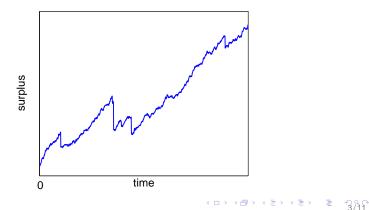

Working party: 'Practising ruin'

September 26, 2014 - Giro conference

Classical risk process

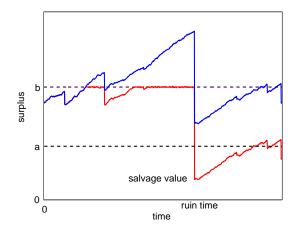

- Initial capital x > 0.
- Constant premium rate/drift c > 0.
- Time between claims is exponentially distributed with parameter $\lambda > 0$.
- *f* denotes the (common) probability distribution function of each claim.

Including extra uncertainty

- Perturb the risk process by adding a Brownian motion which has a parameter $\sigma > 0$.
- Roughly speaking, on each time interval of infinitesimal length Δ , a normally distributed random variable with mean 0 and variance $\sigma^2 \Delta$ is added.

Characteristics of the risk process

- Local behaviour does not depend on
 - level of the surplus,
 - time,
 - length of time since last claim.
- There are downwards jumps but no upward jumps.


Including dividends

- Dividends can be paid out to shareholders dynamically.
- Ruin level $a \ge 0$: ruin occurs when surplus < a.
- Salvage value: at ruin, residual value goes to shareholders.

- Firm value: expected value of cashflow to shareholders, discounted at rate *q* > 0.
- Optimal dividend strategy?

Barrier strategy

• We focus primarily on barrier strategies, which are parametrised by a barrier level *b* > *a*.

Claim distribution

Mixture of exponentials:

$$f(z)=\sum_{i=1}^n\frac{p_i}{m_i}\mathrm{e}^{-z/m_i},\quad z>0,$$

where *n* is a positive integer, $m_i, p_i > 0$ and $\sum_{i=1}^{n} p_i = 1$.

Expected value of a claim is given by

$$\sum_{i=1}^n p_i m_i.$$

<ロ> < @ > < E > < E > E 296

Why this choice?

- Relatively flexible.
- Very easy and fast to compute firm value under a barrier dividend strategy:
 - Explicit formula up to computing the roots of a certain polynomial.

- Developed bounds for these roots.
- Barrier strategy is optimal (at least when a = 0).

Possible extensions

- Different penalty at ruin.
- Include capital injections (can increase firm value).
- Different definition of ruin.
- Allow parameters to change when surplus drops below a certain level.

<ロト
< (日)
< (日)
< (日)

- Allow parameters to change after an exponentially distributed amount of time.
- Include (optimal) reinsurance.

References

Kyprianou, Andreas E.

Gerber-Shiu Risk Theory. Springer, Cham 2013.

Major, John A.

The firm-value risk model. Working paper, 2009. http://www.cb.wsu.edu/aria2009/aria2009.htm

<ロト</th>
日本
日本<

Inputs and output of spreadsheet

Input parameters

- initial capital x > 0,
- premium rate c > 0,
- Gaussian parameter $\sigma \geq 0$,
- claim intensity λ > 0,
- discount rate q > 0,
- 'means' of claim distribution $m_1, m_2, \ldots, m_n > 0$,
- weights of claim distribution $p_1, p_2, \ldots, p_n > 0$, $\sum_{i=1}^n p_i = 1$,

<ロト</th>
日本
日本
日本
日本
日本
日本
日本

11/11

- ruin level *a* ∈ [0, *x*],
- barrier level $b \ge x$.
- Output
 - firm value with dividend barrier b and ruin level 0,
 - firm value with dividend barrier *b* and ruin level *a*.