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1. Scottish Ministers’ Widows’ Fund

•Once in Edinburgh discussing life and pension insurance, it seems quite
natural to recall that the first modern insurance fund, The Scottish
Ministers’ Widows’ Fund, was established right here.

•Ministers Robert Wallace and Alexander Webster along with Colin
Maclaurin, Professor of Mathematics at Edinburgh achieved to create
the first viable insurance scheme for widows and children of deceased
ministers of the Church of Scotland in the mid 1700.



2. Abstract

•We analyze optimal consumption and portfolio choice when the agent
takes the market as given.

• Preferences are vital to our approach. First we recall how the results
look like for the conventional additive and separable expected utility
model, and we indicate that this model has problems in a temporal con-
text.

•We then consider recursive utility, which in contrast has an axiomatic
underpinning. With this in place, the anomalies met by the expected
utility approach disappear.



• It follows from our model how aggregate consumption in society can be
as smooth as implied by data, and at the same time be consistent with
the relatively large, observed growth rate.

•We look at implications for pension insurance, as well as risk premia
and the equilibrium short-term interest rate in the associated equilib-
rium model.

• Since the recursive model fits market data much more convincingly than
the conventional model, this leaves more credibility to the former rep-
resentation, and more weight to recommendations based on it.



3. Introduction

• The framework of this discussion is the Life Cycle Model.

• This model is useful when it comes to analyzing ”optimal” pension plans
(and life insurance contracts) where the benefits are state dependent.

• The viewpoint is that of the pension insurance customer.

•We compare basic results from two different specifications of preferences:
Expected utility (EU), and recursive utility (RU).



4. The problem

• Consider an individual (U, e), with utility function U(c) for a life-time
consumption stream c = {ct, 0 ≤ t ≤ τ}, and with an endowment
process e = {et, 0 ≤ t ≤ τ}.

•Here U : L+→ R, where

L =
{
c : ct is Ft-adapted, and E

( ∫ τ

0
c2
sds
)
<∞

}
.

• For a price πt of the consumption good, the problem is to solve

sup
c∈L

U(c), (1)

subject to

E
{∫ τ

0
πtct dt

}
≤ E

{∫ τ

0
πtet dt

}
:= w. (2)



• The quantity πt is also known as the ”state price deflator”, or the Arrow-
Debreu prices in units of probability.

• State prices reflect what the representative consumer is willing to pay
for an extra unit of consumption; in particular is πt high in ”times of
crises” and low in ”good times”.

• The pension insurance element secures the consumer a consumption
stream as long as needed, but only if it is needed. (This makes it pos-
sible to compound risk-free payments at a higher rate of interest than
rt.)

• The dynamic equation for the wealth Wt of the agent is the following

dWt =
(
Wt(ϕ

′
t νt + rt)− ct

)
dt + Wtϕ

′
tσt dBt, W0 = w. (3)



•Here
νt = excess returns on the risky assets over the risk-free asset,
ϕt = fractions of wealth invested in the various risky securities, and
σt = volatilities of the risky assets in units of the prices of these assets.

5. Expected utility

• The preference structure of the representative agent is, in the conven-
tional model (expected utility):

U(c) = E
{∫ τ

0
e−δtu(ct)dt

}
. (4)

•Here u(c) = 1
1−γc

1−γ. This is the CRRA utility function.

• γ = relative risk aversion, δ = impatience rate.



• The problem we want to solve is (1) subject to the budget constraint
(2). The Lagrangian for this problem is

L(c;λ) = E
{∫ τ

0

(
u(ct, t)dt− λπt(ct − et)

)}
(5)

• For expected utility, the solution technique we use is Kuhn-Tucker, with
a Lagrange function, reducing the problem to an unconstrained maxi-
mization problem.

• Then we find the first order condition using directional derivatives in
function space (Gateau-derivatives), and finally we determine the La-
grange multiplier that yields equality in the budget constraint.

• Finally we have the solution by the Saddle Point Theorem. Equivalently,
we could have employed dynamic programming.



• The optimal consumption satisfies the dynamics

dc∗t
c∗t

=
(rt − δ

γ
+

1

2

1

γ
(1 +

1

γ
) η′t · ηt

)
dt +

1

γ
η′t · dBt. (6)

• The solution can be written

c∗t = c0 e
1
γ{
∫ t

0 (rs−δ+1
2η
′
s·ηs)ds+

∫ t
0 η
′
s·dBs}; t ≥ 0.

•Here the state price deflator has the representation

πt = e−
∫ t

0 rsdsξt = e−
∫ t

0 rsds e−
1
2

∫ t
0 η
′
sηsds−

∫ t
0 ηsdBs, (7)

where ηt = the market-price of risk. The Sharpe ratio is
η = (µM − r)/σM > 0 (e.g., with only one risky asset).



•Alternatively the optimal consumption can be written as

c∗t = c0π
−1
γ

t e
−δγt = c0ξ

−1
γ

t e
∫ t

0
1
γ(rs−δ)ds. (8)

• Consider a ”shock” to the economy, via the state price πt.

• It is natural to think of this as stemming from a shock to the term∫ t
0 ηsdBs via the process B.

•Assuming η positive, this lowers the state price and increases optimal
consumption.

• In equilibrium this leads to the mutuality principle. It holds for all
agents - they are all affected in the same ”direction” by market move-
ments.



• The optimal investment policy that goes along with this is the Mossin-
Samuelson-Merton formula

ϕ =
1

γ
(σtσ

′
t)
−1νt.

Here ϕ signifies the agent’s fraction of wealth in the risky securities.

• Table 1 presents the summary statistics of the data used in the Mehra
and Prescott (1985)-paper:

Expectation Standard dev. covariances

Consumption growth 1.81% 3.55% σ̂cM = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 1: Key US-data for the time period 1889 -1978. Continuous-time compounding. κ̂M,c =
.4033.



• Consider an average household: Assuming a relative risk aversion of
around two, the optimal fraction in equity, resulting from this standard
formula, is 119%, using the summary statistics of Table 1, and assuming
one single risky asset, the S&P-500 index itself.

• In contrast, depending upon estimates, the typical household holds be-
tween 6% to 20% in equity.

• Conditional on participating in the stock market, this number increases
to about 40% in financial assets (some recent estimate says 60%).

•One could object to this that the Eu-(equilibrium) model is consistent
with a value for γ around 26 only. Using this value instead, the optimal
fraction in equity is down to around 9%.



• In isolation this seems reasonable enough. However, such a high value
for the relative risk aversion is considered implausible.

• In order to illustrate what a risk aversion of 26 really means, consider a
random variable X with probability distribution given in Table 2:

• The equation
E{u(100 + X)} := u(100 + m)

defines its certainty equivalent m at initial fortune 100 for the utility
function u.



• If u is of power type u(x) = x(1−γ)

1−γ , the certainty equivalent m is illus-
trated in Table 2 for some values of γ.

X 0 100

Probability 0.5 0.5

γ = 0 m = 50.00
γ = 1 m = 41.42
γ = 2 m = 33.33
γ = 3 m = 26.49
γ = 4 m = 21.89
γ = 5 m = 17.75

γ = 17 m = 4.42
γ = 20 m = 3.71
γ = 22 m = 3.55
γ = 26 m = 2.81

Table 2: Certainty equivalents of X for CRRA-utility.



6. Pensions

• Let Tx be the remaining life time of a person who entered into a pension
contract at age x. Let [0, τ ] be the support of Tx.

• The single premium of an annuity paying one unit per unit of time is
given by the formula

ā
(r)
x =

∫ τ

0
e−rt

lx+t

lx
dt, (9)

where r is the short term interest rate.

• The single premium of a ”temporary annuity” which terminates after
time n is

ā
(r)
x:n̄| =

∫ n

0
e−rt

lx+t

lx
dt. (10)



• Consider the following income process et:

et =

{
y, if t ≤ n;

0, if t > n
(11)

•Here y is a constant, interpreted as the consumer’s salary when working,
and n is the time of retirement for an x-year old.

• Equality in the budget constraint can then be written

E
(∫ τ

0
(et − c∗t )πtP (Tx > t)dt

)
= 0.

(The Principle of Equivalence).



• The optimal life time consumption (t ∈ [0, n]) and pension (t ∈ [n, τ ])
is

c∗t = y
ā

(r)
x:n̄|

ā
(r̃)
x

exp
{

(
1

γ
(r − δ) +

1

2γ
η2)t +

1

γ
ηBt
}
, (12)

provided the agent is alive at time t (otherwise c∗t = 0).

• The initial value c0 is then

c0 = y
ā

(r)
x:n̄|

ā
(r̃)
x

where

•
r̃ = r − 1

γ
(r − δ) +

1

2

1

γ
(1− 1

γ
) η′η. (13)



• The premium intensity pt at time t while working is given by pt = y−c∗t .
This is an Ft- adapted process.

• This shows that the same conclusions hold for the optimal pension as
with optimal consumption with regard to the sensitivity of stock market
uncertainty.

• The expected utility model may be taken as support for unit linked
pension insurance, or, defined contribution (DC)-plans. Here all the
financial risk resides with the customers.



•One may wonder: Are ordinary pension insurance customers best equipped
to carry aggregate financial risk? See Aase, K. K., (2015). Life Insur-
ance and Pension Contracts I: The Time Additive Life Cycle Model.
ASTIN Bulletin, Volume 45(1), pp 1-47.

•Recall the theory of syndicates: In a Pareto optimum is the risk tolerance
(rtλ) of the syndicate (i.e., an insurance company) the sum of the risk
tolerances (rti) of the individual members of the syndicate.

rtλ(W ) =

n∑
i=1

rti(ci(W )).

• The interpretation of this result is precisely that the risk carrying ca-
pacity of a syndicate is larger than that of any of its members.

• Expected utility in a temporal context lacks an axiomatic underpinning
(Mossin (1969)).



7. Recursive Utility

•Recursive utility was first formulated in the setting of discrete time.
The basic notions of separating time and risk preferences are roughly
summarized as follows:

• First consider a riskless economy, where preferences over consumption
sequences (c0, c1, · · · , cT ) are characterized with Koopmans’ (1960) time
aggregation g(·, ·), where

U(ct, ct+1, · · · , cT ) = g(u(ct), U(ct+1, ct+2 · · · , cT )).



• This framework is then generalized to evaluate uncertain consumption
sequences by replacing the second argument in g(·, ·) by the period t
certainty equivalent of the probability distribution over all possible con-
sumption continuations.

• The resultant class of recursive preferences may be characterized as

U(ct, ct+1, · · · , cT ) = g(u(ct),mt+1(U(ct+1, ct+2 · · · , cT )),

• (This is not behavioral economics.)



•Here mt+1(·) describes the certainty equivalent function based on the
conditional probability distribution over consumption sequences begin-
ning in period t + 1. We use the notation Vt = U(ct, ct+1, · · · , cT ).

•

Vt = g(u(ct),mt+1) =
(

(1− β)c
1−ρ
t + β

(
Et(V

1−γ
t+1 )

)1−ρ
1−γ
) 1

1−ρ

•Here 0 < β < 1, 1 6= γ > 0, ρ > 0, ρ 6= 1. γ is the relative risk
aversion, ρ is time preference, the inverse of the EIS-parameter ψ.



• The parameter β is the impatience discount factor, with impatience rate
δ = −ln(β).

•When the parameter β is large, the agent puts more weight on the fu-
ture and less weight on the present, in accordance with the impatience
interpretation of this parameter.

• These preferences have an axiomatic underpinning (e.g., Chew and Ep-
stein (1991), Kreps and Porteus (1978)).

• Such preferences are dynamically consistent (Johnsen and Donaldson
(1985)).

• This framework has an extension to continuous time models (Duffie and
Epstein (1992), two papers).



8. The continuous-time representation

•Recursive utility in continuous time: U : L+ → R is defined by two
primitive functions: f : R× R→ R and A : R→ R.

• The function f (ct, Vt) represents a felicity index at time t, and A is
associated with a measure of absolute risk aversion (of the Arrow-Pratt
type) for the agent.

• In addition to current consumption ct, the function f also depends on
future utility Vt time t, a stochastic process with volatility Zt at time t.

• The representation is: Vτ = 0, and

Vt = Et

{∫ τ

t

(
f (cs, Vs)−

1

2
A(Vs)Z

′
sZs
)
ds
}
, t ∈ [0, τ ] (14)



• Since Vτ = 0 and
∫
ZtdBt is is assumed to be a martingale, (14) has

the stochastic differential equation representation

dVt =
(
− f (t, ct, Vt) +

1

2
A(Vt)Z

′
tZt

)
dt + Z ′tdBt. (15)

• If, for each consumption process ct, there is a well-defined pair (V, Z)
of a utility process V and volatility Zt satisfying the associated BSDE,
the stochastic differential utility U is defined by U(c) = V0, the initial
utility.

• The pair (f, A) generating V is called an aggregator.

•One may think of the term −1
2A(Vt)Z

′
tZt as the Arrow-Pratt approx-

imation to the certainty equivalent of Vt. For continuous processes in
continuous time there is no element of approximation involved.



• The defining equation for utility is associated to the quadratic BSDE,
and existence and uniqueness of solutions to such equations is in general
far from granted.

• These topics have been dealt with in the original paper Duffie and Ep-
stein (1992b).

• These questions are also part of contemporary research in applied math-
ematics, see e.g., Øksendal and Sulem (2014), or Peng (1990).

• For the particular BSDE that we end up with, existence and uniqueness
follows from Duffie and Lions (1992). See also Schroder and Skiadas
(1999) for the life cycle model.



•We work with the following specification, which corresponds to the ag-
gregator (f, A) with the constant elasticity of substitution (CES) form

f (c, v) =
δ

1− ρ
c(1−ρ) − v(1−ρ)

v−ρ
and A(v) =

γ

v
. (16)

• The parameters have the same interpretations as for the discrete-time
model.

• This preference fall in the Kreps-Porteus class when the certainty equiv-
alent is derived from expected utility.



9. Optimal consumption with RU

•We use the same technique as explained for the expected utility model,
except that we employ the stochastic maximum principle instead of di-
rectional derivatives.

• The optimal consumption turns out to be

c∗t = c0 e
∫ t

0 (µc(s)−1
2σc(s)

′σc(s))ds+
∫ t

0 σc(s)dBs (17)

• where µc(t) and σc(t) are as determined as

σc(t) =
1

ρ

(
ηt + (ρ− γ)σV (t)

)
(18)



• and

µc(t) =
1

ρ
(rt − δ) +

1

2

1

ρ
(1 +

1

ρ
) η′tηt −

(γ − ρ)

ρ2
η′t σV (t)

+
1

2

(γ − ρ)γ(1− ρ)

ρ2
σ′V (t)σV (t) (19)

•Here VtσV (t) := Zt and Vt exist as a solution to the system of for-
ward/backward stochastic differential equations.

• Thus σV (t) is part of the recursive preferences, i.e., primitives of the
model.
(The quantity σV (t) is the volatility of the growth rate of utility Vt.)
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Figure 1: Calibration points in the (γ, ρ)-space

•Recall η > 0. Notice, if γ > ρ the recursive utility agent has preference
for early resolution of uncertainty.



• From (17) and (18) we see the following: First, a shock to the economy
via B has the conventional effect via the market-price-of-risk-term ηt;

• Second, if σV (t) > 0, the shock has the opposite effect via the recursive
utility term

(ρ− γ)σV (t)

provided γ > ρ.

• The volatility of wealth σW (t) is internalized in equilibrium, as a linear
combination of σc(t) and σV (t), i.e., of primitives of the model. (In the
equilibrium context, aggregate consumption is taken as given.)

• The interpretation is that the agent uses wealth to dampen the effects
of market movements on consumption. The Eu-model is simply too
simplistic to account for this.



• This can be illustrated using the discrete time analogue:

ln
(c∗t+1

c∗t

)
=

1

ρ
ln(β)−1

ρ

1− ρ
1− γ

ln
(πt+1

πt

)
−1

ρ

γ − ρ
1− γ

ln(1+RWt ). (R-U)

(20)

• It is instructive to compare this relationship to the corresponding one
for expected utility, which is

ln
(c∗t+1

c∗t

)
=

1

γ
ln(β)− 1

γ
ln
(πt+1

πt

)
. (E-U) (21)

•Recall, when times are good, the state price is low, and vice versa. With
expected utility optimal consumption is then up, and this is the only
source of uncertainty that affects consumption, meaning that optimal
consumption is very sensitive to market variations.



•With recursive utility this is seen to be different. The agent’s wealth can
be shown to be negatively correlated with the state price. This means
that when the state price is low, RW tends to be up, and vice versa.

• From (20) we notice that when the sign of 1−ρ
1−γ is the same as the sign

of γ−ρ1−γ , then market variations will be dampened by opposite variations
in the wealth, which then leads to a more stable consumption.

• This is seen to happen when (i) γ > ρ and ρ < 1, or when (ii) γ < ρ,
and ρ > 1.

• In the first case the agent has preference for early resolution of uncer-
tainty, in the second for late. As we indicate below, the first case is
typically better in accordance with market data than the latter case
(but also the latter case may fit for certain choices of the parameters).



• That consumers use wealth to dampen variations in consumption seems
both reasonable and also in line with what we observe. The expected
utility model is simply too simple to capture this phenomenon.

• (Here it is tempting to recall Albert Einstein: ”A problem should be
studied through the simplest model possible, not simpler.”)



•We then have the following:

Theorem 1Assume the preferences are such that σV is positive,
and the market price of risk η is positive. The individual with
recursive utility will then prefer to smooth market shocks provided
the consumer prefers early resolution of uncertainty to late (γ > ρ).

• The investment strategy that attains the optimal consumption of the
agent is given below.

• In each period the agent both consumes and invests for future consump-
tion. In order to average out consumption across time and state, less is
consumed in good times, in which case more is invested, compared to the
conventional consumer, who treats every period as if it were the last one.

• First we turn to pension insurance:



9.1. Pensions with RU

• The optimal life time consumption (t ∈ [0, n]) and pension (t ∈ [n, τ ])
is

c∗t = y
ā

(r)
x:n̄|

ā
(r̂)
x

exp
{

(
1

ρ
(r − δ) +

1

2ρ
η2 +

1

2ρ
(γ − ρ)(1− γ)σ2

V )t

+
1

ρ
(η + (ρ− γ)σV )Bt

}
, (22)

provided the agent is alive at time t (otherwise c∗t = 0).

•Here

r̂ = r − 1

ρ
(r − δ) +

1

2

1

ρ
(1− 1

ρ
) η′η +

1

ρ
(
1

ρ
− 1) (ρ− γ) ησV

− 1

ρ
(γ − ρ)

(1

ρ
(γ − ρ) +

1

2
(1− γ)

)
σ2
V . (23)



• The premium intensity is given by the Ft-adapted process pt := y− c∗t .

•As can be seen, the optimal pension with recursive utility is being
”smoothened” in the same manner as the optimal consumption, sum-
marized in Theorem 1.

•A positive shock to the economy via the term Bt increases the optimal
pension benefits via the term ηBt, which may be mitigated, or strenght-
ened, by the term (ρ− γ)σVBt, depending on its sign.

•When (γ > ρ), then σV (t) > 0 and shocks to the economy are smoothened
in the optimal pension with RU.



• This indicates that the pensioner in this model can be considerably
more sophisticated than the one modeled in the conventional way when
ρ = γ. We summarize as follows:

•Theorem 2Under the same assumptions as in Theorem 1, the in-
dividual with recursive utility will prefer a pension plan that smoothens
market shocks provided the consumer prefers early resolution of un-
certainty to late (γ > ρ).

• This points in the direction of DB-pension plan rather than a DC-plan
(γ > ρ).

•When ρ > γ the agent has preference for late resolution of uncertainty,
and the opposite conclusion may follow, depending on the sign of σV (t).



10. Optimal investment with RU

• Consider an agent with recursive utility who takes the market as given.
In this setting we now discuss optimal portfolio choice.

•At the beginning or each period, the agent allocates a certain proportion
of wealth to immediate consumption, and then invests the remaining
amount in the available securities for future consumption. Accordingly,
the the optimal portfolio choice will depend on consumption.

• The growth rate of consumption, and its conditional variance, is known
once consumption is determined. This is achieved by the agent using
his/her preferences faced with the various market opportunities.



•Theorem 3The optimal portfolio fractions in the risky assets are
given by

ϕ(t) =
1− ρ
γ − ρ

(σtσ
′
t)
−1νt −

ρ(1− γ)

γ − ρ
(σtσ

′
t)
−1(σtσ

∗
c (t)). (24)

assuming γ 6= ρ.

• The volatility of the optimal consumption growth rate depends on pref-
erences and market quantities only:

σc∗(t) =
1

ρ

(
ηt + (ρ− γ)σV (t)

)
. (25)

• The agent first determines the optimal consumption growth rate and
then the optimal portfolio choice in such a manner that the relationship
(24) holds.

• The above formula answers the question of the insurance industry how
to invest in order to satisfy the recursive utility pensioner.



• The optimal fractions with recursive utility depend on both risk aversion
and time preference as well as the volatility σc∗ of the optimal consump-
tion growth rate dc∗t/c

∗
t of the agent.

• To illustrate, consider the standard situation with one risky and one
risk-free asset, letting the S&P-500 index be the risky security.

• Consider the market data of Table 1 with the S&P-500 index playing
the role of the risky asset, with the associated estimate of σc∗ = 0.0355.



• The recursive model explains an average of 13% in risky securities for
the following parameter values γ = 2.6 and ρ = .90.

•Given participation in the stock market, when ϕ = .40, this is consistent
with γ = 2.2 and ρ = .76.

• If ϕ = .60, this can correspond to γ = 2.0 and ρ = .66, etc., a potential
resolution of this puzzle.



•Most people invest in other risky assets than merely stocks. To capture
this, consider instead the wealth portfolio. It has a lower variance that
the market portfolio. Assume this to be 10 per cent (compared to 15
per cent for the market portfolio).

•Also suppose the growth rate of the wealth portfolio is lower than the
growth rate of the market portfolio: .035 vs. .070, and the correla-
tion coefficient between the wealth portfolio and the market portfolio is
κW,M = .30.



• The recursive model explains an average of 13% in risky securities for
the following parameter values γ = 2.6 and ρ = .92.

•Given participation in the stock market, when ϕ = .40, this is consistent
with γ = 2.2 and ρ = .79.

• If ϕ = .60, this can correspond to γ = 2.0 and ρ = .71.



• In addition to the insurance industry, other interesting applications
would be to management of funds that invests public wealth to the
benefits of the citizens of a country, or the members of a society.

• If this country/society is large enough for an estimate of the volatility
of the consumption growth rate of the group to be available, the appli-
cation becomes particularly simple, as the above exercise shows.

•One such example is the Norwegian Government Pension Fund Global
(formerly the Norwegian Petroleum Fund). Other net oil exporting
countries have similar funds.

• See Aase, K. K. (2016). Life Insurance and Pension Contracts II: The
life cycle model with recursive utility. ASTIN Bulletin, Volume 46(1),
pp 71-102.



10.1. Mutual fund theory

• Separation results in continuous-time models exist, e.g., Kanna and
Kulldorff (1999), which extend the Ross (1978) separation results in
one period models.

•Our result in Theorem 3 indicates that the general results for additive
expected utility do not hold for non-expected utility (perhaps, not sur-
prising).

• From Theorem 3 we can perhaps view the two terms (σtσ
′
t)
−1νt and

(σtσ
′
t)
−1σt as two distinct ’mutual funds’, and develop a similar theory

as for the class of additive and separarble utility functions.

• Thus the standard separation results in continuous time are not as gen-
eral as the authors sometimes want us to believe.



11. Equilibrium

•We may turn the life cycle model around and consider equilibrium as
well.

•Without going into details, the expression for the risk premium of any
risky security with return rate µR(t) is given by the following formula

•
µR(t)− rt = ρσ′c(t)σR(t) + (γ − ρ)σ′V (t)σR(t). (26)

• Provided a representative agent equilibrium exists, in equilibrium

σW (t) = (1− ρ)σV (t) + ρσc(t) (27)



• This relationship determines the volatility of the wealth portfolio in
terms of primitives of the model.

• These are the preferences (represented by σV (t) and ρ) and the volatility
of the growth rate of aggregate consumption (σc(t)), now taken as given.

•Recall: In the Lucas (1978) model prices are determined in equilibrium
such the ”representative agent” optimally consumes the aggregate en-
dowment. In this perspective σc(t) becomes exogenously given.

• Similarly, the equilibrium risk-free interest rate in terms of σV (t) is

rt = δ + ρ µc(t)−
1

2
ρ(1 + ρ)σ′cσc − ρ(γ − ρ)σ′c(t)σV (t)

− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t). (28)



• The final step is to turn equation (27) around and use the resulting
expression for σV (t) = 1

1−ρ(σW (t)− ρσc(t)) in these two formulas.

• The result for the risk premium of any risky security is

µR(t)− rt =
ρ(1− γ)

1− ρ
σ′c(t)σR(t) +

γ − ρ
1− ρ

σ′W (t)σR(t). (29)

• The first term on the right hand side corresponds to the consumption
based CAPM of Breeden (1979), while the second term corresponds to
the market based CAPM of Mossin (1966).

• The latter is only valid in a “timeless” setting, i.e., a one period model
with consumption only on the terminal time, in its original derivation.



• The result for the equilibrium spot rate is

rt = δ+ ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σ′W (t)σW (t). (30)

• The two first terms on the right-hand side are the familiar terms in the
Ramsay (1928)-model (a deterministic model).

• The third term corresponds to the ”precautionary savings term” in the
conventional model:

1

2
ρ(1 + ρ)σ′c(t)σc(t).

If ρ = γ in (30), this expression results.

• The last term in (30) is new, and comes from the recursive specification
of utility.



•When γ > ρ and ρ < 1 this term is negative. When the wealth uncer-
tainty increases, the ”prudent” RU maximizer saves, and the interest
rate falls.

• This helps explaining the ”low” real interest rate observed during the
90-year period of the data.

• Consider a calibration to the data summarized in Table 1.

• By fixing the impatience rate δ to some reasonable value, δ = 0.03 say,
one solution to the two equations (29) and (30) with R = M (M is the
market portfolio) and W = M , this yields γ = 1.74 and ρ = 0.48.



•Using R = M and another proxy for the wealth portfolio instead, for
example with σW (t) = .10 and with an instantaneous correlation with
the market portfolio M , κW,M = .80, we obtain for δ = 0.02 that
γ = 2.11 and ρ = 0.74.

• The resulting preference parameters seem plausible, and many other
reasonable combinations fit the equations as well.

• In contrast, a similar calibration of the expected utility model leads to
the (unique) values γ = 26 and δ = −.015. This is the equity premium
puzzle.

• See Aase, K. K (2016): Recursive utility using the stochastic maxi-
mum principle. Quantitative Economics. To appear. It is listed on
http://qeconomics.org/ under Papers to appear.



12. An empirical example

•We present the results of the Norwegian economy. This is a relatively
small, open economy in which the central statistical agent, Statistisk
sentralbyr̊a, has provided us with the data needed, also related to the
wealth portfolio (from 1985 to 2013).

• Table 6 contains the data corresponding to Table 2, which was organized
by Hjetland (2015).

Expectat. Standard dev. Covariances

Consumption growth 1.794% 1.390% cov(M, c) = .00078684
Return OBX 10.70% 32.025% cov(M, b) = .00180603
Government bills 2.141% 3.618% cov(c, b) = 1.0873E-05
Equity premium 8.559% 31.703%

Table 3: Key Norwegian-data for the time period 1971-2014.



• The estimates provided by Statistisk sentralbyr̊a (2014) are restricted
to include capital that is measurable in units of account: (i) human
capital; (ii) real capital; (iii) financial capital (including the Sovereign
Pension Fund of Norway); (iv) natural resources. For the whole period
72-75 per cent of the national wealth can be attributed to human capital.

• The estimates related to the growth rate of the wealth portfolio (log
terms) are as follows: σW = .01849, µW = .0219, σW,M = .00142,
σW,c = .000127. Below only the first and the third estimate are needed.

• The data on the wealth portfolio naturally represents a challenge to
collect, and is associated with a fair amount of uncertainty; the presented
estimates still gives a good indication of the national wealth. This gives
us the calibrations of Table 7.



Parameters γ ρ EIS δ
γ = 0.50 0.50 1.004 .997 .013
γ = 1.50 1.50 .996 1.004 .013
γ = 2.00 2.00 .992 1.008 .013
γ = 2.50 2.50 .989 1.011 .013
γ = 3.00 3.00 .985 1.015 .014
γ = 3.50 3.50 .981 1.019 .014
γ = 4.00 4.00 .977 1.023 .014
γ = 5.00 5.00 .969 1.032 .014

Table 4: Calibrations of the recursive model to the Norwegian economy.

• The parameter estimates are reasonable over most of the range shown.
When γ = 0, δ = 0.0128 and ρ = 1.0075. When γ = 25, δ = .019
and ρ = .77. This indicates a time preference ρ ∈ (0.8, 1.0) and an
impatience rate δ ∈ (0.012, 0.020).



• Thus relatively large variations in γ are associated with relatively small
variations in the other two parameters.

• In conclusion, this indicates that the average Norwegian is reasonably
patient, has an EIS just above 1 and has a relative risk aversion within
a reasonable range.

• This is in accordance with Dagsvik et.al. (2006), who estimate EIS to
be between 1 and 1.5 for the Norwegian population.

• The expected utility model calibrates to δ = −0.776 and γ = ρ =
108.78 for this data set.



• The assumption that the economy is closed is restrictive; imposes that
consumption equals domestic output. If exports and imports balance,
this could still be reasonable.


	Scottish Ministers' Widows' Fund
	Abstract
	Introduction
	The problem
	Expected utility
	Pensions
	Recursive Utility
	The continuous-time representation
	Optimal consumption with RU
	Pensions with RU

	Optimal investment with RU
	Mutual fund theory

	Equilibrium
	An empirical example

