

A new, cohort-based, mortality model (Work in progress)*

John Kingdom

24 November 2017

*This work represents research undertaken outside the work environment and reflects entirely personal views.

Agenda

- Introduction (5 mins)
- Description of the model (10 mins)
- Estimation of the model (5 mins)
- Model results (15 mins)
- Next steps and discussion (10 mins)

Non-actuaries like mortality too!

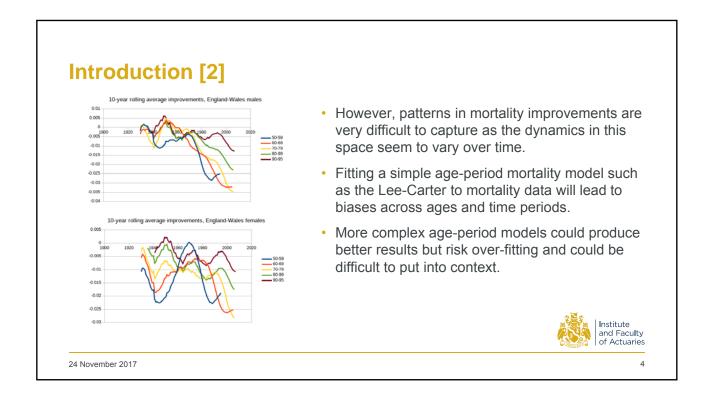
"On a long enough time line, the survival rate for everyone drops to zero" – **Tyler Durden**, **Fight Club**

"It's not that I'm afraid to die, I just don't want to be there when it happens" – **Woody Allen**

"Nothing in life is certain except death and taxes" – **Benjamin Franklin**

24 November 2017

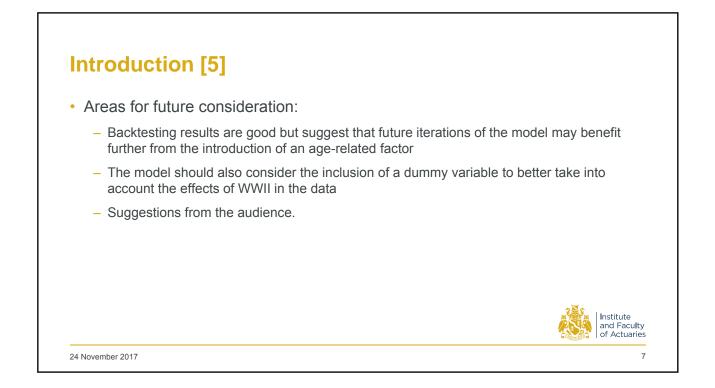
Institute and Faculty of Actuaries


3

- Most existing mortality models analyse dynamics of the 'age-period' mortality curve over time.
- For example, in the Lee-Carter model, mortality rates across ages at a given point in time (i.e. the age-period mortality curve) are modelled as a function of a derived mortality index. This mortality index is then projected forward to forecast future period mortality curves:

$$\mathbb{E}\left(\log m\left(x,t\right)\right) = \alpha\left(x\right) + \beta\left(x\right) \cdot \kappa_{t}$$

24 November 2017



Introduction [3]

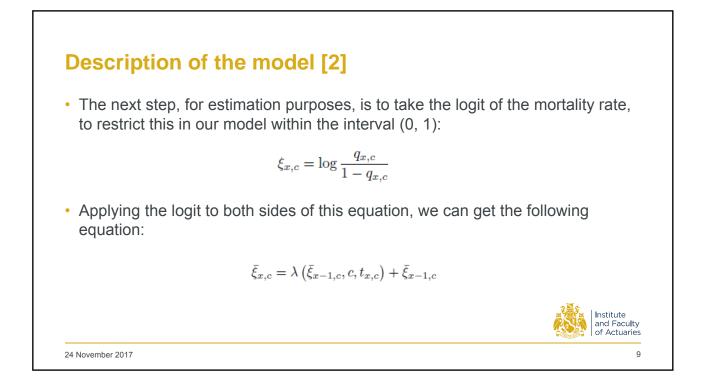
- Our proposed model takes a different approach and instead models the 'cohort-period' mortality curve i.e. our focus is on modelling expected mortality rates over the life of a given cohort.
- Central hypothesis: the best predictor for the expected mortality rate for a life aged x at time t is the expected mortality rate of that same life a year earlier i.e. the same life aged x - 1 at time t - 1.
- In other words, the model projects mortality *advancements* rather than mortality improvements.
- We also add cohort- and period-specific effects by conditioning the following year's expected mortality rate for a particular cohort on current year and year of birth.

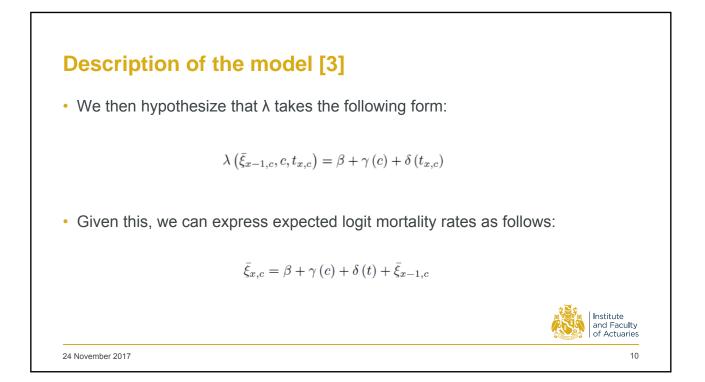
ntroduction [4]	
By fitting the model to population mortality data from a range of co Italy, Japan), we obtain the following observations:	untries (UK , France,
 our model identifies a new 'golden cohort' in the UK. All else equal, UK around 1950 - those currently around typical retirement age - exhibit sig mortality advancements than their previous 1900s counterparts; a simila other countries considered. 	nificantly lower rates of
 in every country considered, males have experienced roughly equal or l advancements than females, particularly in more recent times 	ower mortality
 mortality advancement rates in England and Wales have been relatively have been the lowest since 2000 	y high on average but
 period effects appear generally to be stronger than cohort effects - parti where, surprisingly, cohort effects appear particularly weak. 	cularly so in the UK,
24 November 2017	6

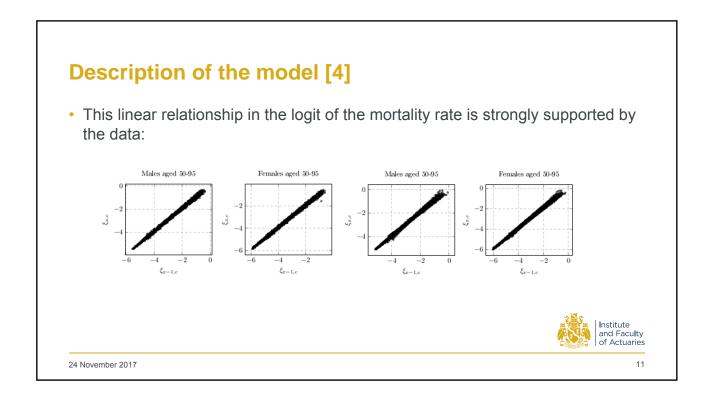
Description of the model [1]

Our model begins with the notion that the expected mortality rate for a given cohort *c* at age *x* is a function *f* of the expected mortality rate for that same cohort at age *x* – 1, the cohort *c*, and the period *t*:

$$\bar{q}_{x,c} = f\left(\bar{q}_{x-1,c}, c, t_{x,c}\right)$$


• Without loss of generality, we can re-express this in multiplicative form:


$$\bar{q}_{x,c} = \Lambda\left(\bar{q}_{x-1,c}, c, t_{x,c}\right) \cdot \bar{q}_{x-1,c}$$

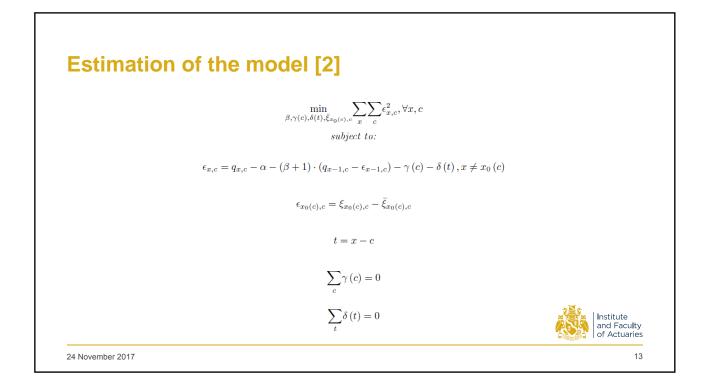

24 November 2017

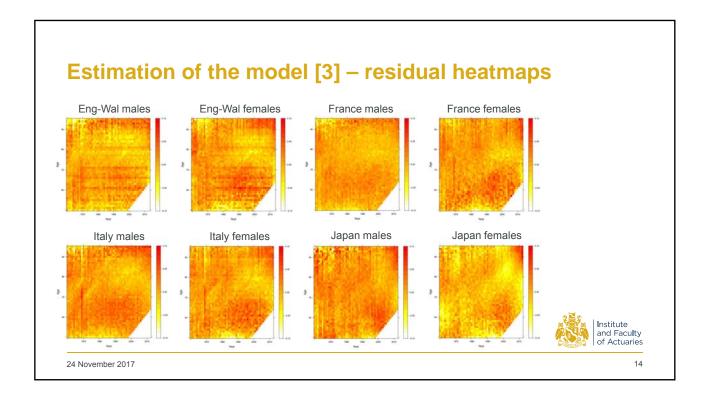
Institute and Faculty of Actuaries

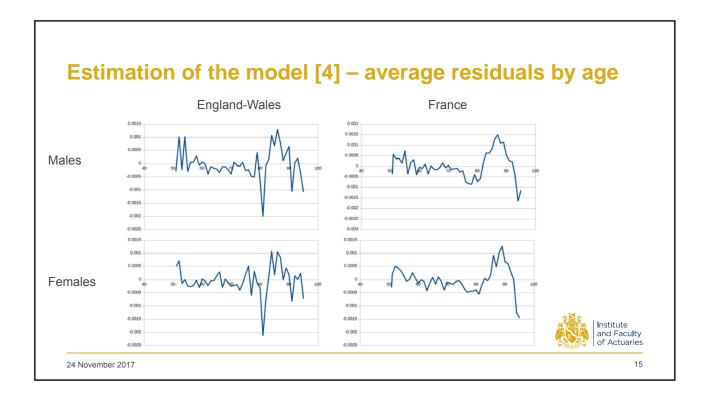
8

Estimation of the model [1]

• For the purposes of estimating our model, we assume its error terms are *iid* normal:

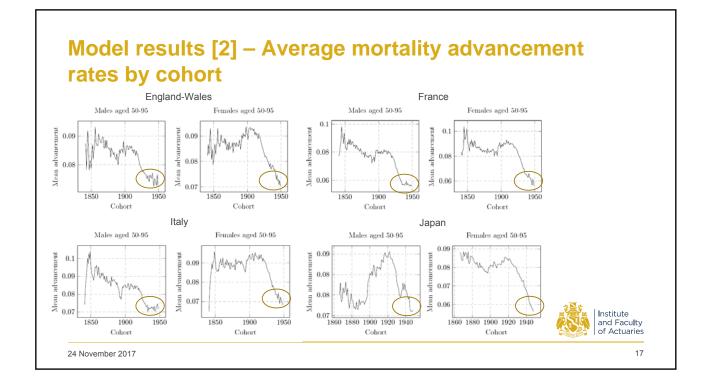

$$\xi_{x,c} = \beta + \gamma \left(c \right) + \delta \left(t \right) + \xi_{x-1,c} - \tilde{\epsilon}_{x-1,c} + \tilde{\epsilon}_{x,c}$$

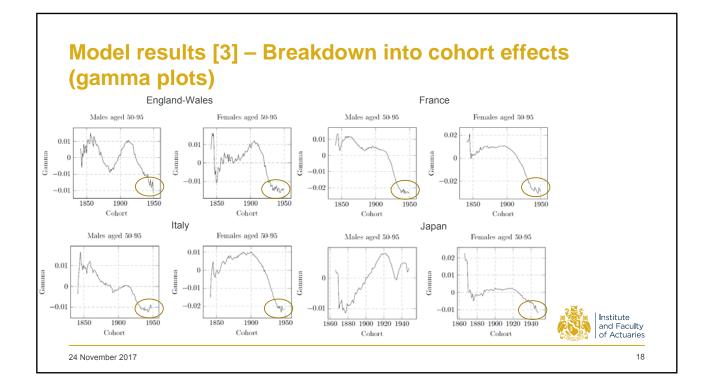

$$\tilde{\epsilon}_{x,c} \sim N\left(0,\sigma^2\right) \forall x,c$$

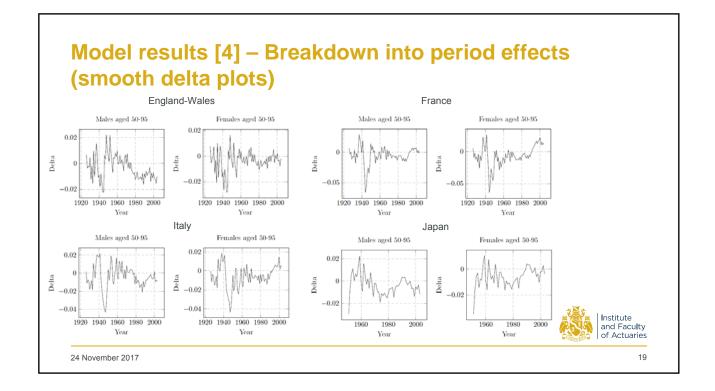

• We estimate the model by least squares.

24 November 2017

Institute and Faculty of Actuaries

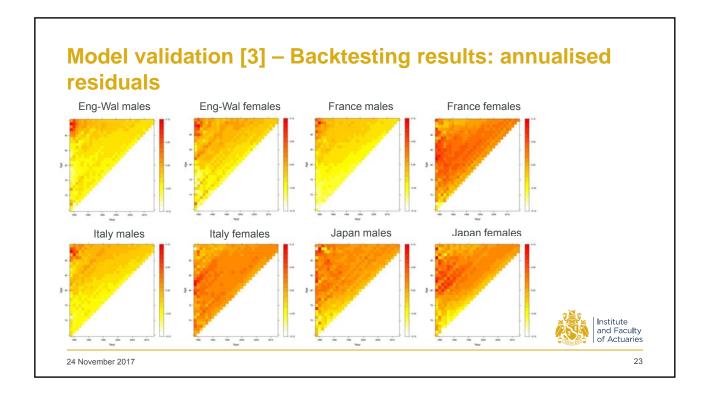





Model results [1] – Average mortality advancement rates by country

	Males	Females		Males	Females	
England-Wales	0.089	0.085	England-Wales	0.075	0.087	
France	0.077	0.078	France	0.075	0.094	
Italy	0.086	0.089	Italy	0.082	0.1	
Japan	0.081	0.081	Japan	0.083	0.091	
USA	0.078	0.081	USA	0.077	0.088	
England-Wales h ligh mortality adv			but these have in more recent tir		elatively low	Institute and Faculty

9


1.2 1.15 1.1 1.05 1	, M	Past series Trend continues No trend Trend reverses	 The model can be used to forecast future mortality rates with the projection of the single time series variable. For illustration purposes, we have done this simply by assuming that the time series projection assumes that:
0.95	1993 2003 2013 2023 2033 204	3 2053	 the trend in the time variable over the previous 30 years is sustained
iiusiia	E-W male	E-W female	 there is no change in the time variable
5-75	1.9% / 2.0% / 2.1%	2.0% / 2.0% / 2.1%	 the trend in the time variable over the previous
5-75		2.6% / 2.7% / 2.9%	30 years is reversed.
	2.3% / <mark>2.5%</mark> / 2.8%	2.0/0/ 2.1/0/ 2.0/0	
6-85 6-95	2.3% / 2.5% / 2.8% 2.4% / 2.8% / 3.2%	2.9% / 3.1% / 3.4%	Institute

Model validation [1] – Correlations between time indices (delta plots)

• The table below provides the correlation of period effects, taken over the time period considered (1922-2013). The correlation is measured for changes in the (t) variable of each fitted model. Where there is less data available, correlations are measured over the longest data available.

	EW_{m}	EW_{f}	Fr_{m}	Fr_{f}	$\operatorname{It}_{\boldsymbol{m}}$	It_{f}	Jp_{m}	Jp_f	US_m	US_{f}	Sources of comfort
EW m	1										Intra-country correlations are
EW _f	0.97	1									high
Frm	0.42	0.46	1								mgn
Fr _f	0.51	0.56	0.97	1							Correlations are higher
lt m	0.28	0.25	0.77	0.72	1						Correlations are higher
t _f	0.22	0.21	0.76	0.72	0.98	1					between countries which are
Jp_m	0.32	0.25	0.31	0.33	0.4	0.33	1				geographically close
Ip _f	0.31	0.23	0.28	0.3	0.38	0.33	0.99	1			
JS_m	0.38	0.38	0.42	0.4	0.42	0.41	0.43	0.45	1		225
US _f	0.38	0.38	0.38	0.38	0.38	0.37	0.42	0.43	0.97	1	Institute
-											of Actuarie
ember 2	2017										2

<section-header><section-header><list-item><list-item><text><text><text>

Conclusions and next steps

- New way to consider how mortality rates can be analysed and projected forward by considering mortality rate advancements.
- Ability to capture complex mortality trends and project rates forward by projecting only a single parameter.
- Cohorts born in around 1950 generally experience lower mortality rate advancements than their counterparts.
- In every country considered, males have experienced roughly equal or lower mortality advancements than females, particularly in more recent times.
- Backtesting results are good but suggest that the performance of the model may benefit further by introducing an age-related factor.

24 November 2017

Questions	Comments
The views expressed in this presentation are those of invited contributors and not stated, nor any claims or representations made in this presentation and accept no	
consequence of their placing reliance upon any view, claim or representation mad The information and expressions of opinion contained in this presentation are not i advice of any nature and should not be treated as a substitute for specific advice of presentation be reproduced without the written permission of the IFoA [or authors,	intended to be a comprehensive study, nor to provide actuarial advice or concerning individual situations. On no account may any part of this
24 November 2017	25