Extreme Value Techniques

Paul Gates - Lane Clark & Peacock James Orr - TSUNAMI GIRO Conference, 15 October 1999

Extreme Value Statistics

- Motivation and Maxima Theory
- Dutch Dike Problem
- Threshold Theory
- Motor XL Rating Problem
- Questions

Extreme Value Statistics

- "Statistical Study of Extreme Levels of a Process"
- Relevant?
 - Catastrophic Events
 - Increasing Insurance Deductibles
 - Estimated/Probable Maximum Loss
 - Excess of Loss Reinsurance
 - Value at Risk/EPD \Rightarrow Capital Allocation

Er...YES!

Hierarchy of Analysis

- Experience Rating "Burning Cost"
 - Central Limit Theorem
 - Actuaries have Added Value
- Statistical Rating "Curve Fitting"
 - Lognormal/Pareto (apply threshold?)
 - What Data do we Use?

A Break from "The Norm"

- Central Limit Theorem
 - Class Average I.Q.s
 - Average Observations ~ $N(\mu, \sigma)$
 - Price Insurance by "Expected Claims"
- Extremal Types Theorem or Maxima Theory
 - Class Maximum I.Q.s
 - Maximum Observations ~ $GEV(\mu,\sigma,\xi)$
 - Price Insurance by "Expected Claims Attaching"

Generalized Extreme Value Distribution

$Pr(X \le x) = G(x)$

= exp [- (1 + ξ ((x- μ) / σ))^{-1/ ξ}]

EVTs in Action

- Netherlands Flood
- De Haan "Fighting the Arch-enemy with Mathematics"

Outline of Problem

- Height of sea defences
- 1953 storm surge sea dike failure
- Need to recommend an appropriate sea defence level
- Flood probability reduced to small "p" - 1/10,000 to 1/100,000
- Extrapolation required

Data Analysis

- High tide water levels at 5 stations
 - 60 to 110 years of info
- "Set up" values
 - observed high tide level minus predicted high tide level
 - eliminate set up values below a threshold
 - utilise winter observations only
 - selection to achieve independence
- 15 observations per year
- Exceedance prob for 1953 storm = 1 / 382

Probability Theory

- Distribution function F
- X_1 to X_n are independent observations
- Find x_p so that $F(x_p) = 1 p$
- $\operatorname{Lim} F_r(a_r x + b_r)$ = $\operatorname{lim} (P((\max(X_1..X_r) - b_r/)a_r) < x) = G(x)$
- $G(x) = \exp(-(1+\xi x)^{-1/\xi})$
- Generalized Extreme Value Distribution

Estimation Procedures

- Largest observations per winter
 - iid observations
 - G(x) formula as above
 - maximum likelihood
- Assume all set up levels above threshold L_n follow distribution 1-(1+yx/a(L_n))-^{1/y}
 - Find y and $a(L_n)$ by maximum likelihood
 - Generalised Pareto distribution
 - Combine with astronomical (predicted) levels to get absolute sea levels

Mr De Haan's short cut

- Lim $(U(tx)-U(t))/(U(tz)-U(t)) = (x^{\xi}-1)/(z^{\xi}-1)$
 - where U = (1/(1-F)) return period function
 - high quantiles can be expressed in terms of lower quantiles
- Estimation of ξ
 - $\text{Lim} (U(2t)-U(t))/(U(t)-U(t/2)) = 2^{\xi}$

A quick example

• Find ξ and return period for 5m high tide

Sea Level	Return Period
(cm)	(yrs)
50	4
100	10
200	30

A quick solution

- (U(2t) U(t)) / (U(t) U(t/2))= $(30 - 10) / (10 - 4) = 2^{\xi}$
- Whence $\xi = 1.74$
- (U(5t) U(t)) / (U(2t) U(t))= $(d - 10) / (30 - 10) = (5^{\xi} - 1) / (2^{\xi} - 1)$
- Whence return period = 142 years

Output

- Level with exceedance probability 1/10,000
 Xp
- Estimate of ξ
- $\xi = 0$
- $X_p = 5.1m + \text{sea level (reference level)}$
- 16 foot walls required!

Back to James...

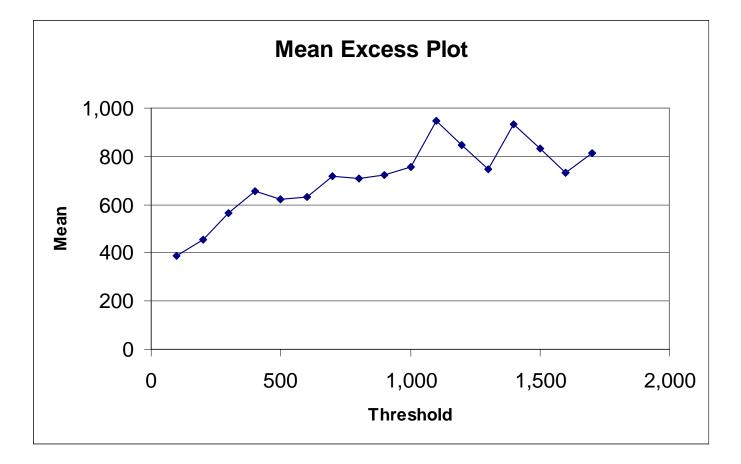
Threshold Theory

- Why just use Maxima Data?
- Exceedance Over Threshold:
 - Generalised Pareto Distribution...
 ...but Need to Choose Threshold
- Diagnostic Tool:
 - If GPD holds, the Mean Excess Plot...
 - ... is Linear for High Values of the Threshold

Generalised Pareto Distribution

 $Pr(Y \le y)$

$$\approx 1 - \Pr(Y > u) \left[1 + \xi(y - u) / \sigma \right]_{+}^{-1/\xi}$$
$$= 1 - \lambda_u \left[1 + \xi(y - u) / \sigma \right]_{+}^{-1/\xi}$$


Motor XL Pricing Problem

- Issue rating high XL layers
- Paucity of data
 - eg £10m xs £10m
 - largest single claim = £9.2m (BIWP 1999)
- Extrapolating from data
- Use data over certain threshold
- Fit curve (GPD)

Analysis

- Claims from 1985 1998 (146)
- Paid & Reported Losses
- Data Above Threshold
- Current / Largest Ever
- Revaluation
- Changing Exposure
- Claims by Band & Development of Losses

Excel Output

Problems, Problems, Problems...

- One-off events
 - Ogden, Woolf, Baremo
- Events that haven't happened
 - Tokyo earthquake, Year 2000, UK flood
- Extreme Events
 - 2*90A, \$50Bn US earthquake, US wind
- Man-made Trends
 - building on flood plains, global warming

Extreme Value Statistics

