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Foreword 

Many general insurance actuaries have a 
love-hate relationship with the Mack 
bootstrap.  The methodology has usefully 
provided them with a tool to assess reserve 
uncertainty that is compatible with the 
traditional chain ladder method and as such 
has become a market standard for reserving 
risk assessment.  However, they are 
confronted regularly with the way that the 
methodology affords them with little control 
over the resulting distributions.  Moreover, the 
independence assumptions in the method are 
not always met, potentially distorting and 
likely understating risk assessments.  The 
lack of practitioner consideration in this area 
has been a concern echoed by various 
regulators recently. 

In light of this, we judged it important to find 
other methods that are more suitable for 
Aspen’s reserving risk modelling.  With his 

responsibility in actuarial research and 
development, Jo was asked to lead the 
internal Actuarial and Risk Management effort 
towards this goal.  A collection of methods 
were subsequently tested and further 
developed, enriching our internal reserving 
risk modelling toolbox. 

Those methods that are aimed at the 
independence assumptions of the Mack 
bootstrap are presented in this paper, 
helpfully supported by step-by-step 
demonstrations and impact studies on actual 
data.  I commend this paper to practitioners 
for furtherance of the profession’s debate in 
this important modelling area. 

Stephen Postlewhite, MA,FIA  

Head of Risk, Aspen 
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Introduction and overview 
 

The Mack bootstrap is now a popular tool for assessing reserve uncertainty among 

practitioners.  In 1993, Thomas Mack published what is now known as the “Mack 

model” (Mack, 1993).  The model focuses on the first two moments of the reserve 

distribution, allowing the practitioners to derive the prediction error of their chain 

ladder reserve estimates.  Its independence assumptions allow this to be performed 

without resort to computer simulations.  The model also helpfully allows a split of the 

prediction error into estimation error and forecast error.  As well as (Mack, 1993), the 

reader may also find (England & Verrall, Stochastic claims reserving in general 

insurance, 2002), (Wüthrich & Merz, 2008) useful references for the Mack model and 

for wider reserving risk modelling. 

 

Since then, extensions have been made to the Mack models.  The key extension is the 

work done by England and Verrall for the past decade or so.  They explored the use of 

bootstrapping in the Mack model.  In so doing, the Mack model is given a place in 

many stochastic capital models in the insurance industry.  The author refers the reader 

to their 2006 paper (England & Verrall, Predictive distributions of outstanding 

liabilities in general insurance, 2006) for further details of the Mack bootstrap, its 

merits against other techniques, practical implementation discussions and its historical 

development. 

 

The purpose of this paper is first to present how one may perform hypothesis testing 

on data triangles to see when and how the independence assumptions may not hold.  

The features that give rise to rejection of the independence assumptions are called 

exceptions.  An example of this is a calendar period that has significantly high claim 

developments across multiple origin periods. 

 

The paper then presents practical techniques to perform bootstrapping to 

accommodate these exceptions.  These techniques form a way to extend the Mack 

bootstrap methodology.  When hypothesis testing is done on the extended model, the 

same features would look less exceptional and more like “business as usual”.  One of 

the techniques is known to some practitioners as sieve resampling or partitioned 

resampling.  Mark Shapland and Jessica Leong have briefly alluded to this as 

stratified sampling in their practical paper on bootstrapping under the Over-dispersed 

Poisson (“ODP”) and GLM frameworks (Shapland & Leong, 2010). The author has 

not yet seen the second technique in use in the industry, and we shall call this 

exception resampling. 

 

Having dealt with the estimation error, the calendar period driver is introduced to 

incorporate calendar period exceptions into the forecast error projection.  The 

approach gives primacy to calendar period claim emergence, and then allows 

secondary dependencies that could be helpfully imposed between origin periods and 

between calendar period drivers. 

 

Although it is possible to adjust the forecast error framework to give importance to 

other dimensions (e.g. development period), the calendar period dynamic can be 

striking and occupy a special place for assessing risk over fixed time horizons.  The 

fixed time horizon modelling is especially urgent for the industry as it prepares for 
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Solvency II compliance (see, for example, Slide 12 of (Orr & Hawes, 2010) for a 

suggestion of one-year reserving risk modelling method:  the calendar period drivers 

can contribute to the one-year claim emergence step [“step 3” on the slide] of that 

suggestion significantly).  Origin period and development period nuances can be 

projected through specific development or variance parameters. 

 

Examples are included to demonstrate the techniques.  The recent popularity of 

publishing loss development triangles has helped researchers to test proposed models 

with actual data (see for example, (Busse, Mueller, & Dacorogna, 2010)).  This paper 

takes advantage of this, and make use of data from: ACE (ACE Limited, 2010); Arch 

(Arch Capital Group Ltd., 2010); Axis (Axis Capital Holdings Limited, 2010); and 

XL (XL Capital Ltd., 2010).  For ease of reference, the actual triangles used in this 

paper are included in the Appendix.  It goes without saying that the paper does not 

attempt to perform full analyses of the reserves or claims emergence of these 

companies, let alone make any comment on the companies themselves.  The contents 

of the paper must not be relied upon for such analyses or comments.  The paper uses 

the triangles as an aid to demonstrate to the readers how the proposed methods might 

be adapted for use with their own data, of which they would have a much higher 

degree of understanding.  As a consequence, reserves that are displayed alongside the 

published triangles should differ from what we have in this paper:  after all, it is very 

rare that companies book reserves direct from a chain ladder model without tail 

factors! 

 

These example triangles were selected as they were actual data that were publicly 

available.  The author and his colleagues at Aspen initially examined the techniques 

on their own in-house data:  they reached general conclusions that were similar to 

those in this paper. 

 

In using these examples, we gain an idea of how much of a difference the 

independence assumptions make.  In some cases, this could be significant.  A key 

conclusion is that the practitioner should examine the independence assumptions 

carefully when applying the Mack bootstrap. 

 

The remainder of the paper is divided into four sections. 

 

 Definitions and terminology.  This sets up the necessary vocabulary and 

mathematical symbols for the discussions in the paper.  It contains a very 

broad brush overview of the original Mack model and Mack bootstrapping. 

 

 The independence assumptions and estimation error.  We discuss how the 

Mack independence assumptions could be contradicted by some triangles and 

what the practitioner might want to do about this in relation to estimation 

error.  The section then discusses sieve resampling and exception resampling.  

Step-by-step implementation examples are presented and impacts on various 

triangles are discussed.  Further generalisations to these techniques are then 

followed by some further remarks, where possible future next steps and 

research topics are indicated. 

 

 The independence assumptions and forecast error.  This is a smaller 

section discussing a technique of incorporating calendar period exceptions as 
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drivers into the forecast.  Again, a step-by-step example is presented.  Possible 

secondary dependencies are examined.  Again, it ends with some further 

remarks, including indications of possible next steps and research topics. 

 

 Conclusions.  This is a summary of key themes in the paper.  It urges the 

practitioners to continue the debate on how to deal with the failure of 

independence assumptions when using the Mack bootstrap model, as the 

extent of underestimation of prediction error could be high. 

 

The bibliography is followed by an appendix of all the triangles used in this paper, 

along with their development factors, variance parameters and residuals, for ease of 

reference. 

 

Definitions and terminology 
 

In this paper, we deal with annual origin cohorts and annual development periods.  

The origin cohorts range from i = 1 to i = I.  The development periods range from j = 

1 to j = I.  Calendar years are denoted by k, with the calendar year that had the last full 

year’s worth of data being k = I.  We do not discuss tail factors in this paper for fear 

of cluttering mathematical notations.  It is possible to extend the concepts and 

examples in this paper to take account of tails. 

 

Cumulative claims from origin year i and development year j is denoted by     .  

Applications could be made to paid or reported data.  It is useful to denote the set of 

information already available to us (i.e. the "top half" of the triangle), we call this 

  {            }. 
 

Link ratios (or development factors) between successive cumulative amounts are 

defined to be λi, j = Ci, j+1 / Ci, j. 

 

The original Mack model 

 

The original Mack method as described in (Mack, 1993) makes the following 

assumptions that are consistent with the volume-weighted chain ladder assumptions: 

 

1. There are development factors fj, varying by development period j such that 

E(Ci, j+1 | Ci, 1, …, Ci, j) = fj Cj 

2. For any different origin periods, with i ≠ i', {           }and {             } are 

independent 

3. There are variance parameters σj
2
, varying by development period j such that 

Var(Ci, j+1 | Ci, 1, …, Ci, j) = σj
2
 Cj 

 

The following unbiased estimators (i.e. estimators whose expected values are the 

parameters to be estimated) are assumed: 

 

4. For fj, the estimator is the volume-weighted average factor   ̂  
∑              

∑          
. 
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5. For σj
2
, the estimator is given by   

 ̂  
 

     
∑     (       ̂)

 
     . 

The above assumptions are thought to be natural assumptions to make, assuming the 

volume-weighted chain ladder.  In particular, if the variance structure fails 

Assumption 3, then there would be some other (“better”) estimator, linear in the λi,j, 

having a smaller variance than that associated with   ̂ in Statement 4.  From this, we 

can have estimators for Ci,j for i + j > I + 1. 

 

6. The estimator given by     ̂                 
̂          

̂      ̂ is unbiased for 

Ci,j, for i + j > I + 1. 

 

The unbiasedness of this estimator relies on the estimators,   ̂'s, being pairwise 

uncorrelated for distinct development periods. 

 

7.    (    )   ((    ̂      )
 
  )    (      )  (    ̂   (      ))

 

, for 

each origin period i. 

 

The mean square error (mse) of the ultimate can be split up into two components:  the 

variance of the ultimate given the information we currently have, and a measure of the 

variability of the estimator for the ultimate against the mean ultimate.  The first 

component,    (      ), is a measure of the process error or forecast error.  

Roughly, this is related to the uncertainty driven by natural randomness. The second 

component, (    ̂   (      ))
 

, is a measure of the estimation error or parameter 

error.  It is related to the uncertainty related to the best estimate itself.  Equivalently, 

in our context, this is the uncertainty related to our development factor estimates due 

to the limited amounts of data available to us.  The standard deviation of the reserves 

from the ith origin period using a Mack bootstrap model would be approximately this 

mean square error.  (See (England & Verrall, 2006) and (Shapland & Leong, 2010) 

for discussions of the need for adjustments in implementing the Mack bootstrap.) 

 

The Mack bootstrap 

 

The Mack bootstrap adapts the Mack model for simulation under a Monte Carlo 

framework. England and Verrall's 2006 paper (England & Verrall, 2006) is an 

important article in this area, and we shall follow it in this subsection.  There are two 

parts to the method – corresponding to the estimation error and the forecast error, as 

mentioned above. 

 

The estimation error part is taken care of by the traditional statistical technique of 

bootstrapping, which can be performed on well-defined statistical models.  For the 

Mack model, this consists of: 

a. Calculating a set, R, of standardised residuals, ri,j.  These can be roughly 

interpreted as the deviations of the observed cumulative amounts in the next 

step, Ci,j+1, against the expected cumulative amounts in the next step       ̂, 

standardised by dividing by the standard deviation of the next step.  That is to 
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say,      √  
(             ̂)

√  
 ̂    

.  The factor √   is used so that the standard 

deviations of the simulated outcomes from Step b below are close to those 

from the analytical formula.  We follow England and Verrall, setting    
   

     
.    From the point of view of link ratios,      √   √    

(       ̂)

√  
 ̂

. 

b. Repeatedly resampling R for each (i, j) in the upper half of the triangle, 

allowing replacements to give ri,j
B
. 

c. Backing out pseudo link ratios,     
    ̂      

 
√  

 ̂

√    
 . 

d. Re-performing the volume-weighted average calculation to obtain a set of 

bootstrapped development factors,    ̂  
∑         

    
   

∑     
   
   

⁄  

 

The forecast distribution is simulated stepwise throughout the bottom half of the 

triangle.  Each cell, Ci,j+1, in the bottom half of the triangle has an assumed 

distribution – such as the empirical residual distribution, normal, gamma or lognormal 

– with mean and variance conditional on the previous value, Ci,j.  Specifically, the 

conditional mean is    ̂     and the conditional variance is   
 ̂    . 

 

The independence assumptions and estimation error 
 

This section considers the independence characteristics of Mack model – 

Assumptions 1, 2 and 3 – in relation to assessing the estimation error.  As we are 

dealing with estimation error, the proposed extension technique extends Step b of the 

Mack bootstrap. 

 

Assumption 2 suggests that claims from different origin cohorts develop 

independently of one another.  Assumptions 1 and 3 are saying that, within a cohort, 

the development at each step depends solely on the latest cumulative figure on that 

cohort.  The three statements translate to the implementation Step b of allowing the 

standardised residuals from anywhere in the triangle to be applied to anywhere else in 

the triangle.   

 

However, in some triangles, these three statements are not met, and Step b could then 

be invalid:  and it is important to consider responses to deal with this. 

 

The section is divided into the following subsections.  The first three (labelled †) are 

designed to let the reader assess the concepts without being bogged down in 

technically involved discussions of the concepts. 

 

 Examples of exceptional features†.  Real life examples of how the 

independence assumptions could be broken are presented here, grouped in 

three dimensions:  development period, origin period and calendar period.  
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Their discussion will be based on how the standardised residuals relate to one 

another. 

 

 What should we do with the exceptions in assessing estimation error?†  
We briefly discuss the various broad options the practitioner could take when 

faced with exceptions – when the independence assumptions are contradicted.  

We acknowledge the validity of different options in different circumstances.  

At the same time, we indicate the paper is devoted to one of the options:  that 

of extending the Mack bootstrap to accommodate the exceptions. 

 

 High level view of the proposed extensions†.  The two broad concepts 

discussed in this subsection are meant to be used iteratively to arrive at an 

extension of the Mack bootstrap that is just far enough to accommodate the 

exceptions.  Hypothesis testing is used to identify exceptions under the various 

models, original or extended.  The extended resampling techniques are used to 

actually extend the model to accommodate these exceptions. 

 

 Identification of exceptional features.  The hypothesis testing to identify 

failure of the independence assumptions is discussed in detail, with a step-by-

step example. 

 

 Sieve resampling.  The sieve resampling technique is discussed with an 

example. 

 

 One-step exception resampling of one exceptional feature:  theoretical 

considerations.  The exception resampling discussion is spread over five 

subsections.  The last three (labelled with *) could be omitted in a first 

reading.  The first introduces a general theoretical framework, with an 

example of resampling from just one feature. 

 

 One-step exception resampling of one exceptional feature:  examples.  

This demonstrates the theoretical considerations with several examples.  There 

is a detailed step-by-step example in this subsection. 

  

 One-step simultaneous exception resampling*.  It is possible to resample 

more than one exceptional feature simultaneously.  This is especially helpful 

when the exceptional features are from the same dimension (e.g. they are all 

calendar period exceptions).  This subsection indicates how this could be 

done.  An example is presented, extending one from the previous subsection. 

 

 Small exceptions and parametric bootstrapping*.  Exceptional features 

with only a few residuals could be particularly difficult to deal with – or, 

indeed, may not be desirable to accommodate.  We discuss how assuming the 

residuals come from a distribution could help their accommodation. 

 

 Superimpositions of exceptionally resampled residuals*.  This is the final 

of the four subsections that discuss exception resampling in detail.  It 

describes how exception resampling could be superimposed onto previously 

resampled residuals.  A chain of superimpositions could be made to 

accommodate exceptional features from different dimensions. 
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 Further remarks.  A series of concluding remarks and further technical 

comments are made.  Strengths and limitations of the techniques are 

presented.  We also indicate possible next steps and research topics for the 

interested readers to engage in. 

 

Examples of exceptional features† 

 

In the development period dimension, it is well known that individual large claims 

could affect the developments through small random fluctuations in the reporting or 

payment timing.  The uncertainty surrounding individual case reserve estimates could 

give rise to adjustment swings through the development of the claim cohort.  These 

are two examples which can give rise to negative correlations between successive 

pairs of residuals. 

 

The Axis liability reinsurance incurred triangle gives residuals that are highly 

negatively correlated (with coefficient -100%) between the second and third 

development periods. 

 

Negative Correlations between Successive Development Periods

Axis, Liability Reinsurance

Residuals from the Incurred Data

UWY 1 2 3 4 5

2003 220% 52% -15% 120% 123%

2004 52% -138% 137% -117% -70%

2005 63% 163% -139% 44%

2006 6% -27% 41%

2007 -30% -30%

2008 -63% Correlation between

the 2nd and 3rd periods: -100%

 
 

On the other hand, there are cases where claims develop in “runs” – a large 

development tends to be followed by another large one, and vice-versa.  In this case, 

there are positive correlations between successive residuals. 

 

The Arch third party occurrence incurred triangle:  there is a high correlation (98%) 

between the residuals of the third and fourth development periods. 
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Positive Correlations between Successive Development Periods

Arch, 3rd Party Occurrence Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6

2002 93% 37% 111% 119% -32% 128%

2003 -15% 188% -87% -130% -122% -59%

2004 155% 70% 127% 92% 118%

2005 -23% -14% 34% -18%

2006 -32% -94% -114%

2007 115% -97%

2008 -149% Correlation between

the 3rd and 4th periods: 98%

 
 

The development behaviour of early development can be substantially different from 

that of late development.  Significant positive or negative skewness, for example, may 

be observed in the residuals of the earlier developments, due to new claims being 

reported there.  Significant negative skewness may be observed in the later 

developments, if, say, significant subrogations are possible for the class. 

 

The Arch third party claims made paid data have highly skewed residuals, with a 

skewness in excess of 200%, in the first development period.  We observe significant 

negative skewness of -142% in the first development period of the ACE North 

American workers’ compensation incurred data.  Note that the skewness is 0% for a 

symmetric distribution. 

 

Positive Skewness in a Developemnt Period

Arch, 3rd Party Claims Made Insurance

Reisudals from the Paid Data

AY 1 2 3 4 5 6

2002 48% 5% -82% -34% -12% -140%

2003 7% -156% -81% 184% 156% 22%

2004 -44% -75% 72% -1% -74%

2005 252% -57% -148% -72%

2006 10% 163% 99%

2007 14% 11%

2008 -43% Skewness of the 1st period:

208%
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Negative Skewness in a Developemnt Period

ACE, North American Workers' Compensation

Residuals from the Incurred Data

AY 1 2 3 4 5 6 7 8

2000 73% 239% -104% -79% -44% -109% -44% 96%

2001 66% -28% 123% 167% -81% -98% 143% -104%

2002 116% -86% -187% -117% -45% 103% -88%

2003 -127% -111% 81% 105% -74% 89%

2004 -201% -39% 25% -35% 185%

2005 83% 20% 39% -4%

2006 47% 4% 19%

2007 27% 21% Skewness of the 1st period:

2008 19% -142%

 
 

In the origin period direction, development behaviours could vary between cohorts in 

statistically significant ways.  Where narratives and explanations could be found, they 

are usually in relation to unusual loss events.  The World Trade Centre losses from 

2001, natural catastrophe losses, the recent subprime / credit crunch events, are such 

examples.  They could give rise to significantly high developments for the year, or 

significantly variable developments when we deal with incurred claim triangles. 

 

The Axis property insurance paid claim residuals from the 2005 AY have a mean of 

91%.  Note that under the original Mack bootstrap assumptions, we would expect 

residuals to have a mean of zero. 

 

High Developments along an Origin Period

Axis, Property Insurance

Residuals from the Paid Data

AY 1 2 3 4 5 6

2002 56% -95% -75% -90% -94% -127%

2003 63% -18% 87% -96% 137% 63%

2004 126% -181% -169% -99% -49%

2005 121% 67% 61% 113%

2006 -58% 82% 67%

2007 -126% 81%

2008 -115% Mean of the 2005 AY:

91%

 
 

The same could be said of the calendar period dimension.  Examples of potential 

narratives and explanations may be significant changes in case reserving philosophies, 

or emergence of issues in a long-tailed liability book such as changes in legal 

interpretation or inflation regime changes. 

 

A mean of 122% is observed from the Axis marine insurance incurred 2008 residuals.  

The XL casualty insurance incurred residuals give a mean of -85% in the 2005 year.  

Note that the first of the 2008 calendar year residuals starts from the 2007 accident 

year. 
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High Developments along a Calendar Period

Axis, Marine Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6

2002 -12% 61% -16% -58% -131% 102%

2003 -33% -31% 172% 156% 112% -98%

2004 37% -94% -31% 88% 9%

2005 -101% -86% 40% -68%

2006 57% 163% -132%

2007 226% 111%

2008 -55% Mean of the 2008 CY:

122%

 
 

Low Developments along a Calendar Period

XLI, Casualty Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6

2000 120% -169% -92% 46% -119% -65%

2001 165% 103% 198% -100% -14% 118%

2002 -151% 57% -122% -22% 165% -136%

2003 45% -33% -74% 198% -25% 57%

2004 -51% -19% 30% -91% 87%

2005 -46% -36% 27% -5%

2006 46% 11% 9%

2007 -121% 186%

2008 -44% Mean of the 2005 CY:

-85%

 
 

What should we do with the exceptions in assessing 
estimation error?† 

 

Before we launch into the details of the proposed extensions to the Mack bootstrap 

model for assessing estimation error, we ought to evaluate the various options to deal 

with exceptions that contradict the Mack independence assumptions. 

 

a) A first option is to acknowledge them but do nothing.  This may be taken if 

the practitioner believes that the failure of the independence assumptions lead 

to only immaterial distortions to the risk assessments, giving more weight to 

simplicity.  However, as we shall discuss in the subsections below, the 

estimation error could be materially underestimated in some cases. 

 



Extending the Mack Bootstrap 

 40 
 

b) We could take out the exceptions in the modelling of estimation error.  
With this option, the exceptions would be regarded as unhelpful in obtaining 

distributions around the mean parameters, fj, for projection into the future.   

They would have more to do with volatility, and hence should be more 

properly considered in the forecast error.  This is not an unreasonable line of 

thought.  However, ideally, one would want the means to be taken as the 

average of all possible outcomes, and not only on those outcomes that are not 

volatile:  excluding these exceptions could significantly underestimate the 

volatility of fj.  Moreover, data are precious in reserving risk modelling:  

excluding residuals could result in losing too much data for resampling. 

 

c) The Mack bootstrap could be abandoned for this class in preference for 

another model.  The Mack model assumes independence:  if this assumption 

does not hold, then the model is not valid.  This could be theoretically more 

appealing.  With development factors that apply to all accident years, it is not 

natural for the chain ladder to deal with non-trivial calendar period dynamics.  

There is a wide variety of triangular approaches in the literature (see, for 

example, (Wüthrich & Merz, 2008), (Barnett & Zehnwirth, 2000), (Shapland 

& Leong, 2010), (Martínez Miranda, Nielsen, & Verrall, 2011)).  On top of 

this, non-triangular approaches are being seriously discussed (for a flavour of 

such methods, see (Orr, A simple multi-state reserving model, 2007) and 

Chapter 10 of (Wüthrich & Merz, 2008)).  The practitioner taking on this 

approach would likely require different data requirements.  For triangular 

methods, they would also need to deal with cases where there are negative 

developments.  This could also lead them to consider moving away from a 

simpler approach of dealing with the first two moments which their colleagues 

would be used to.  They could also be considering maintainability of the 

processes of the different methods if there are many classes of business to 

consider.  All or some of these could make this approach less desirable in a 

practical context. 

 

d) We could adjust the data to eliminate the exceptions.  The exceptions are 

taken seriously and recognised as undermining the validity of the Mack 

bootstrap model.  For each exception, the practitioner would investigate the 

reasons for the exceptions, and adjust the data accordingly so that the 

exceptions no longer exist.  This could be a reasonable approach if the 

exceptions could be identified and the exceptions are assured to be “one-offs” 

(e.g. an origin period exception in 2005 coming from an unusual claims 

handling process that could not have happened in any other origin periods, due 

to other years having a different event experience).  However, this may not be 

desirable or possible for all exceptions for all triangles:  either because the 

exceptions are genuinely part of the usual claims development process, or 

because it could be very time consuming to do. 

 

e) The Mack bootstrap could be extended so that, in the extended model, the 

exceptions would no longer appear exceptional.  The extension could be 

employed to model exceptions that should be considered as part of the usual 

claim dynamics.  For it to be useful, this option needs to avoid the trappings of 

option (c):  the extended model should be similar to the Mack bootstrap.  This 

approach attempts to bring practicality into play, building on a model which is 
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already popular and understood.  In the remainder of this section, we shall 

describe techniques of extending the model.  The key issue with this approach 

is that key statistical properties could be lost.  For example, some of the 

proposed techniques in this paper would force the means of the ultimates to 

deviate from the chain ladder projections.  The practitioner will need to assess 

the significance of such issues when using the extensions. 

 

The brief discussions above point to the pros and cons with the different options.  In 

the remainder of this section, we shall assume that the practitioner has decided on 

trying out option (e).  We next consider these proposed extensions at a high level, 

before entering into more detailed discussions on the techniques. 

 

High level view of the proposed extensions† 

 

The example exceptions discussed earlier attempt to link statistically significant 

features with how claims develop in reality.  It is useful to identify these features so as 

to determine how to proceed in the modelling.  On the one hand, it may be the case 

that claims from unusual events should be isolated and modelled outside the Mack 

bootstrap.  This is likely to be more the case with origin period features.  On the other 

hand, the practitioner may want to leave some of these features in – deeming them 

part of the usual claim process.  In this case, some extension to the Mack model may 

be required.  This section deals with how one may want to construct such extensions. 

 

From now on, we call these features exceptions.  It is important for our discussion 

here to recognise that features are only exceptional relative to a model M.  In our 

case, one way to do this is to use hypothesis testing – with the null hypothesis being 

that the observed residuals come from M, and the alternative hypothesis being that 

they do not come from M.  Where a feature has us rejecting the null hypothesis, we 

shall call that feature an exception (relative to model M). 

 

The general line of attack is to iteratively perform hypothesis testing and extending 

the model to give a series of models M(0), M(1), ..., with each designed to 

accommodate the exceptions found in the previous model.  The starting point, M(0), 

is the original Mack bootstrap. From the point of view of understanding the drivers of 

the statistical process and of communication of modelled results, it is useful for the 

extended model to still be closely related to the basic structure of independence.  We 

may also see this as an instance of the general aim of statistical modelling: we want to 

capture essential features, and, at the same time, to avoid overfitting the model. 

 

While the exceptions are identified using hypothesis testing, the extensions are 

achieved through how resampling of the residuals is performed.  One way is what we 

call sieve resampling, in which residuals from an exceptional part of the triangle are 

constrained to be resampled within that part.  This could be used, for example, to 

accommodate significantly positively skewed residuals in the first development 

periods of a triangle.  The extension thus produced would be a model that reflects 

significantly different distributional behaviours between different parts of the triangle. 

 

Another way is exception resampling.  The independent bootstrap would be the norm.  

However, some simulations would have the exceptional set of residuals (e.g. those 
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from an exceptional calendar period) being applied to a part of the triangle (e.g. to 

another calendar period).  In the example of the calendar period, the extended model 

attempts to reflect the possibility of any calendar period being exceptional.  The 

observed calendar period, that was exceptional in relation to the pre-extended model, 

would be much more usual in the extended model. 

 

A useful key is that the extended resampling techniques channel their influence to the 

simulated reserve distributions through the distributions of the development factors, fj.  

Exception resampling influences the dependencies between the fj’s, while sieve 

resampling in the development period dimension influences the shapes of the fj’s.  An 

immediate consequence of changing the fj’s in this way is that the mean of the 

projected ultimates can deviate from the chain ladder projections.  We do not see this 

as too much of a problem, since reserving is nowadays rarely done only with the chain 

ladder method.  Scaling is commonly performed so that the Mack bootstrap mean 

matches with the reserving actuary’s best estimate reserves.  The practitioner will 

need to check that the amount of additional scaling required through the use of the 

extension is tolerable. 

 

Identification of exceptional features 

 

As mentioned above, we define exceptional features (relative to model M) to be those 

over which we reject the null hypothesis that the observed residuals come from M.  

One way to do this is to repeatedly resample residuals assuming M, giving rise to a 

distribution of a test statistic, T.  The observed test statistic, t, could then be read off 

the distribution for one- or two-tailed tests. 

 

If we continue with the example using the Axis marine insurance incurred data, then 

we see that the 2008 calendar period is exceptional relative to M(0), the original 

Mack model of independent residuals. 

 

High Developments along a Calendar Period

Axis, Marine Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6

2002 -12% 61% -16% -58% -131% 102%

2003 -33% -31% 172% 156% 112% -98%

2004 37% -94% -31% 88% 9%

2005 -101% -86% 40% -68%

2006 57% 163% -132%

2007 226% 111%

2008 -55% Mean of the 2008 CY:

122%

 
 

We now follow the following steps: 
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i. Define a test statistic.  In our case, we consider the 2008 calendar period 

residuals.  A natural statistic is the mean of the 2008 calendar period 

residuals.  Let us call this T. 

ii. Calculate the observed test statistic, t = Average(226%, 163%, …, 102%) 

= 122%.  (As an aside, notice that the first residual from the 2007 AY 

cohort is actually a 2008 residual.  That residual says how claims develop 

from year end 2007 to year end 2008.) 

iii. Produce a large number of resampling of the above triangle of residuals, 

according to M(0).  For each resample, h = 1, …, calculate the test statistic 

  ̃.  Three resamples might be as follows, with   ̃      ,   ̃      and 

  ̃      . 

 

Resampled residuals from Axis Marine Insurance Incurred Data (simulation 1)

AY 1 2 3 4 5 6 7 8

2002 172% 88% 112% 61% -31% -101%

2003 -55% -132% 172% 57% -98% -31%

2004 226% -58% 102% 226% -31%

2005 -101% 88% -94% -132%

2006 57% 9% 226%

2007 -12% -16%

2008 112%

2009

Resampled residuals from Axis Marine Insurance Incurred Data (simulation 2)

AY 1 2 3 4 5 6 7 8

2002 -16% -33% -132% -31% 9% -68%

2003 112% 156% -94% -12% -98% -12%

2004 37% 163% -68% 163% -68%

2005 156% -94% 226% 112%

2006 -31% 57% 102%

2007 -12% -131%

2008 -86%

2009

Resampled residuals from Axis Marine Insurance Incurred Data (simulation 3)

AY 1 2 3 4 5 6 7 8

2002 -132% -98% 9% 57% -94% 9%

2003 61% 88% -31% 57% 9% 57%

2004 -101% -58% -31% -86% 111%

2005 40% -55% -55% -98%

2006 40% 37% 37%

2007 -132% 226%

2008 102%

2009

 

iv. Use the resampled test statistics   ̃ to approximate a distribution of T under 

M(0).  Measure the observed test statistic, t, against the distribution. 
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v. If the tail probability is less than a pre-determined level (traditionally, 5% 

is often taken to be a boundary that separates out what is random and what 

is not), then we reject the null hypothesis that the residuals come from 

M(0).  In our case, the tail probability is less than 0.5% for a one-tailed test 

(or 1% for a two-tailed test).  As the tail probability is below 5%, we reject 

the null hypothesis at the 5% level, and declare that the 2008 calendar 

period is exceptional in relation to M(0). 

 

The two-tailed test is arguably preferable to the one-tailed test.  Using the two-tailed 

test seems more reasonable, if we are interested in the whole reserve distribution.  

Identification of calendar periods with exceptionally high or exceptionally low 

residuals would be useful.  However, it is possible, especially purely for solvency 

purposes, that the practitioner might want to focus on clusters of high residuals.  Even 

here, the identification of clusters of low residuals is useful:  since the residuals are 

centred around zero, a clustering of low residuals must be balanced by a clustering – 

albeit in a wider area – of high residuals.  Of course, in our example above, our 

conclusion would be the same whether we were performing the one-tailed or two-

tailed test. 

 

It is relatively straightforward to program the above to systematically test for features 

in all three dimensions – or, indeed, for many well-defined statistics. Means, standard 

deviations and skewness can be used as test statistics.  Using this methodology, all 

examples of exceptional features mentioned previously could be discerned. 

 

We note that Step iii in the above procedure is the same as Step b in the Mack 

bootstrap.  Indeed, since all the proposed extensions (see below) to accommodate the 

exceptions are versions of resampling, the above procedure could be used to identify 

exceptional features relative to M(0) with the proposed extensions.  This point helps 

to drive the iterative extension of the models described in the “high level” section 

above. 

 



Extending the Mack Bootstrap 

 45 
 

Moreover, the similarity between Step iii and Step b for M(0) and its extensions is 

helpful in that similar computer codes could be deployed for hypothesis testing and 

for actual implementation of the extended models. 

 

We end with a note on Type II error of the hypothesis tests.  It is understood that there 

is a 5% chance (in the above example) that a non-exceptional feature is wrongly 

identified as one.  However, it is not clear how to quantify the chance of Type II error 

– that of non-identification of an exceptional feature.  It seems intuitive that this Type 

II error is less likely for features with more residuals, or where the exceptional 

features have materially different test statistics.  As is the case in this general area of 

modelling, having large – and applicable – triangle is valuable.  While there is 

advantage in keeping the selected model with as few extensions as possible, not least 

to avoid overfitting, the practitioner may also use their experience of modelling with 

other datasets to supplement exceptional features that may not be observed in the 

triangle.  We shall not discuss this point further, and leave it as an open area for future 

research.  (Please also see the Further Remarks subsection below.) 

 

Sieve resampling 

 

The idea here is that we partition the triangle into subsets, and constrain the residuals 

to resample back into their own subsets. 

 

While in theory it can be used for any partitions of the triangle, thus far, we have 

found them most useful to accommodate significant distributional differences in the 

development period dimension.  It could potentially be useful in the origin period 

dimension, when there are fixed events that drive the claim developments of 

particular years.  However, in significant cases, the practitioner would usually isolate 

claims from these events for separate and more transparent analyses:  there would 

then be less need for sieve resampling.  

 

In the case of the ACE North American workers’ compensation incurred data, we note 

that the residuals from the first development period have a significantly non-zero 

skewness, with a p-value of 2%.   The key question for sieve resampling is how to 

partition the triangle into subsets.  It is useful to perform hypothesis testing not just on 

the first development period, but on the first n.  For the ACE data, we have the 

following: 

 

p- values of hypothesis testing

Data:  ACE North American workers' compensation incurred

Test statistic:  Skewness

Development Period Regions

Model 1st only 1st to 2nd 1st to 3rd 1st to 4th 1st to 5th

M(0) 2% 84% 39% 54% 98%  
 

This shows that a reasonable partition would consist of two subsets:  one with the first 

development period only, and the other with all the other development periods.  If we, 
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say, took the first two development periods, then we would no longer have an 

exceptional feature, and it would seem more spurious to perform any special 

resampling at all. 

 

Staying on the subject of selecting a partition, it is interesting also to consider the p-

values of the remainders of the triangle – that is:  all but the first development period, 

all but the first two periods, and so on. 

 

p- values of hypothesis testing

Data:  ACE North American workers' compensation incurred

Test statistic:  Skewness

Development Periods excluding:

Model 1st only 1st to 2nd 1st to 3rd 1st to 4th 1st to 5th

M(0) 22% 76% 21% 17% 76%  
 

There is no reciprocity. Indeed there is no reason why one would expect significant 

skewness to exist after the first development period, just because there is significant 

skewness in the first period.  The Mack bootstrap residuals are not related to 

skewness, although by definition, they have zero mean and unit standard deviation. 

 

There is no material requirement, therefore, for the second subset (the region outside 

the first development period) to have sieve resampling to simulate its “true” 

distribution.  The sieve resampling comes from the idea that each residual should 

appear in the triangle with the same frequencies as all other residuals in a set of 

simulations:  that the overall distribution (represented by all the residuals) should be 

the same in the observed world as in the simulated worlds. 

 

Performing the said sieve resampling to construct M(1) accommodates the negative 

skewness (p-value is now 80%), and gives the following distribution of reserves.  The 

impact is much less pronounced than seen in exception resampling (see subsections 

below).  A key point is that the exception resampling examples in this paper all 

increase correlations between the development factors, fj, driving up estimation error.  

However, the sieve resampling on development period regions maintains the lack of 

correlations between the factors.  The change here relies mainly (if not only) on the 

skewness of the first development period, and so only impacts the reserve projection 

on the last accident year – and only on one development factor. 
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All AY IBNR Reserve uncertainty

Due to Estimation Error (USD 000)

Data:  ACE NA Workers' Comp Incurred

See text for definition of M(1)

M(0) M(1) Difference

Mean 869,156     861,679     -0.9%

SD 125,026     123,699     -1.1%

Percentiles

75th 952,615     944,340     -0.9%

90th 1,030,600 1,019,541 -1.1%

99.5th 1,211,111 1,208,322 -0.2%  
 

Performing the same sieve resampling on the Arch third party claims made paid data 

also yields similar results:  estimation error decreases by around 2%.  The volatility is 

further suppressed through the sieve resampling by disallowing the high residual 

(254%) observed in the first period to be resampled to other periods.  Where volatility 

may be previously driven by this high residual for any of the origin periods save the 

last one, this is no longer possible. 

 

One-step exception resampling of one exceptional feature:  
theoretical considerations 

 

The exceptional feature, ℰ, can be thought of carrying two pieces of information, (ℒ, 
𝒮).  One is the location, ℒ, in the triangle.  The location is a subset of the triangle – 

e.g. calendar period, or two adjacent development periods.  The other is the structure, 

𝒮, which relates the residuals in ℒ with one another.  If ℒ is a calendar period, then 

examples of 𝒮 are “the residuals in ℒ do not relate to one another” and “the residuals 

in ℒ that are in adjacent origin periods are related to one another”.  The first example 

is suggesting that ℰ is exceptional due to a collective feature of the residuals in ℒ, 

irrespective to their positions relative to one another.  Such feature could be the mean 

or standard deviation of the residuals in ℒ.  We will call such a structure simple.  The 

second example would be saying that ℰ derives its exceptionality from how each pair 

of adjacent residuals in the calendar period ℒ relate to one another.  Such a 

relationship could be significantly high correlations between the pairs. (The structure, 

𝒮, could be more rigorously defined to be a set of ordered sets.) 

 

Exception resampling allows exceptional features, ℰ, to occur in a set of target 

locations, L.  We assume, for now, that L is a partition of the triangle (so that its 

elements are pairwise disjoint subsets of the triangle, and the union is equal to the 

triangle).  This assumption will be discussed at the end of this subsection, and is not 

unreasonable, especially when the structure, 𝒮, is simple. 

 

If ℒ is a particular calendar period in the triangle, then L could be the set of all 

calendar periods in the triangle.  In this case, the exception resampling could then 

allow any calendar period in the triangle – even those that are not the same as ℒ – to 

have the same exceptional features (e.g. exceptionally high mean or standard 

deviations, depending on ℰ).  In this example, we are suggesting that the claim 
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development dynamics can give rise to clusters of high residuals (or highly variable 

residuals) along any calendar period – and the observed ℒ is an example. 

 

We now consider how exception resampling could be implemented under a Monte 

Carlo set up.  Given an exceptional feature, ℰ = (ℒ, 𝒮), with 𝒮 being the simple 

structure, with target locations L, an exception resampling could take the following 

steps in a simulation: 

i. For each ℒ*
 in L, determine whether it is exceptional:  this could be a 

Bernoulli trial, independent of other members of L, with probability p 

ii. If ℒ*
 is not exceptional, then residuals from outside of ℒ are resampled into 

ℒ*
 

iii. If ℒ*
 is exceptional, then residuals from ℒ are resampled into ℒ*

 

 

The probability p could be calibrated so that each residual has the same 

(unconditional) probability of being simulated as any other in any position of the 

triangle.  Clearly, p would then need to be 
 ℒ 

(
 

 
(   )   )

⁄ , where  ℒ  is the 

number of residuals contained in ℒ, and 
 

 
(   )    is the total number of residuals 

in the triangle for resampling.  (Note that the total number of residuals for resampling 

is not 
 

 
(   )  because there is no residual available in development period     

due to the     
 ̂  being undefined.) 

 

We conclude this subsection with a technical note on L being a partition of the 

triangle.  Since the singletons are allowed to be elements of L, any points of the 

triangle not in the union of L could just be included into a new target as singletons.  If 

the elements of L were not disjoint, then we would run into difficulties when deciding 

whether intersections should follow ℰ or not in any given simulation.  Until some 

natural rules could be employed to make such decisions, it is easier to require all 

elements of L to be disjoint.  

 

One-step exception resampling of one exceptional feature:  
examples 

 

We now demonstrate the theoretical discussions with examples from the calendar 

period, the origin period and then the development period dimensions. 

 

In the Axis marine insurance incurred example, the 2008 calendar year was identified 

as exceptional, through its residuals having significantly high mean in relation to 

M(0).   We can therefore set 𝒮 to be the simple structure.  Assuming any other 

calendar period could have had similar feature, we define the target set, L, to be the 

set of all calendar periods.  Recall that stochastic development factors are obtained 

after resampling of residuals (see the Mack Bootstrap subsection above).  If these 

stochastic development factors are used to project the triangle, with no further 

variability imposed, then we would have a measure of the estimation error.  The table 

below shows such distribution for the IBNR:  M(0) stands for the standard Mack 

bootstrap, and M(1) is M(0) but with the aforementioned exception resampling.  The 

number of simulations was 10,000. 
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All AY IBNR Reserve uncertainty

Due to Estimation Error (USD 000)

Data:  Axis Marine Insurance Incurred

See text for definition of M(1)

M(0) M(1) Difference

Mean 16,910    17,356    2.6%

SD 25,060    35,563    41.9%

Percentiles

75th 33,580    40,690    21.2%

90th 50,178    67,120    33.8%

99.5th 82,679    116,359  40.7%
 

 

We note some observations: 

 The reserves derived here are very different from those published by Axis, 

where the IBNR is booked at over $150m across all accident years.  This 

should not distract us from the current discussion focussed on exception 

resampling, remembering that it is not best practice to set reserves by using the 

chain ladder model blindingly, without regards to nuances in the data or 

commercial considerations. 

 The volatility has increased dramatically.  An increase is not unexpected.  

With the calendar period exception resampling, M(1) now has non-zero 

correlations between the different stochastic development factors.  We note 

M(0) has zero correlations between the stochastic development factors. 

 The size of the increase is large.  Intuitively, one expects this from the findings 

in the hypothesis testing on the 2008 year (see the “Identification of 

exceptional features” subsection above), with very low p-value. 

 There is a small change in the mean reserves.  This is again due to there being 

correlations between the stochastic development factors.  Recall that the chain 

ladder projection relies on products of development factors, and that the mean 

of a product is not necessarily the product of the means if the random variables 

are not independent.  (See also Statement 6 in the discussion of the Mack 

model earlier in the paper.) 

 

We have discussed calendar period exception resampling above as an example.  This 

could be modified to give origin period exception resampling, although one should 

usually be cautious about one-off unusual claim developments.  With the Axis 

property insurance paid as an example, we noticed an exception in the 2005 accident 

year.  The traditional way of isolating unusual claim developments for analysis 

outside the Mack framework is a good and transparent approach.  However, if the 

practitioner decides that the observed 2005 origin period exception is not a one-off, 

but could have happened in other years, then performing an exception resampling on 

that year could be a way to incorporate the feature.  An increase of around 2% in the 

estimation error is seen with exception resampling. 
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All AY reserve uncertainty

Due to Estimation Error (USD 000)

Data:  Axis Property Insurance Paid

See text for definition of M(1)

M(0) M(1) Difference

Mean 470,387  472,511     0.5%

SD 285,798  291,253     1.9%

Percentiles

75th 719,187  721,550     0.3%

90th 835,023  841,163     0.7%

99.5th 995,999  1,036,105 4.0%  
 

If we only test on mean and standard deviations, by the definition of   ̂ and   
 ̂, one 

should not obtain single development periods as an exception with the simple 

structure.  However, there may be a case for exception resampling pairs of adjacent 

development periods, with 𝒮 being the pairs of residuals on the same origin period.  

The Axis liability reinsurance incurred example had significant negative correlation 

between the second and third development years.  The practitioner now has to decide 

whether this is a feature that could have happened in any adjacent pair of development 

periods, or if it is contained in the observed second and third periods.  If it is the latter, 

then the sieve resampling method on pairs of residuals would be helpful (see above).  

If it is the former, then a way forward would be to use exception resampling.  Doing 

so – now on pairs of residuals (namely, (52%, -15%), (-138%, 137%), (163%, -139%) 

and (-27%, 41%):  see the Examples of exceptional features subsection above) with 

targets that are pairs of adjacent development periods – would give a decrease of 

estimation error of around 7%.  A similar thought process could be used for the Arch 

third party occurrence incurred residuals, where we observed a high correlation 

between the third and fourth periods.  If one performs exception resampling to 

accommodate this observation, then there would be an increase of around 11% in 

estimation error. 

 

All UWY IBNR Reserve uncertainty All AY IBNR Reserve uncertainty

Due to Estimation Error (USD 000) Due to Estimation Error (USD 000)

Data:  Axis Liability Reinsurance Incurred Data:  Arch 3rd Party Occ Incurred

See text for definition of M(1) See text for definition of M(1)

M(0) M(1) Difference M(0) M(1) Difference

Mean 293,454   293,106  -0.1% Mean 722,956      723,122  0.0%

SD 31,120      29,027    -6.7% SD 60,943         67,827    11.3%

Percentiles Percentiles

75th 313,900   311,942  -0.6% 75th 764,670      768,101  0.4%

90th 334,122   330,648  -1.0% 90th 802,245      811,979  1.2%

99.5th 378,884   376,520  -0.6% 99.5th 883,359      899,154  1.8%

 

One-step simultaneous exception resampling* 

 



Extending the Mack Bootstrap 

 51 
 

The previous subsection has described an approach to performing exception 

resampling of one exceptional feature (namely, ℰ, onto L).  If L is a partition of the 

triangle, it is quite easy to extend the above to simultaneously perform exception 

resampling from more than one exceptional features, ℰh  = (ℒh, 𝒮h), for h = 1, 2, ...  

The extension is that for each ℒ*
 in L in a simulation, the Monte Carlo algorithm 

would determine whether it is exceptional, and if it is, with which ℰh.  This could be 

done with probability ph for each ℰh, again, independently of other members of L.  If 

we further require that each residual has the same probability of being simulated as 

any other in any position of the triangle, then it would be helpful to impose that the 

different ℒh’s are disjoint.  In this case, ph is 
 ℒ  

(
 

 
(   )   )

⁄ . 

 

An example would be two or more calendar period being exceptionally resampled 

onto all the calendar periods.  We illustrate this by considering the XL casualty 

insurance incurred data.  Here the residuals from the 2005 year have a significantly 

low mean of -85%, and those from the 2006 year have a significantly low standard 

deviation of 25%.  Note that, under M(0), we would expect means of residuals to be 

around 0% and standard deviations of six residuals to be around 1/sqrt(6-1) = 45%. 

 
Low Developments along a Calendar Period; low Variability along another

XLI, Casualty Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6 7 8

2000 120% -169% -92% 46% -119% -65% -106% 98%

2001 165% 103% 198% -100% -14% 118% 133% -102%

2002 -151% 57% -122% -22% 165% -136% -35%

2003 45% -33% -74% 198% -25% 57%

2004 -51% -19% 30% -91% 87%

2005 -46% -36% 27% -5%

2006 46% 11% 9%

2007 -121% 186% CY 2005 2006

2008 -44% Mean -85% -40%

SD 41% 25%

 
 

Let M(1) be the model produced from performing exception resampling with the 2005 

calendar period on all calendar periods, based on M(0).  Under M(1), it can be seen 

that the 2006 calendar period is also an exception, in that its standard deviation is 

significantly low with p-value of around 2%.  This clustering of low volatility 

residuals would imply a balancing clustering of high volatility residuals outside it.  

We may also, then, want to perform exception resampling with the 2006 calendar 

period as well as with the 2005 year.  This we shall call M(2).  We tabulate statistics 

of the IBNR reserve distributions from the extended models below. 
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All AY IBNR Reserve uncertainty

Due to Estimation Error (USD 000)

Data:  XL Casualty Insurance Incurred

See text for definition of M(1) and M(2) Differences

M(0) M(1) M(2) M(1):M(0) M(2):M(1)

Mean 1,048,807 1,051,043 1,052,919 0.2% 0.2%

SD 285,075     312,350     328,777     9.6% 5.3%

Percentiles

75th 1,240,258 1,265,652 1,275,012 2.0% 0.7%

90th 1,426,201 1,463,335 1,497,918 2.6% 2.4%

99.5th 1,820,165 1,871,175 1,922,043 2.8% 2.7%  
 

The difference between M(2) outputs and those of M(1) is smaller than that between 

M(1) and M(0).  This is intuitively not surprising.  Clustering of high residuals, 

characterised by exceptions with high / low means, should have more of an impact in 

driving the correlations between the fj’s than clustering of highly volatile residuals, 

characterised by exceptions with high / low standard deviations. 

Small exceptions and parametric bootstrapping* 

 

The discussions above are centred on non-parametric bootstrap.  The distributions 

assumed for the residuals is the empirical observed distributions.  However, one can 

also perform resampling by assuming that the residuals follow a family of parametric 

distributions (e.g. the normal distribution).  This can be especially useful when |ℒ  is 

small, for two reasons. 

 

Firstly, due to the method of sampling with replacement, the accommodation of 

exceptional features with small locations could be hampered:  an early calendar period 

that has exceptionally high standard deviation could require the whole range of 

residuals to be resampled into it to achieve a similar level of standard deviation. 

 

This is the case for the 2002 calendar year for the XL casualty insurance incurred 

triangle.  Under M(2) (see above), this calendar year still has a p-value of under 2% 

(under a two-tailed test on the standard deviation). 
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Low Developments on a Calendar Period; Low Variability on another; High Variability on a third

XLI, Casualty Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6 7 8

2000 120% -169% -92% 46% -119% -65% -106% 98%

2001 165% 103% 198% -100% -14% 118% 133% -102%

2002 -151% 57% -122% -22% 165% -136% -35%

2003 45% -33% -74% 198% -25% 57%

2004 -51% -19% 30% -91% 87%

2005 -46% -36% 27% -5%

2006 46% 11% 9%

2007 -121% 186% CY 2005 2006 2002

2008 -44% Mean -85% -40% -2%

SD 41% 25% 237%

 

A first try of accommodating the 2002 year would be M(3), where exception 

resampling would be performed (not yet with parametric bootstrapping).  Below is a 

table of p-values from the means and standard deviations of the residuals relative to 

each of M(0), M(1), M(2) and M(3).  It shows that under M(3), the 2002 year is still 

not accommodated, with no improvement in the  p-value. 

 

p- values of hypothesis testing

Data:  XL Casualty Insurance Incurred

See text for definition of M(1), M(2) and M(3)

(i)  Test Statistic:  Mean

CY M(0) M(1) M(2) M(3)

2002 98% 97% 94% 94%

2005 4% 13% 13% 14%

2006 31% 40% 49% 49%

(ii) Test Statistic:  Standard Deviation

CY M(0) M(1) M(2) M(3)

2002 1% 1% 2% 1%

2005 7% 22% 48% 50%

2006 0% 2% 20% 20%
 

 

Secondly, significance is not the issue when deciding how to accommodate it.  A 

better question is how confident we are in saying that these two residuals can be 

resampled onto larger calendar periods – and thus ordaining that the exception 

distribution consists of two points, each with a 50% weight.  The focus is on how to 

accommodate the exception.  This is where parametric bootstrapping of the exception 

is also useful, by providing a fuller distribution. 
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The procedure would be to first calibrate a reference distribution for each exception.  

Then in the simulation, whenever a resampling is required from an exception, these 

corresponding reference distributions would be called upon to return a residual rather 

than the observed set of residuals. 

 

For the XL casualty insurance incurred triangle, one could calibrate a normal 

distribution for each of the 2002, 2005 and 2006 calendar periods.  The 2002 mean 

and standard deviation parameters would be (-2%, 237%), for example.  Let us set 

M(4) to be the same as M(3), but with parametric bootstrapping using the normal 

distribution.  It can be seen that the 2002 year has a higher p-value relative to M(4) in 

standard deviation – higher than 5%.  We have the following results for the IBNR 

distributions.  As one would expect, the variability increases, as the exceptions no 

longer have only discrete points to simulate from. 

 

All AY IBNR Reserve uncertainty

Due to Estimation Error (USD 000)

Data:  XL Casualty Insurance Incurred

See text for definition of M(2), M(3) and M(4) Differences

M(2) M(3) M(4) M(3):M(2) M(4):M(3)

Mean 1,052,919 1,054,034 1,052,691 0.1% -0.1%

SD 328,777     329,457     349,382     0.2% 6.0%

Percentiles

75th 1,275,012 1,278,864 1,279,293 0.3% 0.0%

90th 1,497,918 1,490,349 1,511,435 -0.5% 1.4%

99.5th 1,922,043 1,941,363 2,035,217 1.0% 4.8%  
 

Occasionally, the parametric resampling approach could have us producing 

unrealistically large negative / positive residuals.  Capping of residuals could be 

helpful:  such as demanding that residuals be within ±3 standard deviations, say (a 

value of 3 corresponds to a cumulative probability of more than 99.8% in a standard 

normal distribution). 

 

We note that it is reasonable for a practitioner not to accommodate every observable 

exception using exception resampling.  After all, heuristically speaking, at the 5% 

level, we would expect to see an exception for every twenty (independent) tests we 

perform!  In the light of the points raised in this subsection, even if there is the help of 

parametric bootstrapping, the uncertainty may be so large that exceptions with small 

|ℒ| would be left unaccommodated. 

 

For further reference, Section 7.1.2 of (Wüthrich & Merz, 2008) and Section 4.9 of 

(Shapland & Leong, 2010) have brief discussions on the parametric bootstrap. 

 

Superimpositions of exceptionally resampled residuals* 

 

As mentioned above, simultaneous exception resampling could run into difficulties if 

the target location set, L, has overlapping elements.  This could arise if a triangle of 

residuals has exceptional calendar periods and exceptional origin periods, for 
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example.  What makes the matter more complicated is that the practitioner would 

likely want more than one target location sets.  A calendar period exception would 

naturally resample onto a set of calendar periods, while an origin period exception 

onto a set of origin periods. 

 

In such circumstance, a series of exception resampling could be superimposed 

serially.  More generally, suppose we have a series of exceptional features,   

{ℰ    (ℒ    𝒮   )                 }, with similar ones grouped together. 

There are G groups, with ℰ  {ℰ            }.  Let Lg be partitions of the 

triangle, for each g = 1, …, G, acting as targets for ℰ . 

 

i. Perform (simultaneous) exception resampling with ℰ1 onto L1.  For each 

simulation, s, let R1,s be the set of resampled residuals and their positions 

in the triangle (this could be more rigorously defined as a set of triplets – 

the first dimension being origin periods, second development periods, and 

third the resampled residual value).  

ii. Given we have Rg,s for g<G, we now construct Rg+1,s.  For each member, 

ℒ*
, of Lg+1, determine whether it is to be resampled from an exceptional 

feature in ℰg+1 (see the discussions above on one-step exception 

resampling).  If not, then Rg+1,s(i,j) = Rg,s(i,j) for each (i,j) in ℒ*
.  

Otherwise, if it is determined that ℰ (in ℰg+1) is to be resampled onto ℒ*
, 

then resample residuals from ℰ onto ℒ*
, as per usual. 

iii. RG,s would be the final resampled residuals for simulation s. 

 

In this way, the exceptional features are superimposed onto a triangle of residuals 

from the previous iteration.  The procedure can also involve sieve resampling in the 

sequence.  At this point, it is useful to make the following observations. 

 

 The effects of resampling performed earlier in the sequence can get diluted by 

later resampling.  Therefore, the practitioner will need to determine which 

exceptional features are more important.  A rule of thumb could be to perform 

development-period-related resampling first, as these can be considered as part 

of the normal course of events, and would be helpful to be embedded early as 

a basis.  Another could be that calendar periods could be performed late in the 

sequence, to emphasise the shock nature of the exceptions associated with 

calendar periods. 

 The procedure above could cause some residuals – particularly, those on the 

intersections of exceptional features – to be sampled more often than others.  

For non-parametric resampling, it is possible to adjust for this in step ii above.  

One way would be to demand that only residuals not in an exceptional feature 

of ℰg+1 can resample onto ℒ*
 that is determined not to be exceptional (in the 

sense of ℰg+1) for the simulation.  If (i,j) is in ℒ*
 that is not exceptional (again, 

in the sense of ℰg+1) in the simulation, whenever Rg,s(i,j) is a residual in an 

exceptional feature of ℰg+1, then one could perform a resample just for (i,j) to 

make sure that Rg+1,s(i,j) is a residual not in any exceptions in ℰg+1. 

 

We now continue with the Arch third party occurrence incurred example.  Recall from 

a previous discussion that M(1) is constructed to accommodate the positive 

correlations seen between the third and fourth development periods.  While this is 
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successful in accommodating the exception, the practitioner may want to 

accommodate the 2004 origin period, which has a significantly high mean under both 

M(0) and M(1). 

 

Positive Correlations between Successive Development Periods;

High Developments on an Origin Period

Arch, 3rd Party Occurrence Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6

2002 93% 37% 111% 119% -32% 128%

2003 -15% 188% -87% -130% -122% -59%

2004 155% 70% 127% 92% 118%

2005 -23% -14% 34% -18%

2006 -32% -94% -114%

2007 115% -97%

2008 -149% Mean of the 2004 AY:

112%

 
 

A way of doing so would be to proceed as described abstractly earlier in this 

subsection.  In our context, we would superimpose the exception resampling with the 

2004 origin period onto the resampling already done under M(1).  We call this M(2). 

 

While M(2) does incorporate the 2004 origin period exception, it has an exception in 

the 2005 calendar year with a significantly high mean. 

 

Positive Correlations between Successive Development Periods;

High Developments on an Origin Period and on a Calendar Period

Arch, 3rd Party Occurrence Insurance

Residuals from the Incurred Data

AY 1 2 3 4 5 6

2002 93% 37% 111% 119% -32% 128%

2003 -15% 188% -87% -130% -122% -59%

2004 155% 70% 127% 92% 118%

2005 -23% -14% 34% -18%

2006 -32% -94% -114%

2007 115% -97%

2008 -149% Mean of the 2004 CY:

151%

 
 

We can now construct M(3) by further superimposing the exception resampling with 

the 2005 calendar year onto M(2).  This new model accommodates all three 

exceptions seen under M(0) in the development period, origin period and calendar 

period dimensions.  The following tables present the progression of the p-values of 
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the exceptions under the different iterations of the modelling, and statistics from the 

IBNR reserve distributions. 

 

p- values of hypothesis testing

Data:  Arch 3rd Party Occ Incurred

See text for definition of M(1), M(2) and M(3)

(i)  Test Statistic:  Correlation Coefficient

DP M(0) M(1) M(2) M(3)

3rd vs 4th 2% 21% 16% 7%

(ii) Test Statistic:  Mean

M(0) M(1) M(2) M(3)

2004 AY 2% 4% 19% 8%

2005 CY 1% 1% 1% 9%  
 

All AY IBNR Reserve uncertainty

Due to Estimation Error (USD 000)

Data:  Arch 3rd Party Occ Incurred

See text for definition of M(1), M(2) and M(3) Differences

M(0) M(1) M(2) M(3) M(1):M(0) M(2):M(1) M(3):M(2)

Mean 722,956  723,122  724,114  725,581     0.0% 0.1% 0.2%

SD 60,943    67,827    81,277    96,710       11.3% 19.8% 19.0%

Percentiles

75th 764,670  768,101  777,828  788,493     0.4% 1.3% 1.4%

90th 802,245  811,979  832,016  857,280     1.2% 2.5% 3.0%

99.5th 883,359  899,154  946,678  1,008,285 1.8% 5.3% 6.5%

 

It is interesting to observe that the p-values decrease after first accommodation.  The 

positive correlations between the third and fourth development periods are 

accommodated with M(1) with a high p-value.  However, further superimpositions in 

M(2) and M(3) dilute this effect – so that by M(3), the p-value gets close to our 5% 

threshold again.  Similar comments could be made for the 2004 AY. 

 

With regards to volatility, M(3) has added around 60% to the estimation error from 

M(0).  This is not a trivial gap, and represents a more extreme case (among the 

collection of global loss triangles considered) of how the volatility could potentially 

be underestimated by assuming the independence assumptions of the Mack bootstrap. 

 

Sieve resampling could also be in the superimposition “chain”.  In the subsection on 

sieve resampling, we have already constructed M(1) for the ACE North American 

workers’ compensation incurred data, constraining the resampling on the first 

development period and the remainder.  Under this model, there is significantly high 

correlation between the third and fourth development periods (p-value at 2%).  

Performing exception resampling to accommodate this exception, and then 
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superimposing on M(1) would give a further impact of around 11% increase in 

estimation error. 

 

Further remarks 

 

Exception and sieve resampling are presented as possible extensions to the Mack 

bootstrap.  They attempt to add just enough to the machinery already available to the 

practitioner – the original Mack bootstrap – to accommodate instances where its 

independence assumptions fail as part of its usual claim development dynamics.  This 

approach contrasts with employing a new model “from scratch”, which also has its 

time and place. 

 

An advantage of using these resampling on the Mack bootstrap is that it is relatively 

intuitive to the practitioner who is already familiar with Mack bootstrapping.  Its 

intuitiveness is derived from confronting direct the perennial failure of the 

independence assumptions in most triangles.  If required, the simulations could be 

analysed to help discussions of possibilities of large estimation error.  How often do 

we see exceptions being simulated in, say, the worst 10 percent of estimation error?  

Which calendar periods are driving such simulations?  Informed by answers of such 

questions, the practitioner can weave together narratives to further the company’s 

understanding of claim developments. 

 

A disadvantage is that the analytic formulae for estimation error no longer hold.  

Mack’s formulae for the estimation and forecast errors are fundamentally based on the 

independence assumptions.  Practitioners appreciate such formulae as they give 

immediate indications of risk in spreadsheets, without triggering runs of Monte Carlo 

simulations.  The author leaves this as an open question to derive such formulae for 

the various exception and sieve resampling. 

 

As indicated in the Definitions and terminology section above, the formula   
 ̂  

 

     
∑     (       ̂)

 
      gives an unbiased estimator for the variance parameter   

  

under the independence assumptions.  It is unbiased due to the independence of the 

developments through the development period j.  In our simulation testing, we do not 

observe the means of the variance parameters of the pseudo data to significantly 

change with calendar period or origin period exception resampling (data:  Arch third 

party occurrence incurred).  This is expected, as exception resampling with calendar 

or origin periods maintains independence of residuals down the columns.  A small 

change is observed – up to -2% – when we used development period exception 

resampling on pairs of residuals.  A difference is expected here, since there is implied 

dependencies down the column, although not material.  Using parametric resampling 

on small exception periods can increase simulated variance parameters:  up to +10% 

impact is observed when using parametric resampling on the small 2002 year on XL 

casualty insurance incurred data. 

 

We leave this as a future research area for formulas to indicate impacts on the 

variance parameters of various different resampling methods.  For now, the reader 

may want to perform these impact analyses, and where the difference becomes 

intolerable, adjust the variance parameters appropriately.  In assessing the impacts, it 
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is useful to remember that a +10% increase in the variance parameter represents only 

around +5% change in the estimation error. 

 

There are other ways to proceed from here for further refinements of the 

methodology.  One way is for a bank of exceptional features to be set up.  As we 

mentioned, companies are more and more open to publishing claim development 

triangles.  Regulators make available triangles from statutory returns to the market.  

The collection of exceptional features identified in the data of one’s company could 

be supplemented by those seen in other appropriate triangles, giving a richer set of 

exceptions to simulate from.  A difficulty is the determination of the weighting given 

to the exceptional features from different triangles.  Another issue is how to adjust for 

the different claim processing bases and procedures of different companies. 

 

Yet another way, somewhat related to the above, would be to consider adjustments of 

frequencies of the exceptions.  Much of this section assumes the exceptional features 

are at the return periods that are consistent with the size of the observed exceptional 

features.  However, the return periods may well be very different – our observed may 

be a random occurrence (or non-occurrence!) of the exceptions.  In the extreme case, 

a frequency of zero might be employed if the observed exception was deemed a one-

off special case that would not be repeated in the future. 

 

The proposed extensions work well with shocks.  Trends are more difficult to deal 

with under such extension.  We have not dealt with trends here as they are more of a 

problem with larger triangles (e.g. those going back to the 1970’s or 1980’s).  Data 

from the more remote past are typically less applicable in the context of the fast 

changing London market environment.  Significant changes in coverage, terms and 

conditions, and claim handling procedures, contribute to this, and the practitioner is 

likely to ignore these earlier data.   Nevertheless, a next step could be to develop an 

enhancement to the exception resampling approach to take into account of trends – 

although we suspect that a different approach would be more appropriate (see the 

above subsection What should we do with the exceptions in assessing estimation 

error?). 

 

Example exceptional features mentioned in this section are with single calendar 

periods, single origin periods, development regions and pairs of development periods.  

With the amount of relevant data typically available to London Market actuaries, 

these seem a sensible list to start with.  With more data, one could investigate other 

structures.  An example is pairs of calendar periods, in which issues may take up to 

two calendar years to be resolved.  Another is to consider calendar periods confined to 

the later origin periods – to take care of situations where, for example, policies have 

fixed discovery periods.  Narratives behind candidate structures for testing are 

important to avoid modelling random observations.  To an extreme, it is also possible 

– although probably not desirable – to randomly mine for exceptional regions.  In the 

Axis marine insurance incurred triangle, the largest negative residuals are in positions 

(2006, 3), (2002, 5) and (2005, 1):  unless more external information is available to 

tell us otherwise, there is no reason to declare this set of observations as significant, as 

no natural connection exists to connect the three points in the triangle. 

 

Estimation error can be relatively difficult to communicate on its own.  There are 

benefits in being able to do so.  Not only could the information help identify the 
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source of uncertainty in the ultimate distributions, it could also help with model 

validation.  Estimation error is to do with how far (estimated) best estimates,     ̂, 

could deviate from the actual mean  (      ).  Bootstrapping gives us a possibility of 

creating different triangles (the “pseudo data”) to derive different development pattern 

estimates – and hence a distribution of possible     ̂ – that could have been derived 

under the same claim development dynamics.  The reserving actuary deals with best 

estimate ranges regularly (for example, please refer to (Gibson & others, 2011) for a 

discussion):  but it is unusual to place probabilities on these ranges, perhaps because it 

is not intuitive to place probabilities on what could have happened (as is required of 

us here). 

 

Attempts to use a frequency approach in communicating estimation error can have 

limited success.  Statements like “out of one hundred independent actuaries, given the 

same data, we would expect ten to give an answer above $Xm” seem to help.  But 

they can be too far from what is being modelled – the example statement can give the 

impression that we do include model error, which is not true.  They can also be too 

unrealistic to draw analogies with.  Considering the same statement, another question 

might be that, given their similar training and background, do actuaries really derive 

projections independently?  A third difficulty is that the model (extended or 

otherwise) assumes the actuaries blindly apply the chain ladder.  At this point, we 

leave as an open challenge to the reader to come up with better ways to communicate 

estimation error. 

 

Finally, we note that the formulation of sieve and exception resampling presented 

here seem to be sparse in the literature, even though the author knows that sieve 

resampling is widely used (see Section 4.6 of (Shapland & Leong, 2010)).  A search 

on the wider literature suggests sieve resampling is used in other statistical contexts – 

see, for example, (Bühlmann, 1997).  Other resampling techniques can be seen in 

(Taylor & McGuire, 2005) and Section 7.6 of (Wüthrich & Merz, 2008). 

 

The independence assumptions and forecast error 
 

Both intuitively and statistically, the independence assumptions in the original Mack 

Bootstrap model are not tenable for projecting forecast error.  For long-tailed liability, 

specific issues could emerge over a calendar period, stretching back several origin 

periods. These issues may range from external systemic events such as inflation 

shocks, discovery of previously latent perils, changes in legal interpretations, to 

internal factors such as changes in claim handling processes.  Statistically, many 

triangles do not fulfil the strong independence assumptions, as required by the 

original Mack model.  We have discussed this in the identification of exceptional 

features previously. 

 

At this point, it is worth mentioning that we are talking about independence 

conditional on the parameters (i.e. the development patterns).  Since the chain ladder 

uses the same development patterns to project all origin periods, albeit offset to the 

right development periods, estimation error becomes a driver across origin periods to 

the overall risk.  For instance, simulations with high estimation error would tend to 

give higher projections in the mean across all origin periods, and vice-versa.  The 
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ultimate distributions of long-tailed classes – taking into account both estimation and 

forecast errors – can give moderate Spearman’s rank correlation coefficients between 

adjacent origin periods in a Mack bootstrap with independent forecast.  The following 

table shows those simulated from the XL casualty insurance incurred data. 

 
Rank correlation coefficients of IBNR Distributions between accident years

Data:  XL Casualty insurance Incurred

Model:  Original Mack Bootstrap

2001 2002 2003 2004 2005 2006 2007 2008 2009

2001 100% 2% 4% 2% 2% 2% 3% 1% 2%

2002 2% 100% 16% 16% 16% 15% 14% 9% 6%

2003 4% 16% 100% 16% 18% 15% 14% 8% 7%

2004 2% 16% 16% 100% 18% 12% 13% 7% 5%

2005 2% 16% 18% 18% 100% 17% 15% 9% 5%

2006 2% 15% 15% 12% 17% 100% 17% 9% 7%

2007 3% 14% 14% 13% 15% 17% 100% 10% 8%

2008 1% 9% 8% 7% 9% 9% 10% 100% 8%

2009 2% 6% 7% 5% 5% 7% 8% 8% 100%  
 

We propose an approach to extend the Mack bootstrap to forecast into the future, with 

primacy given to dependencies within diagonals in the bottom halves of the triangles 

– i.e. within future calendar periods.  Secondary dependencies are applied between the 

diagonals.  The extension preserves the use of the gamma distributions commonly 

used for modelling each future cell,        of the triangle, the use of simulated   ̂      

as the mean and the use of the variance parameters   
 ̂      as the variance. 

The section is divided into three subsections. 

 

 Calendar period drivers.  A statistical way of incorporating calendar period 

driver is presented.  There is a step-by-step example, as well as indications of 

impacts on the results from a claims triangle.  The example is one which we 

have already considered in the section above on extended resampling 

techniques. 

 

 Secondary dependencies.  Correlations between calendar periods and within 

calendar periods are discussed.  The example in the previous subsection is 

carried forward here. 

 

 Further remarks.  The section ends with some further remarks on the 

strengths and limitation of the calendar period driver approach; ways to 

generalise to model different structures; possible next steps and research 

topics. 

 

Calendar period drivers 

 

We now describe the first part of the proposed extension.  The aim of this part is to 

model calendar period shocks for individual future calendar periods, in the framework 

of using the gamma distributions (or other appropriate distributions) for each cell in 

the cumulative triangle. 
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We can exploit a very common Monte Carlo method to generate distributions:  first 

simulate from a uniform (0,1) distribution, and then use the inverse cumulative 

distribution function (CDF) of the distribution to obtain simulations from the 

distribution.  For example, if a future calendar period (i.e. a diagonal in the bottom 

half of the triangle), k, is simulated to be “exceptional” in a certain sense, then we 

would ask that simulation to tend to return “exceptional” uniforms ui,j (where i+j-1 = 

k).  When the inverse gamma CDFs are then applied to the ui,j, we would then tend to 

have “exceptional” values for that simulation in the calendar period, k. 

 

One way to define “exceptional” is to look for calendar periods in the observed 

residuals that are exceptional relative to M(0).  The model M(0) is used here due to 

our wish to extend M(0), the one that has the independence assumptions.  Suppose we 

have one exceptional calendar period, k, that we want to model as a shock in the 

forecast.  Let Rk be the set of observed residuals in calendar period k.  Let Rk
c
 be the 

set of observed residuals outside the calendar period k.  Then the following procedure 

could be followed to forecast this shock into the future. 

 

i. Find statistical properties of the Rk.  Mean, standard deviation and perhaps 

skewness are examples.  Do the same for Rk
c
. 

ii. Use these statistical properties to fit distributions, using usual procedures such 

as the method of moments, for the residuals.  For example, one could use the 

normal or translated gamma.  Let Fk and Fk
c
 be the CDFs of the distributions 

corresponding to Rk and Rk
c
, respectively. 

iii. Find an overall distribution F which is a weighted mix of Fk and Fk
c
.  This 

could be done using a simulation approach.  For example, one could simulate 

1,000 simulations from Fk, and then independently, simulate 1,000 simulations 

from Fk
c
.  Let pk be the weight for Fk and pk

c
 be the weight for Fk

c
.  Then 1,000 

simulations of F could be obtained by randomly picking from Fk and Fk
c
 

according to the weights pk and pk
c
. 

iv. Let Vk:  (0,1)  (0,1) be a map, so that the Vk(u) is the percentile under the 

mixed distribution of the uth percentile under Fk.  That is to say,   ( )  

 (  
  ( )).  Similarly, define the map Vk

c
:  (0,1)  (0,1) such that   

 ( )  

 (  
   ( )).  Under a simulation approach from Step 3 (in the Mack 

bootstrap subsection above), the maps could be estimated through simulation 

by reading off the different percentiles of the 1,000 simulated Fk and Fk
c
 

against the simulated F. 

v. We are now ready to project the bottom half of the triangle, iteratively along 

the origin period dimension (similarly to the original Mack bootstrap).  To 

define the iteration, we assume that we have simulated Ci,j for all (i,j) in 

calendar period k
*
 and are wanting to simulate Ci,j+1 (i.e. the cumulative 

amounts for the next calendar period, k
*
+1). 

vi. For the calendar period k
*
+1, determine whether it is exceptional like k or not, 

using weights pk and pk
c
. 

vii. For each cell, Ci,j+1, derive the gamma parameters α and β as per usual, using 

the method of moments, with   ̂      as the mean and   
 ̂      as the variance.  

Let the inverse gamma distribution thus parameterised be Gi,j+1
-1

. 

viii. Let ui,j+1 be from the uniform (0,1) distribution for each (i,j+1) in calendar 

period k
*
+1. 
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ix. If k
*
+1 is simulated to be exceptional like k, then set Ci,j+1 = Gi,j+1

-1
(Vk(ui,j+1)).  

If k
*
+1 is simulated not to be exceptional, then set Ci,j+1 = Gi,j+1

-1
(Vk

c
(ui,j+1)). 

 

In summary, Steps i to iv produce a mechanism under which the exceptional feature is 

defined to be a distribution on the unit interval (0,1).  Steps v to ix is the usual Mack 

bootstrap projection into the future, but with an extra step that determines the 

presence of exceptional features in individual calendar periods.  Steps iii and vi make 

use of the same weights:  this is important so that, over all simulations, we would get 

the whole gamma distribution without distortions in probabilities. 

 

We now demonstrate how the above steps play out in an example, using the XL 

casualty insurance incurred triangle, paying particular attention to steps i to iv to 

produce the V maps.  The 2005 calendar year is our exceptional period, Rk. 

 

i. The mean and standard deviation from Rk are -85% and 41%, respectively.  

Those for Rk
c
 are 14% and 101%. 

ii. We make use of the normal distributions, with the above means and standard 

deviations, for Fk and Fk
c
. 

iii. There are 44 observed residuals in total, and five are in Rk.  Set pk to be 5/44 

and pk
c
 to be 39/44.  The following table shows the first 10 simulations:  the 

first two columns are normal distributions for the driver (from Fk) and for the 

complement (from Fk
c
).  The fourth column is the mixture, F, of the first two, 

determined by whether it takes its value from Fk or from Fk
c
.  The table is 

followed by a graphical representation.  

 

Simulation Fc_k F_k Driver? F

1 27% -53% No 27%

2 39% -95% No 39%

3 47% -111% Yes -111%

4 -65% -68% No -65%

5 23% 6% No 23%

6 -76% -86% No -76%

7 -53% -28% No -53%

8 104% -133% No 104%

9 -197% -62% No -197%

10 5% -84% No 5%  
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iv. The V maps could now be built, by considering where each simulated value of 

Fk and of Fk
c
 sits in F.  The following chart is a picture of these maps. 
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Steps v to ix are straightforward, with the usual calibration of the gamma distribution, 

supplemented by conditionally transformed percentiles. 
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The above steps can easily be adapted to simulate for more than one exceptional 

calendar period as drivers into the future.  In the XL casualty insurance incurred data, 

the 2006 year was also identified as an exception.  Indeed, all historic calendar 

periods can potentially be incorporated as drivers in this way.  Using all historic 

calendar periods may not be statistically parsimonious:  we include this here to help 

the discussion in the following sections, on applying correlations between calendar 

periods. 

 

The following table gives the impact of including (i) the 2005, (ii) the 2005 and 2006, 

and (iii) the 2004, 2005, …, 2009 calendar years as drivers as described above on 

purely the forecast error.  As one would expect, the changes in volatility can be 

significant.  Including all years would increase the forecast error by 29%.  (The 2004, 

…, 2009 test run is not all the calendar periods in the triangle.  It is hard to calibrate 

the earlier calendar periods, as there are only a few residuals in each of them.) 

 
All AY IBNR Reserve uncertainty

Due to Forecast Error ONLY (USD 000)

Data:  XL Casualty Insurance Incurred

0 1 2 3

Original with 2005 with 05/06 with 04-09 Differences

Mack CY Driver CY Drivers CY Drivers 1:0 2:1 3:2

Mean 1,048,526 1,048,003 1,047,123   1,046,523 0.0% -0.1% -0.1%

SD 322,866     363,079     374,729       415,192     12.5% 3.2% 10.8%

Percentiles

75th 1,255,961 1,293,729 1,296,548   1,318,965 3.0% 0.2% 1.7%

90th 1,472,228 1,515,636 1,531,180   1,598,364 2.9% 1.0% 4.4%

99.5th 1,933,570 2,015,232 2,060,083   2,176,476 4.2% 2.2% 5.6%  
 

The table below summarises the prediction error (i.e. estimation error together with 

forecast error) under different bootstrapping and calendar period driver assumptions.  

For estimation error estimation, recall that M(0) stands for the original Mack 

bootstrap.  The model M(1) represents calendar period exception resampling with the 

2005 year, with parametric bootstrapping.  The impacts on the prediction error from 

the original Mack bootstrap are also shown. These are large:  not allowing for any 

calendar period drivers or exception resampling could be underestimating risk by 

20%. 

 
All AY IBNR Reserve Prediction Error (USD 000)

Data:  XL Casualty Insurance Incurred

Estimation Forecast Error Models Differeces

Error (see above for definition) vs Original Mack Bootstrap

Models 0 1 2 3 0 1 2 3

None 322,866       363,079       374,729     415,192     -25% -15% -13% -3%

M(0) 428,543       462,257       472,505     504,967     0% 8% 10% 18%

M(1) 454,242       485,591       493,175     514,301     6% 13% 15% 20%   
 

A final remark concerns the distribution chosen in Step ii for each calendar period 

driver.  The author has tested using the translated gamma instead of the normal.  

Doing this would also incorporate the third moment.  However, the impact to the 

prediction error is small for this dataset.  The force of the driver is more expected to 
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come from its mean levels and then uncertainty around the means (in the form of the 

standard deviations).  We would not expect the third moment to be of significance, as 

the V maps squeeze the distributions to the unit interval, suppressing the impacts from 

tails. 

 

Secondary dependencies 

 

The practitioner may have reasons to impose further dependencies between the origin 

periods inside a future calendar period, k.  An example may be that adjacent origin 

periods may be associated closely.  This can be easily performed by generating the 

ui,j+1 in Step viii with, say, a Gaussian copula with appropriate correlation coefficients 

between the different pairs of origin periods.  The calibration of such correlation 

coefficients is likely to be informed heavily by qualitative reasoning, although limited 

quantitative evidence could be obtained by computing sample correlation coefficients 

from the observed triangle of different pairs of origin periods. 

 

It could also be desirable to demand dependencies be imposed between the calendar 

periods.  There could be “runs” of high emergence of claims, for example.  This extra 

dependency could be applied to a statistic (see Step 1 above) from the exception 

residual distributions, depending on the context.  Applying dependency to the means 

would allow a severe development shock to have a higher chance of being followed 

by another severe development shock.  Applying it to the standard deviations would 

be saying that highly variable developments in a calendar period would have a higher 

chance of being followed by another year of highly variable developments.  Again, 

the practitioner may rely heavily on qualitative reasoning for the correlation 

coefficients. 

 

Note that the above way of correlating between calendar periods imposes a copula on 

mass points (there are only a limited number of calendar period drivers to simulate 

from).  This could give residual progressions that are too stepped.  One way to get 

around this would be to enlist all observed calendar periods – except for, say, the 

earliest ones in one’s triangle due to the lack of observed data there – for projection 

into the future.  Using all calendar periods as drivers may be a good compromise than 

using just one or two:  trading parsimonious modelling for a smoother outcome.  In 

the example below, we shall demonstrate this impact. 

 

The following tabulates the prediction error from a variety of options of extended the 

Mack forecasting, based on the XL casualty insurance incurred data.  The extended 

Mack bootstrap model M(1) is used for estimation error.  The rows of the table 

represent the calendar periods to be counted as drivers (see the subsection 

immediately above).  The columns represent secondary dependencies mentioned in 

this subsection:  10% on adjacent origin periods within each calendar period, and then 

with 10% on the means of adjacent calendar period drivers. 
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All AY IBNR Reserve Prediction Error (USD 000)

Data:  XL Casualty Insurance Incurred

Estimation Error Model:  M(1) (see text for definition)

Calendar Secondary Dependencies (see text for definition) Impacts

Period 10% within CP also with 10% 10% within CP 10% CP

Drivers None OP correlation CP Correlation OP correlation Correlation

None 454,242                464,466                  464,466                        2.3% 0.0%

2005 485,591                495,883                  499,491                        2.1% 0.7%

2005 & 2006 493,175                505,018                  507,579                        2.4% 0.5%

2004, 2005, …, 2009 514,301                528,012                  539,590                        2.7% 2.2%

 

We make the following observations in relation to the above results. 

 Taking one calendar period at a time, the lag-1 auto-correlations between the 

residuals range from -59% to +23%.  Given the small number of residuals in 

each calendar period, the subjective figure of 10% is reasonable for the 

correlation coefficient between adjacent origin periods in a calendar period. 

 The impacts to the prediction error are not large:  around 2%. 

 The figure of 10% for correlating between adjacent calendar periods is also 

subjectively chosen.  It seems tolerably prudent against just one possible 

observation:  the lag-1 auto-correlation of the means of the calendar period 

residuals is -38%. 

 Clearly, when no calendar period driver is used, there is no driver means to 

apply correlations to – so impact is nil in this case. 

 Impacts, as expected, from the calendar period driver correlations increase as 

we use more drivers:  up to 7% when we use six drivers, from 2004 to 2009. 

 

Another way to do this may be to correlate a statistic (e.g. the means) from the 

simulated residuals or uniform distributions.  This should give claim evolutions that 

are much smoother from one calendar year to the next.  However, the rationale behind 

this approach is trickier to communicate:  instead of imposing dependencies between 

drivers, we are imposing dependencies between the random outcomes of drivers.  

Computationally this could also be quite complicated to programme and simulate – as 

the simulation of next year’s driver (i.e. Step 6) would require the knowledge of the 

simulated outcomes from all potential drivers. 

 

Further remarks 

 

The calendar period driver approach, together with imposing dependencies, is 

statistical, driven by percentiles.  The key advantage of this approach is that it adapts 

what we already have to further model important structures such as calendar period 

shocks.  To some extent, it allows investigation into how particular parts of the 

reserve distribution come about, through tracing back the simulations.  It is also 

possible to output monetary impacts for wider discussions. 

 

However, it also means that there is limited direct control over severities.  Moreover, 

using the V maps puts a further distance between the driver assumptions – which are 

based on statistics of residuals – and the output monetary amounts.  It would be a 

helpful next step to research on how better one could implement the drivers. 

 



Extending the Mack Bootstrap 

 68 
 

Even with using all the calendar periods in a ten-year triangle, there is likely to be 

other calendar period behaviour that is not taken into account.  A bank of calendar 

period drivers would be useful taken from triangles from other similar classes of 

business.  It would be useful to have research done on how one can place credibility 

weighting on these other reference drivers. 

 

Earlier in the paper, we have presented various ways to perform resampling to assess 

estimation error.  The exception resampling method with calendar period locations is 

most consistent with the calendar period driver approach described in this section.  

We have presented the calendar period driver approach here as the calendar period 

emergence of risk is one that the industry is particularly interested, with regards to 

forthcoming regulatory requirements.  However, using a similar framework, other 

forecast projection methods could be devised to correspond with other specific 

exception resampling definitions.  For example, if the horizontal pairwise correlations 

of residuals are judged particularly important for the class, instead of calendar period 

drivers, we could have development period driver-pairs.  Each pair would have 

particular correlation coefficients as seen in the data triangle.  The counterpart to sieve 

resampling is likely to come from the use of more carefully distinguished distributions 

in the iterative forecast projection. 

 

We note that for origin period dynamics, there are usually different and better ways to 

deal with them.  For example, we can take into account information derived from 

analyses done by the reserving actuary.  Scaling the development factors fj for each 

origin period is one way of doing so.  Adjusting the variance parameters   
 ̂ for 

different business mixes or reinsurance for each origin period is another. 

 

As with exception resampling, the means of the resulting ultimates would no longer 

be the chain ladder projected ultimates.  We make the same comments here as for 

exception resampling.  We assume that the reader engages in widespread, albeit 

small-scale, scaling, so that the outputs of the stochastic model has pre-defined figures 

as the means of the distributions.  They should check that the additional scaling 

required after the extension techniques (around 3% in the case of our simulation on 

the XL casualty insurance incurred data) is tolerable and would not materially distort 

risk assessments. 

 

With regards to variance parameters, correlating calendar period drivers positively 

could increase the effective variance, as one would expect.  For the XL casualty 

insurance incurred triangle, the increase is small: around 2%.  Incorporating calendar 

period drivers themselves, or imposing dependencies between origin periods inside a 

calendar period, has no impact:  independence down the columns are maintained.  

Appropriate adjustments to the variance parameters would be required if impact 

becomes large.  Further research could be undertaken to arrive at a formula for impact 

on the variance parameters on the various different approaches. 

 

Typically, copulae are imposed on the overall reserve distributions between classes.  

This has the advantage of simplicity in an area where calibration is particularly 

difficult due to the lack of data.  However, this overall approach gives the practitioner 

only indirect control over how the risk emerges for several classes over the next 

calendar period.  With the calendar period driver approach, it is possible to improve 

on this, through imposing copulas on the calendar period driver simulations.  (The 
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reader may also refer to a similar approach proposed in (Cairns, 2010), Slide 37 and 

following.) 

 

We make a final note with regards to (blind) applications of the chain ladder method 

in claims reserving.  Assuming underlying claim development dynamics, it is possible 

to simulate claim developments from the first development period to ultimate.  A 

triangle could be cut out from each simulation, and the chain ladder method could be 

applied to the simulated triangle for an estimation of the ultimate.  (Please see Section 

9 of (ROC / GIRO Working Party, 2007) for a similar testing procedure in the context 

of examining stochastic reserving methods.)  For example, assuming the statistics,   ̂ 

and   
 ̂, from the XL casualty insurance incurred triangle, we could start with the 

observed first development period incurred amounts and simulate claim developments 

assuming (i) no calendar period drivers and (ii) the 2005 calendar period driver that 

could occur in any calendar period.  For the second case, the machinery introduced in 

this section helps to incorporate such a calendar period driver.  The table below shows 

the mean and standard deviations of the simulated results. 

 
Statistics of "future" amounts ($m)

Data:  XL casualty insurance incurred

M(0)

Simulated Chain Ladder Difference SD Comparison

Mean SD Mean SD Mean SD Difference vs Simulated

1,077       339          1,077       353          0               462          36%

M(0) with 2005 calendar period driver

Simulated Chain Ladder Difference SD Comparison

Mean SD Mean SD Mean SD Difference vs Simulated

1,073       382          1,079       390          7               510          33%

 
 

The following observations could be made. 

 For the assumed claim development dynamics, performing the chain ladder at 

year-end 2009 would on average give little difference (around 0.7%) against 

what would actually occur in the simulated run-offs. 

 The standard deviations of the differences are high compared with those of the 

simulated future amounts:  36% and 33% for the two dynamics.  Intuitively, 

the chain ladder would project extreme historic developments into the future. 

 The two standard deviation comparisons (36% and 33%) being near to one 

another suggests that the (blind) application of the chain ladder does not fare 

worse as a claims reserving method in the second dynamics, relative to the 

general uncertainty underlying the dynamics. 

 

The third observation is surprising, given that the chain ladder does not deal naturally 

with calendar period shocks.  We hypothecate here that this is due to the way that we 

assume the calendar period driver was not a “one-off”, but something that could 

happen equally likely in the future as in the past.  

 

This observation is important for applying the estimation error concepts discussed in 

this paper to the triangle.  If the chain ladder future amounts fare much worse in a 

world with exceptions, then there would be further evidence to steer away from using 

the chain ladder method in reserving.  In such a case, it could become difficult to 

justify the use of the (stochastic) fj’s as the sole conduit for estimation error, as we 

have done in this paper. 
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We leave to the interested reader to investigate these observations further.  A 

particular question is:  under what dynamics does the (blind) chain ladder fare worse 

than under the original Mack dynamics?  How can we adjust for intelligent 

applications of the chain ladder? 

 

Conclusions 
 

The paper has presented practical techniques to extend the Mack bootstrap, when 

there are reasons to weaken the independence assumptions in the method.  It has also 

discussed how one may be able to identify structures – the exceptions – in the 

residuals which break the independence assumptions.  Calendar periods, origin 

periods and development period regions have been considered.  

 

The estimation error is assessed via resampling in the Mack bootstrap framework.  

Two resampling techniques have been discussed to extend the framework:  they aim 

to build extended models to accommodate the exceptions.  These are the sieve 

resampling – which is used in the industry – and the exception resampling.  The 

example does not show sieve resampling to be impactful on estimation error.  

Exception resampling could increase the estimation error significantly, through 

driving dependencies between the development factors. 

 

The forecast error is measured via an iterative simulation approach, typically using 

the gamma distribution.  The incorporation of calendar period drivers into this 

framework has been discussed.  Ways to model further dependencies have been 

indicated. 

 

We urge the practitioners to continue the debate of the role played by the 

independence assumptions in the Mack bootstrapping framework.  This debate would 

be important as the assumptions can help to underestimate risk.  Recently published 

loss development triangles have been used to demonstrate the techniques at all key 

points in this paper: in particular, the XL casualty insurance incurred data have been 

used across both sections.  For this dataset, there could be an increase in the 

prediction error of around 17% with using some or all of the extended techniques 

discussed in this paper: 

 around +6% for using extended Mack bootstrapping in the form of calendar 

period exception resampling with the 2005 year; 

 around +7% for using calendar period driver 2005 in the forecasting; and 

 around +3% for using secondary dependencies on the forecasting, as discussed 

in this subsection. 

 

Finally, there are open questions that could be helpfully investigated and further 

improvements that could be usefully made.  These are indicated throughout the paper, 

and it is the author’s hope that further research could be undertaken by academia and 

the industry on these points. 
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Appendix:  Example data used in the paper 
 

The following published loss development triangles have been used to demonstrate 

the techniques presented in the paper.  The figures correspond to the page numbers 

where they have been used. 

 

ACE North American workers’ compensation incurred .................................. 37, 45, 57 

Arch third party claims made paid ......................................................................... 37, 47 

Arch third party occurrence incurred ......................................................... 36, 50, 55, 58 

Axis liability reinsurance incurred ......................................................................... 36, 50 

Axis marine insurance incurred ................................................................. 38, 42, 48, 59 

Axis property insurance paid ................................................................................. 38, 49 

XL casualty insurance incurred ................. 38, 51, 52, 54, 58, 61, 63, 65, 66, 68, 69, 70 

 

For ease of reference, we now include here the triangles.  The estimates,   ̂ and   
 ̂ are 

also included, as are the adjusted residuals     .  Note that     
 ̂  cannot be defined by 

the Statement 5:  we have taken a usual convention to set it equal to the minimum of 

    
 ̂  and     

 ̂  (see also (Mack, 1993) for an alternative).  Where relevant, the 

specification of the extended Mack bootstrap models M(n) is listed. 
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Data:  ACE North American workers' compensation incurred

Cumulative Triangle

Dev Year

AY 1 2 3 4 5 6 7 8 9 10

2000 38,829 80,723 132,149 136,011 136,643 144,122 149,306 155,008 161,436 162,306

2001 29,184 61,263 70,150 88,634 113,500 118,297 122,552 131,052 131,716

2002 55,661 123,705 133,160 127,622 123,103 129,715 140,501 144,843

2003 100,257 119,012 123,441 146,927 173,148 181,572 195,540

2004 160,035 170,907 197,240 224,017 236,341 261,263

2005 136,205 260,162 318,024 362,556 391,019

2006 167,886 299,460 361,339 407,641

2007 155,156 268,417 328,479

2008 148,450 253,437

2009 129,684

f-hat 165% 120% 112% 108% 107% 106% 104% 102% 101%

sigma^2-hat 15,084       3,042         1,136         1,520         130             91               54               94               54               

Residuals

Dev Year

AY 1 2 3 4 5 6 7 8 9

2000 73% 239% -104% -79% -44% -109% -44% 96%

2001 66% -28% 123% 167% -81% -98% 143% -104%

2002 116% -86% -187% -117% -45% 103% -88%

2003 -127% -111% 81% 105% -74% 89%

2004 -201% -39% 25% -35% 185%

2005 83% 20% 39% -4%

2006 47% 4% 19%

2007 27% 21%

2008 19%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Sieve resampling, partitioning out the 1st development period

M(2) Pairwise exception resampling on the 3rd and 4th development periods, superimposed onto M(1)
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Data:  Arch Third Party Claims Made Paid

Cumulative Triangle

Dev Year

AY 1 2 3 4 5 6 7 8

2002 2 297 618 525 471 478 469 2,002

2003 1,074 6,761 9,117 11,442 16,172 19,024 22,469

2004 6,777 23,422 42,521 61,868 70,153 72,965

2005 640 27,972 52,188 67,299 73,347

2006 6,229 37,250 84,099 122,292

2007 7,020 43,080 85,970

2008 13,283 54,006

2009 6,956

f-hat 550% 198% 140% 113% 107% 118% 427%

sigma^2-hat 5,421,704      41,633       10,981       11,109       3,875         592             592             

Residuals

Dev Year

AY 1 2 3 4 5 6 7

2002 48% 5% -82% -34% -12% -140%

2003 7% -156% -81% 184% 156% 22%

2004 -44% -75% 72% -1% -74%

2005 252% -57% -148% -72%

2006 10% 163% 99%

2007 14% 11%

2008 -43%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Sieve resampling, partitioning out the 1st development period
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Data:  Arch Third Party Occurrence Incurred

Cumulative Triangle

Dev Year

AY 1 2 3 4 5 6 7 8

2002 1,167 5,377 10,145 16,817 23,801 27,489 31,331 30,715

2003 13,369 33,969 69,915 96,286 114,318 129,862 145,136

2004 11,392 42,002 76,902 117,726 153,553 187,200

2005 20,546 51,662 87,578 128,206 160,254

2006 22,147 54,874 86,696 118,412

2007 23,313 74,085 118,210

2008 34,009 69,636

2009 21,972

f-hat 263% 172% 144% 126% 118% 112% 98%

sigma^2-hat 193,504          43,014       15,161       12,209       7,450         353             353             

Residuals

Dev Year

AY 1 2 3 4 5 6 7

2002 93% 37% 111% 119% -32% 128%

2003 -15% 188% -87% -130% -122% -59%

2004 155% 70% 127% 92% 118%

2005 -23% -14% 34% -18%

2006 -32% -94% -114%

2007 115% -97%

2008 -149%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Pairwise exception resampling on the 3rd and 4th development periods

M(2) Exception resampling on the 2004 AY, superimposed onto M(1)

M(3) Exception resampling on the 2005 calendar year, superimposed onto M(2)
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Data:  Axis Liability Reinsurance

Cumulative Triangle

Dev Year

UWY 1 2 3 4 5 6 7

2003 252 4,626 6,541 7,362 8,780 9,899 14,279

2004 5,290 16,791 19,230 25,196 27,390 30,290

2005 7,376 23,607 34,388 35,671 40,478

2006 12,899 31,034 39,681 47,118

2007 17,758 37,132 47,463

2008 21,838 40,483

2009 18,206

f-hat 235% 130% 116% 112% 111% 144% 100%

sigma^2-hat 16,037            268             329             37               3                 0                 0                 

Residuals

Dev Year

UWY 1 2 3 4 5

2003 220% 52% -15% 120% 123%

2004 52% -138% 137% -117% -70%

2005 63% 163% -139% 44%

2006 6% -27% 41%

2007 -30% -30%

2008 -63%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Pairwise exception resampling on the 2nd and 3rd development periods
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Data:  Axis Marine Insurance Incurred

Cumulative Triangle

Dev Year

AY 1 2 3 4 5 6 7 8

2002 23,087 29,866 35,051 34,675 33,947 33,393 33,515 33,225

2003 20,644 25,605 26,341 34,063 35,853 36,344 35,452

2004 79,663 109,129 109,535 108,057 109,784 109,857

2005 354,142 446,611 466,813 479,460 475,957

2006 57,558 81,091 99,884 89,932

2007 64,850 106,533 124,645

2008 77,653 97,184

2009 60,176

f-hat 132% 108% 101% 100% 100% 99% 99%

sigma^2-hat 1,524               847             881             54               8                 14               8                 

Residuals

Dev Year

AY 1 2 3 4 5 6

2002 -12% 61% -16% -58% -131% 102%

2003 -33% -31% 172% 156% 112% -98%

2004 37% -94% -31% 88% 9%

2005 -101% -86% 40% -68%

2006 57% 163% -132%

2007 226% 111%

2008 -55%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Exception resampling with the 2008 calendar year
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Data:  Axis Property Insurance Paid

Cumulative Triangle

Dev Year

AY 1 2 3 4 5 6 7 8

2002 75 191 222 275 442 775 864 864

2003 7,151 53,898 73,817 89,525 93,657 93,769 93,819

2004 50,694 243,313 342,798 357,918 364,078 377,126

2005 146,865 553,457 776,139 895,229 1,016,912

2006 50,559 119,826 140,925 152,083

2007 66,988 136,254 168,461

2008 127,544 235,995

2009 48,806

f-hat 299% 136% 112% 110% 103% 100% 100%

sigma^2-hat 108,201          1,543         929             1,312         161             10               10               

Residuals

Dev Year

AY 1 2 3 4 5 6

2002 -1% -8% 6% 27% 147% 141%

2003 126% 8% 92% -50% -83% -13%

2004 134% 71% -165% -155% 37%

2005 99% 94% 106% 113%

2006 -45% -175% -57%

2007 -81% -124%

2008 -133%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Exception resampling with the 2005 accident year
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Data: XL Casualty Insurance Incurred

Cumulative Triangle

Dev Year

AY 1 2 3 4 5 6 7 8 9 10

2000 372,664 1,025,600 1,071,250 1,180,111 1,284,152 1,253,885 1,230,820 1,238,218 1,357,193 1,372,758

2001 174,900 555,832 820,393 1,089,914 1,116,841 1,113,948 1,121,906 1,138,232 1,120,433

2002 185,833 294,177 420,096 432,125 455,133 480,740 461,852 465,418

2003 133,758 347,168 416,819 451,506 543,818 539,790 540,887

2004 142,767 291,898 359,316 432,865 435,109 448,392

2005 179,852 378,188 453,031 542,234 578,000

2006 127,954 333,830 436,690 514,356

2007 197,417 346,041 597,923

2008 160,099 336,203

2009 148,036

f-hat 233% 128% 117% 107% 100% 99% 101% 104% 101%

sigma^2-hat 51,297            22,827       6,320         2,546         649             302             22               7,403         22               

Residuals

Dev Year

AY 1 2 3 4 5 6 7 8 9

2000 120% -169% -92% 46% -119% -65% -106% 98%

2001 165% 103% 198% -100% -14% 118% 133% -102%

2002 -151% 57% -122% -22% 165% -136% -35%

2003 45% -33% -74% 198% -25% 57%

2004 -51% -19% 30% -91% 87%

2005 -46% -36% 27% -5%

2006 46% 11% 9%

2007 -121% 186%

2008 -44%

Extended Mack Bootstrap Models

M(0) Original Mack bootstrap:  residuals are independent and identically distributed

M(1) Exception resampling with the 2005 calendar year

M(2) Exception resampling with the 2005 and 2006 calendar years

M(3) Exception resampling with the 2002, 2005 and 2006 calendar years

M(4) Exception resampling with the 2002, 2005 and 2006 calendar years, with parametric bootstrapping

 


