreases 

the proportion of the diversifiable component of the variance
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Example 2: Dependency Structures

• The correlations have been estimated, but nothing has been 
said about the dependency structure in this example.

• The dependency structure depends on the distribution of the 
common driver. The features of the distribution of the common 
factor are transformed into dependencies.

• For the numerical examples we assume that 
– the force of inflation has mean of 5% and standard deviation 

of 6%
– The size of the two portfolios are assumed to be of 50,000 

policies each.
• We consider two distributions for the force of inflation

– A Normal distribution and
– A Gamma distribution
– They both have the same mean and standard deviation
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Example 2: The distribution of the inflation factor 
(exp(d))

• Both distributions have force of inflation with mean 5% 
and st.dev. 6%
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Distribution of Inflation Factor
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Example 2: The dependency structures differ 
significantly for the two distributional assumptions

• The dependency structure is symmetric for normal force of inflation 
and has stronger upper tail dependency for lognormal force of inflation

• Both copulas have very similar linear correlations of about 90%
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More than One Common Drivers

• In reality, different portfolios or different lines of business 
are not affected only by a single common factor

• Policies within the same line of business may have their 
own common drivers which affect only this line of business

• In addition to those drivers there may be common drivers 
which affect more than one line of business

• The interpretation of the linear correlation as the 
percentage of the un-diversifiable variance out of the total 
variance still applies
– Demonstrated by the following example
– Similar results hold for other types of common driver 
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Example 3: Two portfolios each with its own common 
drivers and a common driver affecting both portfolios

• Portfolio A: Losses     from each policy 
– have mean      and variance 
– a common driver affects all policies of portfolio A only. The 

effect of this driver is that the mean of each policy is the 
same for all policies and becomes a r.v. with mean       and 
variance

• Portfolio B: Losses       from each policy 
– have mean      and variance 
– a common driver affects all policies of portfolio B only. The 

effect of this driver is that the mean of each policy is the 
same for all policies and becomes a r.v. with mean       and 
variance

• A driver      affects policies of both portfolios and the losses for 
portfolio A and B become          and         respectively

1Aµ 2
1Aσ

2Aµ
2

2Aσ

1Bµ 2
1Bσ

2Bµ
2

2Bσ

iX

iY

Θ
iX⋅Θ iY⋅Θ
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Example 3: Two portfolios each with its own common drivers 
and a common driver affecting both portfolios

PORTFOLIO A

, 1][ AiXE µ= 2
1][ AiXV σ=

Driver affecting only 
policies in portfolio A 
makes mean a random 
variable

21][ AAE µµ =
2

21][ AAV σµ =

PORTFOLIO B

Driver affecting only 
policies in portfolio B 
makes mean a random 
variable

1][ BjYE µ= 2
1][ BjYV σ=

21][ BBE µµ =
2

21][ BBV σµ =

Driver       
affecting both 
portfolio A and 
portfolio B

ΘiXΘ
jYΘ
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Example 3 Results: Two portfolios each with its own common 
drivers and a common driver affecting both portfolios

• If Portfolio A has n policies and portfolio B has m policies, after some 
calculations similar to those in earlier slides it can be shown that the 
correlation between the two portfolios is

• Note that the correlation does not tend to 1 as n and m go to infinity
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Numerical Example 3: Two portfolios each with its own common 
drivers and a common driver affecting both portfolios

PORTFOLIO A 
(10,000 policies)

1][ AiXE µ=

Driver affecting only 
policies in portfolio A 
makes mean a random 
variable

000,1][ 21 == AAE µµ
22

21 100][ == AAV σµ

PORTFOLIO B 
(10,000 policies)

Driver affecting only 
policies in portfolio B 
makes mean a random 
variable

1][ BjYE µ=
22

1 740,4][ == BjYV σ

000,1][ 21 == BBE µµ
22

21 150][ == BBV σµ

Driver       
affecting both 
portfolio A and 
portfolio B

Θ

iXΘ
jYΘ
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Example 3 Results: Two portfolios each with its own common 
drivers and a common driver affecting both portfolios

• Substituting the numbers in the following formula

• Have a guess if n=m=infinity
• Correlation = 19%
• Note that we have not said anything about the distributions. The linear 

correlation here depends only on the first two moments of the distributions 
involved and the size of the portfolio
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Relation Between Common Drivers and Linear Correlation
Conclusion

• Linear correlations are about the contributions of the different
sources of volatility to the total volatility (variance)  

• The subjective expert judgment may be assisted if we
– Identify all the common drivers
– Estimate the contribution of each of them to the variance of 

the portfolios
– Estimate the diversifiable part of the volatility by taking to 

account the size of the portfolios
– Compare the variance due to the driver common to both 

portfolios to the other components of the variance
• Note that the above discussion applies to linear correlation
• The distribution of the common driver(s) affect the dependency 

structure and tail dependency. 
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2. Measuring and comparing tail 
dependencies
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Alternative Ways of Looking at Dependencies 

• How the mass of probability at the tail of a dependency 
structure compares with the mass of probability at the 
tail when assuming independence?

• Tail dependence: Given that a loss is higher than the 1 
in 100 for one LoB what is the probability of a loss 
higher than the 1 in 100 in another LoB?

• Given a dependency structure and given that we have 
the 1 in 100 loss for one LoB, how much higher is the 
probability of having a loss greater than the 1 in 100 in 
another Lob compared to that assuming 
independence?

34
© 2010 The Actuarial Profession � www.actuaries.org.uk

www.actuaries.org.uk


3535

Increase in Mass of Probability in a 
Quadrant

• If random variables were independent 1% of dots (10 
dots) would be in the top right square (subject to 
simulation error)

• We can count more than 10 dots in the top right square
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Increase in Mass of Probability in a Quadrant –
Theoretical Answer

• What is the probability that r.v. X will be higher than the 
u(*100)-th percentile and variable Y higher than the 
v(*100)-th percentile

• If independent then (1-u)*(1-v)
• If dependency is given by the copula C(u,v), then 
1- (C(u,1)+C(1,v)-C(u,v))= 1-u-v+C(u,v)
• Ratio of the two is
(1-u-v+C(u,v))/((1-u)(1-v))
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Increase in Mass of Probability in a Quadrant –
Theoretical Answer Explanation

• The probability in the whole square is 1
• The probability to the left of v is v
• The probability below u is u
• The probability in the area excluding the blue square is u+v-C(u,v) because 

we have double counted the probability in the square with the crossed lines
• The probability in the blue square is 1 – u – v +C(u,v)

u

v
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Increase in Mass of Probability in a Quadrant

• We could assume that u=v
• For example the 1 in 100 events: u=v=0.99
• If the two r.v. were independent then the probability that 

both exceed their 99-th percentile is 0.01x0.01=0.0001 
• If the two r.v. were fully dependent then the probability 

that both exceed their 99-th percentile is 0.01
• As the dependence increases the probability in the top 

right 1% quadrant will increase from 0.0001 to 0.01. As 
we move from independence to full dependence the mass 
of probability in the top 1% quadrant will become 100 
times higher. 

• How fast this increase happens depends on the 
dependency structure
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Increase in Mass of Probability in top right 1% 
Quadrant: Examples

• Increase is faster for Clayton and Gumbel and slower for Normal
• For example, for Kendal’s tau of 0.5 the mass of probability in the top 1% 

quadrant increases (compared to that under independence) 28 times 
under Gaussian dependence, 59 times for the Gumbel copula and 71 
times for the Clayton copula

Ratio of probabilities in the upper 1% square compared to independence
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Tail Factor

• The quantity we examined in the previous slides should 
not be confused with the coefficient of tail dependence

• We examined how many times higher the mass of 
“probability” at the top right quadrant of a copula is 
compared to the independent copula. This is given by

(1-2u+C(u,u))/((1-u)(1-u))
• The coefficient of tail dependence is defined as 

• For the Normal copula this coefficient is 0 for any 
correlation less than 1, while it is positive for the Gumbel, t 
and Clayton copulas

• We did not take the limits

u
uuCuuFXuFY uXYu −

+−
=>> −− →

−−
→ 1

),(21lim)](|)(Pr[lim
1
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Measuring and comparing tail dependency
Conclusion

• The probabilities of joint events in the different quadrants 
of a copula could be used to
– improve our understanding of the different copulas
– compare different dependency structures and ensure 

consistency
– help expert judgement
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Things to take with you

1. Linear correlation depends on the percentage contribution 
of the common drivers to the total variance
– Correlation depends on the size of the portfolios
– The features of the distribution of the common factors 

translates into dependency structure
2. The probabilities of joint events in the different quadrants 

of a copula could be used to understand and compare 
copulas  

3. Your personal belongings
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Questions or comments?

Expressions of individual views by 
members of The Actuarial Profession 
and its staff are encouraged.
The views expressed in this presentation 
are those of the presenter.
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