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Abstract. We present a state-of-the-art rating methodology for financial reinsurance contracts 
that is based upon a consistent stochastic model (of the jump diffusion type) for financial 
market variables (like, e.g., interest rates, foreign currencies, stocks, stock indices, etc.) as 
well as for (excess-of-loss) reinsurance claims. A lattice-based implementation of this pricing 
methodology (i.e., a corresponding Fin Re Toolbox) is discussed in some detail and then 
applied to rate current example Fin Re contracts taken from the Swiss Re New Markets 
business area. 
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Pricing financial reinsurance (Fin Re) contracts involves a proper assessment of 

(a) the liabilities (excess-of-loss claims, usually limited or “finite”) arising from the 
reinsurance part of the Fin Re contract; 

(b) the financial instruments (fixed income securities. swaps. etc.) “built around” the 
above liabilities (with cashflows potentially contingent on the loss events on the 
liability side). 

We present here a state-of-the-art pricing/rating methodology for financial reinsurance 
contracts that is based upon a consistent stochastic model (of the jump diffusion type) for 
financial market variables (like, e.g., interest rates. foreign currencies. stocks, stock indices. 
etc.) as well as for (excess-of-loss) reinsurance claims. A lattice-based implementation of this 
pricing methodology (i.e., a corresponding Fin Re Toolbox) is discussed in some detail and 
then applied to rate current example Fin Re contracts taken from the Swiss Re New Markets 
business area. 

2. Modelling Excess-of-Loss Claims 

List and Zilch [1], Geosits. List and Lohner [2] and List and Lohner [3] describe a consistent 
set of state-of-the-art techniques and tools for modelling excess-of-loss claims data. These 
tools are available in the form of a corresponding Extreme Value Techniques (EVT) 
Toolbox that runs under Windows 3.1,95, NT 3.51 and NT 4.0: 
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EXTREME VALUE TECHNIQUES (EVT) 
claims Data Handling 

* Claims Data Analysis 
- Frequency Statistics 
- Severity Statistics 

*Excess-of-Loss Claims Modelling 
- Pareto (PD) 

-Generalized Pareto (GPD) 
? ?Advanced Scenario Techniques 

Parameter Uncertainty 
- Simulation 

* Multi-year, Multiline Contract Pricing 
- Extreme Value Theory (EVT) 

- Increased Limits Factors (ILF) 
- Coverage Futures and Options 

* Risk-adjusted Capital (RAC) 
- Calculation 
- Optimization 

* Value Proposition (VP) 
- Optimal Coverage Structures 
- Value Quantification 

Fig. 1: Extreme Value Techniques (EVT) Toolbox 

Extreme Value Techniques have within Swiss Re so far primarily been applied in the 
development of Swiss Re’s recently launched “Beta” program for Oil & Petrochemicals 
industry high-excess property and casualty layers [that are taken here as an example for more 
general “catastrophic” non-life (re)insurance exposures]: 

“Beta” provides multi-year, high-excess, broad form property and comprehensive general 
liability coverage with meaningful total limits for Fortune 500 clients in the Oil & 
Petrochemicals industry (“Beta” is also available in other Fortune 500 segments. its program 
parameters are industry-specific, however). 

Coverage is provided at optimal layers within prescribed minimum and maximum per 
occurrence attachment points and per occurrence (i.e., each and every loss: E.E.L., see Fig. 2 
below) and aggregate (AGG.) limits, split appropriately between property and casualty. These 
attachment points and limits are derived from the risk profiles and the needs of the insureds 
(Swiss Re’s Value Proposition for the Oil & Petrochemicals industry). 

The aggregate limits provide “Beta” base coverage for one year and over three years. Simply 
stated. if the base coverage is not pierced by a loss. then its full substantial limits (USD 
200M property and 100M casually) stay in force over the entire three year “Beta” policy 
term. 
Insureds might be concerned they would have no (or only a reduced) coverage if losses were 
to pierce the base coverage. Therefore, “Beta” includes a provision to reinstate all or a 
portion of the base coverage that is exhausted. 

Lastly. the “Beta” design includes an option at the inception of the base coverage to extend 
its initial three year high-excess insurance coverage (i.e.. the property and casualty base 
coverage and the provision for a single reinstatement of the base coverage) for an additional 
three year policy term at a predetermined price. 
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Fig. 2 : The “Beta” Insurance Coverage for the Oil & Petrochemicals Industry 

From Swiss Re’s risk management point of view, optimal layers for “Beta” property and 

casualty excess coverages are defined as follows: 

No annual loss should pierce the chosen property or casualty excess layer more frequently 

than once every four years (based both on the historical and scenario annual aggregate 

loss distributions). This translates into a 75% confidence that annual aggregate losses for a 

given layer of “Beta” coverage will equal zero.1 

The risk quantification process leading to the above optimal “Beta” layers for multi-year 

(i.e., three years) high-excess property and casualty Oil & Petrochemicals industry insurance 

coverage in principle follows standard actuarial tradition - however with some new elements: 

The “Beta” implementation team (consisting of Swiss Re and ETH Zurich2 personnel) has 

developed and implemented a consistent and stable (with respect to small perturbations in the 

input data) actuarial modelling approach for “Beta” high-excess property and casualty layers 

(see Fig. 3 below). This new methodology is based on Extreme Value Theory (Peaks-Over- 

Thresholds Model3) and fits a generalized Pareto distribution4 to the exceedances of a data- 

1This optimality criterion is mainly derived from Swiss Re’s perception (based upon an extensive Oil & 
Petrochemicals industry analysis) of a “Beta” or “catastrophic” event. In the case of “Beta” programs with 
combined single limits/deductibles. lower percentiles and thus shorter contract maturities may be preferable 
from a marketing point of view. 
2 The ETH Zurich “Beta” implementation team was lead by Prof. Dr. Hans Bühlmann. Prof. Dr. Paul 

Embrechts (Extreme Value Theory) and Prof. Dr. Freddy Delbaen (“Beta” Options). 
3 It has to be noted that claims histories are usually incomplete, i.e., only losses in excess of a so-called 

displacement are reported. Let therefore (Xi) be an i.i.d. sequence of ground-up losses. (Yi) be the 

associated loss amounts in the “Beta” layer and the corresponding aggregate 

loss. Similarly, let be the losses greater than the displacement and 

the corresponding “Beta” aggregate loss amount. Some elementary considerations then show 
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specific threshold. Once the frequency and severity distribution parameters are determined. 
per claim loss layers are selected and aggregate distributions both within the selected layers 
and excess of those layers up to the maximum potential individual loss (MPL) in the Oil & 
Petrochemicals industry (e.g., USD 3 billion for property and USD 4 billion for casualty) 
calculated. This procedure is repeated for sequential layers (usually chosen at the discretion 
of the underwriter to approximate the anticipated “Beta” program structures reflecting the 
needs of the insureds or the entire Oil & Petrochemicals industry), thus mapping out the 
“Beta” risk potential. The resulting probabilistic (excess-of-loss) profiles (“Beta” risk 
landscapes or risk maps, see Fig. 4 below) can also be used for the securitization5 of “Beta” 
portfolio components (see further below). 

that holds for the aggregate loss distributions, provided that .The Peaks-Over-Thresholds 
Model (Pickands-Balkema-de Haan Theorem) on the other hand says that the exceedances of a high threshold 
t < D are approximately distributed, where is the generalized Pareto distribution with 

shape , location and scale . The threshold t < D is chosen in such a way that in a 
neighbourhood of t the MLE-estimate of (and therefore the “Beta” premium) remains reasonably stable 
(see Fig. 3). 
4 The generalized Pareto distribution (GPD) is defined by 

where for and for . Compare this with the ordinary Pareto 

distribution (PD): 

5 From an actuarial standpoint, securitization is a modern capital markets alternative for traditional retrocession 
agreements (see also Davis and List [4]). 
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Fig.3a Oil & Petrochemicals Industry Severity Parameters (Property) 

Solid Line: GPD. Dotted Line: PD 
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Sample Mean Excess Plot QQPlot 

Data : Shape by Threshold Data : GPD Fit 98 exceedances 



Fig.3b Oil & Petrochemicals Industry Severity Parameters (Casualty) 
Solid Line: GPD, Dotted Line: PD 
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Sample Mean Excess Plot QQPlot 

Data : Shape by Threshold Data : GPD Fit 51 exceedances 



Fig. 4a: Oil & Petrochemicals Industry Risk Landscape6 (Property) 

6 The minimum layer width can be determined as follows: Consider the 80th percentile in the risk map 
containing the one year aggregate loss distributions below the attachment points 10M, 20M, . . 100M, . etc. 
(keeping in mind that this percentile indicates the expected maximum loss in the fourth year) and start with the 
“Beta” attachment point of 300M, i.e., an expected one year aggregate loss of about 535M. Moving to the upper 
“Beta” E.E.L. coverage point of 500M (= 300M “Beta” attachment point + 200M “Beta” limit), we have an 
expected annual aggregate loss of about 630M. This means that the expected one year aggregate loss in the 
envisaged “Beta” property layer is about 95M (= 630M - 535M) or, in other words, the “Beta” property 
coverage (without reinstatement) absorbes two such expected losses on an E.E.L. and a 3 Y AGG. basis. This 
was according to an extensive analysis (carried out during the “Beta” product engineering process) of the risk 
preferences in the Oil & Petrochemicals industry Fortune 500 segment considered to be sufficient for 
catastrophic events causing property damage. Similarly, on the casualty side, it transpired that a “Beta” layer 
width of 100M was considered sufficient: the expected one year aggregate loss in the envisaged “Beta” 
casualty layer (i.e., 100M xs 200M) being 59M (= 371M - 312M). 
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Distribution Below Attachment Point 

Distribution Above Attachment Point 



Distribution Below Attachment Point 

Distribution Above Attachment Point 

Fig.4b: Oil & Petrochemicals Industry Risk Landscape7 (Casualty) 

7 The determination of standard layers (i.e., optimal SIRS and limits) for “Beta” alternative risk transfer 
solutions in the Oil & Petrochemicals industry (a similar approach is used in the other “Beta” target industries) 
is very important for the quantification of Swiss Re’s Value Proposition for corporate clients in the Fortune 500 
group of companies. The Value Proposition argument itself would be as follows: (1) Optimal layers for “Beta” 
coverages are characterized by efficiency and cost transparency, a high degree of structural flexibility to 
optimally fit clients’ asset Iiability management (ALM) needs (set also Davis and List [4]), significant 
capacity for property and casualty, long-term stability (Swiss Re capacity and high financial security (AAA 
capital base). (2) “Beta” is a genuine alternative risk transfer product that may also include soplisticated 
financial markets components (balance sheetprotection. see also Davis and List [4]) and a new element in the 
comprehensive range of Swiss Re’s (re)insurance coverages and related services for Fortune 500 companies. 
Note that the “Beta” program also allows for property and casualty layers different from the standard layers (see 
List and Zilch [I] and Geosits, List and Lohner [2]). 
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The optimal “Beta” attachment points (=SIRs) for the Oil & Petrochemicals industry are: 

A. Basic Scenario8. 

Basic Scenario (5% Property, 10% Casualty) 
Property 
BP Opt. Attachment Point 300.00 
EAP Opt. Attachment Point 350.00 
Onshore 
BP Opt. Attachment Point 250.00 
EAP Opt. Attachment Point 290.00 

Offshore 
BP Opt. Attachment Point 90.00 

EAP Opt. Attachment Point 110.00 
Casualty 
BP Opt. Attachment Point 250.00 
EAP Opt. Attachment Point 300.00 

Basic Scenario (5% Property, 10% Liability) 
Fire & Explosion 
BP Opt. Attachment Point 550.00 
EAP Opt. Attachment Point 600.00 
Marine 
BP Opt. Attachment Point 300.00 
EAP Opt. Attachment Point 350.00 
Tanker Pollution 
BP Opt. Attachment Point 300.00 
EAP Opt. Attachment Point 400.00 

Basic Scenario (5% Property, 10% Liability) 
Property Damage 
BP Opt. Attachment Point 650.00 
EAP Opt. Attachment Point 700.00 
Business Interruption 
BP Opt. Attachment Point 650.00 
EAP 0pt. Attachment Point 750.00 
Property Damage and Business Interruption 
BP Opt. Attachment Point 1500.00 
EAP Opt Attachment Point 1500.00 
Offshore 
BP Opt. Attachment Point 230.00 
EAP Opt. Attachment Point 270.00 
General Liability 
BP Opt. Attachment Point 300.00 
EAP Opt. Attachment Point 450.00 
Product Liability 
BP Opt. Attachment Point 60.00 
EAP Opt. Attachment Point 80.00 
Employer's Liability 
BP Opt. Attachment Point 10.00 
EAP Opt. Attachment Point 10.00 
Automobile Liability 
BP Opt. Attachment Point 10.00 
EAP Opt. Attachment Point 10.00 
Marine Liability 
BP Opt. Attachment Point 40.00 
EAP Opt. Attachment Point 50.00 
All Liability Claims 
BP Opt. Attachment Point 450.00 
EAP Opt. Attachment Point 500.00 

8 The time periods 1997 to 1999 and 2000 to 2002 are called “Beta" base period (BP) and “Beta” extended 
agreement period (EAP), respectively (see List and Zilch [1]). Three different reference datasets characterizing 
the Oil & Petrochemicals industry are analyzed (see List and Lohner [3]). 
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B. Adjustment Scenario9. 

Adjustment Scenario (10% Property, 20% Casualty) 
Property 
BP Opt. Attachment Point 600.00 

EAP Opt. Attachment Point 800.00 
Onshore 
BP Opt. Attachment Point 500.00 
EAP Opt. Attachment Point 700.00 

Offshore 
BP Opt. Attachment Point 180.00 

EAP Opt. Attachment Point 240.00 

Casualty 
BP Opt. Attachment Point 550.00 
EAP Opt. Attachment Point 850.00 

Adjustment Scenario (10% Property, 20% Liability) 
Fire & Explosion 
BP Opt. Attachment Point 1000.00 
EAP Opt. Attachment Point 1500.00 
Marine 
BP Opt. Attachment Point 600.00 

EAP Opt. Attachment Point 800.00 

Tanker Pollution 
BP Opt. Attachment Point 900.00 
EAP Opt. Attachment Point 1500.00 

Adjustment Scenario (10% Property, 20% Liability) 
Property Damage 
BP Opt. Attachment Point 1500.00 

EAP Opt. Attachment Point 1500.00 
Business Interruption 
BP Opt. Attachment Point 1500.00 
EAP Opt. Attachment Point 2000.00 

Property Damage and Business Interruption 
BP Opt. Attachment Point 2500.00 

EAP Opt. Attachment Point > 2500.00 

Offshore 
BP Opt. Attachment Point 450.00 

EAP Opt. Attachment Point 600.00 

General Liability 
BP Opt. Attachment Point 700.00 
EAP Opt. Attachment Point 1500.00 

Product Liability 
BP Opt. Attachment Point 120.00 
EAP Opt. Attachment Point 250.00 

Employer’s Liability 
BP Opt. Attachment Point 20.00 
EAP Opt. Attachment Point 30.00 

Automobile Liability 
BP Opt. Attachment Point 20.00 

EAP Opt. Attachment Point 30.00 

Marine Liability 
BP Opt. Attachment Point 80.00 

EAP Opt. Attachment Point 130.00 

All Liability Claims 
BP Opt. Attachment Point 1500.00 
EAP Opt. Attachment Point 2000.00 

9 To make this presentation simple, we only consider the basic scenario and an adjustment scenario (see List 
and Zilch [1] for more details on the general classes of “Beta” threat scenarios identified). 
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Goodness-of-fit tests (e.g., the LEV comparison test, see List and Lohner [3]) show that 
Extreme Value Techniques are applicable basically from ground-up to the maximum 
potential loss. Similar results hold for the other “Beta” target industries in the Fortune 500 
segment of Swiss Re’s corporate clients. 

3. Modelling Interest Rates 

Modem Value Proposition (VP) -based client solutions for Fortune 500 companies often 
require sophisticated financial engineering, too. Davis and List [4, 5, 6, 7, 8] and Davis and 
Bühlmann, Bochiccio, Junod and List [9, 10,ll] present the corresponding stochastic models 
and applications (for excess-of-loss claims on the liability side and interest rates, foreign 
currencies, stocks and stock indices, etc. on the asset side). Moreover, a sophisticated 
financial/(re)insurance toolbox for the design of such alternative risk transfer solutions is 
outlined: EVT handels the liability side while an extended form of the Rubinstein implied 
tree model is used for the asset side (with asset cashflows potentially contingent on loss 
events on the liability side) of such transactions. This toolbox again runs under Windows 3.1, 
95, NT 3.51 and NT 4.0: 

Fig. 5: Financial/(Re)insurance Toolbox (see Davis and List [6]) 
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Lattices and matrices are the main information processing structures used in corporate and 
investment banking and (re)insurance applications. These structures tend to be quite large and 
have to be accessed and updated many times to obtain the results needed in quantitative 
financial/(re)insurance decision making. The PC is widely used as a convenient low-cost 
financial services platform in modern banking/(re)insurance. Its main limitations are the small 
64 KB data segment size, the typically insufficient RAM size and the usually rather slow and 
limited harddisk. One of the main objectives in the design of our generic PC-based software 
environment for Fin Re pricing applications (Fin Re Toolbox) was consequently to 
overcome these architectural limitations and to allow networked PCs to process very large 
financial information structures as efficiently as possible. A direct node access capability and 
a fast direct data access capability are the two key features which we built into the lattice 
manager (Lattices) and the virtual memory manager (VML) to achieve this goal. Given the 
time/state coordinates (i, j) of a lattice node, its address in virtual memory (VML) is looked 
up in a lattice access structure (LAS) with a binary search algorithm and the node is then 
directly accessed with one physical memory (RAM, disk or network) operation. Dynamic 
programming procedures that operate on the lattice are considerably speeded up with the help 
of a bounds access structure (BAS) which stores the consecutive upper and lower lattice 
bounds over time. These acceleration structures themselves run on corresponding VML- 
kernels (VMLAS and VMBAS). Given the address in virtual memory (VML) of a data 
element (lattice node), its address in physical memory (RAM, disk or network drive) is 
looked up in an area access structure (IASL) and an address access structure (KASL) which 
both again use the services of a corresponding VML-kernel (VMIASL and VMKASL). The 
data element is then as mentioned above directly accessed with one physical memory (context 
or cache) operation. A similar concept was used to implement large matrices (Matrices, 
VMM, etc.). With the above two design ideas the processing of large financial information 
structures on a PC network is always almost at the speed of RAM although the data may 
actually be stored on disk or even on a (remote) network drive. 
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Fig.6: Fin Re Lattice 
The Fin Re Toolbox (which is derived from the above more general financial/(re)insurance 
toolbox) determines the current price and the current sensitivities (derivatives risk 
parameters) of a contingent claim (note that fixed income securities are interest rate 
contingent claims) as well as their future evolution over the claim’s entire lifetime by using a 
dynamic programming procedure that operates on the underlying (binomial) lattice. Each 
node in this lattice represents a potential securities market state at a given future time and the 
root describes the current market conditions that are relevant in a Fin Re pricing context. 

Development of a simple Fin Re pricing strategy involving American payer’s swaptions 
(APSW) for example is based on the following lattice structure (see Fig. 7 below). DF0 - DF4 
are the discount functions prevailing in the interest rate scenarios under study, the underlying 
variable is a swap (SWP), P0 - P4 are the prices of the securities under the above mentioned 
interest rate conditions, alpha and beta are model sensitivities with respect to potential 
estimation errors in the relevant model parameters (we use the extended Ho & Lee interest 
rate model, see below) and D0 and Dl (delta), gamma and theta are the contingent claim 
sensitivities (defined as rates of change of the contingent claim value with respect to 
instantaneous changes in the underlying initial term structure of interest rates and 
conditionally expected rates of change of the contingent claim value with respect to changes 
in time) in the given interest rate scenarios. 

With this information about the future dynamics of the underlying securities market variables 
corresponding (consistent within an arbitrage pricing theory framework) contingent claim 
price and sensitivity (derivatives risk exposure) forecasts, i.e., expected values 

and standard deviations 

(3.2) 

is the time/state probability10 associated with node (i, j) and are the time 

i realizations of the stochastic process denoting the discrete price or derivatives risk 
parameter dynamics over time], are possible (see Fig. 8 below). These forecasts (which have 
an adaptive update property) can then be used as an effective quantitative guideline in 
(conventional) every-day hedging decisions as well as in the design and implementation of 
longer-term Fin Re portfolio management strategies. Furthermore, this data can be stored in a 
relational database system and on demand be consolidated into appropriate risk management 
reports for a book of business, a desk, a department and the entire company (Swiss Re). The 
simple portfolio management component (Basket) of the PC-based Fin Re platform supports 

10 In a Fin Re pricing context, the financial time/state probabilities (risk-neutral) are usually modified to take 
excess-of-loss probabilities (risk-averse) on the liability side into account Lattices are very convenient for such 
applications, as they can store the necessary information on the associated Girsanov transformation of 
probability measure in each node (see Davis and List [4, 5, 6, 7, 8] and the literature mentioned there for more 
details). 
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these tasks on the user interface level. It also contains all the necessary functionality for P&L 
accounting, derivatives risk management and hedging strategy evaluation. 

Nodes 
I-Coordinate 0 1 1 2 2 2 

I-Coordinate 0 0 1 0 1 2 

PARENTS 0 0 0 0 0 1 

0 0 0 0 1 0 

CHILDREN 0 0 1 0 1 2 

1 1 2 1 2 3 

LABELS 1 0.993343 0.993358 0.993359 0.993337 0.993338 0.993338 

Term 2 0.986747 0.98674 0.986741 0.986703 0.986703 0.986703 

Structures 3 0.980173 0.98015 0.98015 0.980115 0.980116 0.980117 

DFO 4 0.973627 0.973606 0.973607 0.97357 0.97357 0.973571 

5 0.967127 0.967104 0.967105 0.967113 0.967114 0.967115 

DF1 1 0.993345 0.993358 0.993359 0.993337 0.993337 0.993338 

2 0.986747 0.98674 0.986741 0.986702 0.986703 0.986703 

3 0.980173 0.980149 0.98015 0.980115 0.980116 0.980116 

4 0.973627 0.973606 0.973607 0.97357 0.97357 0.973571 

5 0.967127 0.967104 0.967105 0.967113 0.967114 0.967115 

DF2 1 0.993345 0.993359 0.993359 0.993337 0.993338 0.993338 

2 0.986747 0.98674 0.98674 0.986703 0.986703 0.986703 

3 0.980173 0.98015 0.98015 0.980116 0.980116 0.980116 

4 0.973627 0.973606 0.973607 0.97357 0.97357 0.973571 

5 0.967127 0.967104 0.967105 0.967113 0.967114 0.967114 

DF3 1 0.992359 0.992373 0.992373 0.992352 0.992352 0.992352 

2 0.98479 0.984783 0.984783 0.984745 0.984746 0.984746 

3 0.977258 0.977234 0.977235 0.9772 0.977201 0.977202 

4 0.969768 0.969747 0.969748 0.96711 0.96712 0.969713 

5 0.962338 0.962315 0.962316 0.962324 0.962325 0.962326 

DF4 1 0.991375 0.991389 0.991389 0.991368 0.991368 0.991368 

2 
0.982838 0.982831 0.982832 0.982794 0.982794 0.982794 

3 0.974354 0.974331 0.974332 0.974297 0.974298 0.974298 

4 0.965928 0.965908 0.965908 0.965871 0.965872 0.965873 

5 0.957577 0.957555 0.957556 0.957563 0.957564 0.957565 

Underlying Price, P0 17.41971 17.53579 17.53705 17.65239 17.65366 17.65493 

Variable P1 17.42034 17.5363 17.53757 17.65278 17.65406 17.65533 

SWP P2 17.41811 17.5345 17.53513 17.65141 17.65205 17.65268 

P3 11.4745 11.56228 11.56342 11.65057 11.65172 11.65287 

P4 6.128498 6.181301 6.182331 6.234473 6.23551 6.236547 

Alpha 0.006382 0.005159 0.005159 0.003926 0.003926 0.003926 

Beta –15956.1 –12897.3 –19228.7 –9814.39 –16170.3 –22526.4 

Delta, D0 –420.39 –422.391 –422.4 –424.393 –424.402 –424.41 

D1 –378.019 –380.492 –380.5 –382.976 –382.984 –382.992 

Gamma 2996.068 2962.654 2962.71 2928.625 2928.68 2928.734 

Theta 0.116712 0.117243 0.117248 0.118401 0.118406 0.118411 

Contingent Price, P0 3.131769 3.15296 3.152543 3.174251 3.17383 3.17341 

Claim P1 3.131515 3.152746 3.152329 3.174078 3.173657 3.173237 

APSW P2 3.132403 3.153494 3.153286 3.174683 3.174473 3.174263 

P3 5.020499 5.059333 5.058981 5.098397 5.098041 5.097685 

P4 6.674396 6.732898 6.732027 6.79182 6.79094 6.79006 

Alpha -0.00254 -0.00214 -0.00214 -0.00173 -0.00173 -0.00173 

Beta 6342.29 5342.43 7427.137 4325.679 6427.445 8529.314 

Delta, D0 133.5534 134.801 134.8055 136.0577 136.0622 136.0668 

D1 166.9481 118.3389 118.3022 119.743 119.706 119.669 

Gamma -1174.17 -1164.04 -1166.96 -1153.62 -1156.56 -1159.5 

Theta 0.020983 0.02108 0.021077 0.071291 0.021287 0.021284 
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Fig. 7: APSW Lattice Nodes 

Fig 8a: Contingent Claim Prices 
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American Payer's Swaption Delta

American Payer's Swaption Delta
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American Payer's Swaption Delta

American Payer's Swaption Delta

Fig 8b:			Instantaneous Investment Risk

American Payer's Swaption Delta
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Fig 8c:		 Future Risk Dynamics

American Payer's Swaption Gamma

American Payer's Swaption Gamma



Fig. 8d: Value Appreciation Dynamics 
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American Payer's Swaption Theta

American Payer's Swaption Theta



Note that derivatives portfolio stress testing as recommended by the G30 banking industry 
best practices standard can be carried out simultaneously with the initial pricing / Fin Re 
portfolio selection11 process. The Fin Re Toolbox described here even goes one important 
step further: the securities and derivatives portfolio determined is optimal in all stress 
scenarios. This statement means in quantitative terms (see Davis and List [5, 6, 7, 8] for 
details): If is a lattice approximation of the continuous-time securities market dynamics 
x(t), is a corresponding discrete-time futures contract value function, 
furthermore and are corresponding discrete-time European call and put 
value functions and moreover and are corresponding discrete-time 
American call and put value functions and and the associated discrete-time 
optimal exercise boundaries, then we have uniform convergence 

on compacts in as well as uniform convergence 

on [0,T]. If in these numerical approximations the respective discrete-time contingent claim 
sensitivities are defined according to the finite difference method, then the above uniform 
convergence results on compacts also hold for the sensitivities. Futhermore, we have uniform 
convergence 

on compacts in for the optimal solutions of the two Fin Re portfolio selection 
Programs 

11Fin Re portfolios (to offset potential future liabilities under the reinsurance part of the contracts) are typically 
chosen by using more or less heuristic modifications of classical hedging strategies. It can be shown, however, 
that a limited risk arbitrage (LRA) approach to Fin Re portfolio selection would perform better than hedging 
strategies (see Davis and List [4] and the corresponding literature mentioned there for details). One important 
reason why LRA techniques are very well suited for this kind of application lies in the fact that they achieve 
an overall allocation of the asset/liability risks involved that meets set targets at a reasonable price whereas 
the otherwise commonly applied hedging techniques (for the financial part of a Fin Re program) often 
unnecessarily avoid financial risk at an unacceptably high price while the (potentially dominating) risk 
exposure on the liability side remains high. 

361 



(variance of return minimization) and 

(3.6b) 

(expected return maximization) and their discrete-time approximations 

(3.7a) 

and 

(3.7b) 

(where the constraints on the portfolio value are necessary to ensure locally uniform 
convergence of the conditional moments of the portfolio return)12. 

The Ho & Lee Interest Rate Model. The simple Fin Re pricing application presented at the 
beginning of this section (no liability contingent cashflows and excess-of-loss probabilities 
for simplicity of presentation, yet) operates within the Ho & Lee interest rate model 

(3.8) 

(see Ho and Lee [12] and Davis and List [5, 6, 7, 8] for details) [where f(t,T) is the 
instantaneous forward rate at time t for an investment at time T]. In discrete-time we have 
then: (1) Security markets clear at time points 0,1,2,..,i,..,H (where H is the given 
investment horizon) which are separated into regular intervals (model time periods). For each 
of these time points i the initial discount factor P(i) (relative to the time origin 0) is known. 
Furthermore, at each time point i = 1,2,..,FH [where FH < H is the relevant forward 
horizon] there are i + 1 possible future discount functions Pij(k), j = 0,l,..,i and 

k = 0,l,..,MH [where MH = H - FH is the associated maturity horizon]. (2) The evolution 

12Note that the Fin Re portfolio selection programs outlined above are of the LR4 type (see Davis and List [5, 
6, 7, 8] for details). Module LRA of the Fin Re Toolbox (taken from the more general financial/(re)insurance 
toolbox, see Fig. 5 above) can solve such stochastic (time/state contingent) linear programs very efficiently. 
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of the term structure of interest rates over the investment period [0,H] is modelled by a 
recombining binomial lattice with root 

(3.9a) 
and branching process 

(3.9b) 

where 

and (3.10) 

are the corresponding upward and downward perturbation functions, the model probability is 
p and the model delta is d, . With the length At of the model time periods we 
have then 

and (3.11) 

for the current short-term interest rate and the term structure volatility. (3) The risk-neutral 
pricing formula13 is in this context 

(3.12) 

where is the contingent claim maturity. (4) With the forward rates 

(3.13) 

we define the derivatives risk parameters (contingent claim sensitivities) as follows 

(3.14) 

(conditionally expected rates of change of the option value with respect to the underlying 
short-term interest rate and time). (5) The time/state probabilities associated with the Ho & 
Lee Fin Re lattice are 

(3.15) 
and consequently the contingent claim price and sensitivity forecasts 

l3 X (intertemporal cashflows) and F (terminal condition) characterize the contingent claim. are 
boundary conditions for its price process (see Davis and List [5,6,7,8] for details). 
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(and similar for higher order moments of the corresponding distributions). (6) Structured 
options portfolio optimization (for Fin Re hedging purposes) involves the solution of either 
one of the following (limited risk arbitrage, LRA) programs 

(3.17a) 

in a general (state dependent linear optimization) or 

(3.17b) 

in a simplified (linear optimization based on forecast expectations) context. Note that the 
optimal positions (over the whole lifetime of the portfolio) are known before the portfolio is 
actually set up. This allows Fin Re portfolio managers to use hedging strategies that minimize 
holding and transaction costs. (7) The parameters of the above outlined Ho & Lee interest rate 
model are p (model probability), d (model delta) and R(l),R(2),...,R(i),..,R(H) (initial 
term structure of simple, annualized interest rates). We have then 

(3.18) 

for the corresponding continuously compounded interest rates and discount factors. In 
addition to these parameters we now also consider the quantities 

(probability increment), (delta increment) and (3.19a) 
(interest rate increments) (3.19b) 

and construct a recombining binomial lattice for the term structures 

(3.20) 
For an interest rate contingent claim we then calculate the corresponding scenario dependent 
prices 
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and sensitivities 

Note that the probability and delta exposure 

and 

of a contingent claim in the Ho & Lee interest rate model can be written in the form 

where 

holds. This extension of the original Ho & Lee interest rate model can still be easily 
calculated (simultaneous scenario analyses) and is very suitable for Fin Re pricing and 
portfolio management (hedge portfolios) under varying securities market scenarios. 

Fixed Income Securities (Bonds). Fixed income securities play a major role in Fin Re pricing 
applications: institutional investors such as investment trusts, pension funds and (life) 
insurance companies invest large funds in order to satisfy future liabilities resulting from the 
various contractual obligations entered into with their clients. Bonds have cashflow 
characteristics that make them very attractive investments for these purposes: by monitoring 
credit risk and call risk and adequately diversifying a bond portfolio by type of issuer, an 
investor can expect its promised cashflows with a high degree of certainty. The sources of 
return from investing in a bond are its coupon payments, the interest on these payments and 
potential capital gains over the investment horizon. Holding aside credit risk and embedded 
options, there are therefore three components to evaluating the attractiveness of a bond: yield, 
duration and convexity. If the bond’s price is P and its cashflows are c1,..,c1,..,cT (where T 
is the maturity period), then its yield to maturity (YTM) is defined by the equation 

Given an investment horizon H, a realized end price PH of the bond and a set of 
reinvestment rates r2,..,rt,..,rH the bond’s realized compound yield (RCY) is defined by the 
equation 

Portfolio managers typically use these simple yield measures as a basis for undertaking bond 
swaps in order to enhance the performance of their bond portfolio over some investment 
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(3.21b)

(3.21c)

(3.21d)

(3.22)

(3.23a)

3.23b)
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period. There are five basic types of bond swaps: pure yield pickup swaps, substitution 
swaps, interest rate anticipation swaps, intermarket spread swaps and tax swaps. A rate 
anticipation swap involves the portfolio manager’s expectations about future interest rate 
movements and the idea is to position the bond portfolio on the basis of its interest rate 

sensitivity (duration) to take advantage of anticipated shifts in market interest rates: if rates 
are expected to fall, the portfolio’s duration is increased; if rates are expected to rise, high 
duration bonds in the portfolio are swapped for lower duration bonds in the market. The 
Macaulay duration of a bond is 

and the relationship 

shows that Macaulay duration is indeed a measure of its first order interest rate exposure. 
This equation also explains the above mentioned simple bond portfolio optimization strategy. 
Convexity, the bond’s second order interest rate sensitivity, is 

and the relationship 

shows that a high convexity bond outperforms a bond with the same yield and duration 
characteristics but lower convexity in all conceivable interest rate scenarios. Generally, 
therefore, high convexity bonds offer lower yields, that is, the market prices convexity. This 
yield discount can be substantial in times of high anticipated interest rate volatility. The 
modified duration 

and the convexity C of a bond portfolio are value-weighted averages of the respective 
component quantities, i.e., 

This fact is the basis for another class of simple bond portfolio optimization strategies the 
objective of which is to improve portfolio performance (RCY) while keeping interest rate 
exposure (duration and convexity) at the same level. These so called duration-equivalent 
portfolio swaps typically replace a bond currently held (bullet) with a synthetic security 
(barbell) consisting of two bonds in amounts chosen according to the equation system 

and work well under parallel shifts of the current term structure of interest rates. Duration 
adjustments of bond portfolios are usually carried out by using bond futures contracts instead 
of the bonds themselves. The futures price [where S < T is the contract maturity period] is 
related to the bond's spot price via the equation 
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from which the contract’s modified duration and convexity can immediately be calculated, 
i.e., 

The futures position is then chosen according to the equation system 

where , and are the bond portfolio value, modified duration and convexity. The 
same technique can also be used by managers of mixed asset portfolios (bonds and stocks) to 
change their optimal asset allocation on a duration-equivalent basis. The bond futures 
position is in this case chosen according to the equation system 

where are the initial and target bond portfolio values, modified 
durations and convexities. Unlike the simple swap strategies described so far, structured 
bond portfolio management strategies do not rely on expectations of interest rate movements 
or changes in yield spread relationships. Instead, the objective is to design a portfolio that will 
achieve the performance of some predetermined benchmark (indexing) or finance a single 
future liability (immunization) or an entire future liability stream (cashflow matching). If 

and are the asked and the bid prices, respectively, of the bonds 

currently available in a specific bond market and if [where is the 

relevant investment horizon] are the (adjusted) cashflows of bond j, , during the 
investment period under consideration, then the general structured bond portfolio 
management problem can be stated in the form 
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(see Ronn [14], Ehrhardt [15] and Davis and List [5, 6, 7, 8] for details) where r2,..,rt,..,rH, 
are the consecutive implied one period forward rates in the market and the respective long 
and short bond portfolio positions satisfy and If 

R1,..,Rt,..,RH, is the term structure of simple interest rates Per trading period, then the above 
forward rates satisfy 

This linear program has two interpretations: (a) from a bond arbitrage point of view the 
objective is to maximize the current market value of the portfolio (by exploiting relative 
mispricing - e.g., as a result of different tax brackets - of bonds in the market) while at the 
same time constraining the risk exposure of the arbitrage transactions (in terms of their 
implications on the future POrtfOliO cashflows) to values within a specified tolerance band 
(ut, vt); (b) from a term structure estimation point of view by solving the associated dual 
problem 

a corresponding (tax-specific) term structure d0,d1,..,d1,..,dH, of discount factors and 
associated simple interest rates per trading period 

that is consistent with a given exogenous (minimal) one Period reinvestment rate and 

prices all bonds in the market within their respective bid/offer spread can be 

obtained. 

The Hull & White Class of Interest Rate Models. The Hull & white class of (one-factor) 
interest rate models has the generic representation 

(see Hull & white [13] and Davis and List [5, 6, 7, 8] for details) and is rich enough to model 
a wide variety of different interest rate scenarios occuring in practical corporate and 
investment banking as well as financial (re)insurance applications. Here, we are especially 
interested in the model 
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of the extended Cox, Ingersoll and Ross (CIR) type [belonging to the Hull & White class of 
interest rate models just as the above-mentioned Ho & Lee model 

The generic class of Hull & White models has a very efficient (recombining) trinomial lattice 
implementation (see Hull and White [13] and Davis and List [6] for details) and is able to fit 

(a) the current term stucture of short-term interest rates [specification of the 
function (t) which is deterministic and varies with time t ]; 

(b) the current volatility structure of short-term interest rates [specification of the 
function (t) which is also deterministic and varies with time t ]. 

The risk-neutral pricing formula and the contingent claim sensitivities (derivatives risk 
parameters) are defined as in the Ho & tee model above - with the obvious modifications to 
take the trinomial structure of the underlying lattice implementation into account Note that 
the term structure estimation approach (3.40) above can be used to provide customized (i.e., 
taking client-specific tax-brackets, corporate debt structures, etc. into account) estimates of 
the initial term structure of short-term interest rates for the Hull & White (and the Ho & Lee) 
model. Current volatilities-are usually estimated from historical (discount) bond yield data. 

4. Modelling Exchange Rates / Stocks / Stock Indices 

The Black & Scholes Model. Fin Re pricing in a Black & Scholes securities market setting is 
driven by the following analytics (see Black and Scholes [16], Black [17] and Davis and List 
[5,6,7,8] for details): 

A. Bond and Stock Options. The Black & Scholes equation for bond and stock options is 

(note that coupons or dividends during the lifetime of the option have to be discounted and 
subtracted from the current bond or stock price). With 

this linear partial differential equation can in the case of futures contracts and European 
options be integrated by using a risk-neutral valuation argument. The results are as follows. 

Futures (4.3): 
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Call Option (4.4): 

Put Option (4.5): 

In the case of American bond and stock options, the above Black & Scholes equation can be 
solved with numerical techniques, i.e., finite difference methods and lattice approaches. A 
discretization with the implicit finite difference operators leads to the (tridiagonal) system 

of linear equations with (state dependent) coefficients 

(4.6b) 

(4.7a) 

(4.7b) 

[where the local consistency conditions 

(4.8) 

(see Davis and List [4,5,6,7,8] and the literature mentioned there) have to be satisfied]. 

that can easily be solved backwards in time by using the boundary conditions and early 
exercise criteria which characterize the given contingent claim v. A discretization with the 
explicit finite difference operators substantially simplifies these calculations. The 
corresponding linear equation system is in this case 

and the (state dependent) coefficients are 

370 

(4.6a)



Fig.9a: Finite Difference Method 

The parameters 
risk-averse risk -neutral 

P, u state evolution state evolution (4.9) 

of a lattice approximation of the bond and stock price dynamics 

(risk -averse state evolution) (4.10) 

(risk - neutral state evolution) 
in a risk-averse and in a risk-neutral financial economy are 

where 

(4.11) 

(4.12) 
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Fig. 9b: Lattice Approach 

B. Index Options. The Black & Scholes equation for index options is 

where y is the associated constant, continuously compounded, annualized dividend yield [if 
dividends were reinvested, then the index would grow from value x(t) at time t to value 

at time T]. With 

this linear partial differential equation can in the case of futures contracts and European 
options be integrated by using a risk-neutral valuation argument. The results are as follows. 

Futures (4.2 5): 

14 For the risk-neutral pricing formula and the definition of the contingent claim sensitivities (derivatives risk 
parameters), see further below (Robinstein model = generalization of the Black & Scholes mode!). 
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(4.13)

(4.14)

holds 14
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Call Option (4.16): 

Put Option (4.17): 

In the case of American index options the above Black & Scholes equation can be solved 
with numerical techniques, i.e., finite difference methods and lattice approaches. A 
discretization with the implicit finite difference operators leads to the (tridiagonal) system 

(4.18a) 

of linear equations with (state dependent) coefficients 

(4.18b) 

that can easily be solved backwards in time by using the boundary conditions and early 
exercise criteria which characterize the given contingent claim v. A discretization with the 
explicit instead of the implicit finite difference operators substantially simplifies these 
calculations. The corresponding linear equation system is in this case 

(4.19a) 

and the (state dependent) coefficients are 

(4.19b) 

[where the local consistency conditions 
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(4.20) 

have to be satisfied]. The parameters 
risk -averse risk - neutral 

P, u state evolution state evolution (4.21) 

of a lattice structure approximating the index dynamics 

(risk -averse state evolution) (4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

C. Currency Options. The Black & Scholes equation for currency options is 

where rf is the associated constant, continuously compounded, annualized, risk-free foreign 
interest rate. With 

(risk-neutral state evolution) 
in a risk-averse and in a risk-neutral financial economy are 

where 

holds. 

this linear partial differential equation can in the case of futures contracts and European 
options be integrated by using a risk-neutral valuation argument. The results are as follows. 

Futures (4.27): 
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Call Option (4.28): 

Put Option (4.29): 

In the case of American currency options the above Black & Scholes equation can be solved 
with numerical techniques, i.e., finite difference methods and lattice approaches. A 
discretization with the implicit finite difference operators leads to the (tridiagonal) system 

(4.30a) 

of linear equations with (state dependent) coefficients 

(4.30b) 

that can easily be solved backwards in time by using the boundary conditions and early 
exercise criteria which characterize the given contingent claim v . A discretization with the 
explicit instead of the implicit finite difference operators substantially simplifies these 
calculations. The corresponding linear equation system is in this case 

(4.31a) 

and the (state dependent) coefficients are 

(4.31b) 

[where the local consistency conditions 
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have to be satisfied]. The parameters 
risk - averse risk - neutral 

P,u state evolution state evolution 
(4.33) 

of a lattice structure approximating the foreign exchange rate dynamics 

(risk -averse state evolution) (4.34) 

(risk - neutral state evolution)
in a risk-averse and in a risk-neutral financial economy are 

(4.35) 

(4.32) 

(4.36) 

Text 
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where 

holds. 

D. Futures Options. The Black & Scholes equation for futures options is 

where we assume a relationship with constant coefficient a between the 
futures price F(t) [ = x(t)] and the spot price S(t) With 

(4.38) 

this linear partial differential equation can in the case of European options be integrated by 
using a risk-neutral valuatio n argument. 

Call Option (4.39): 



put Option (4.40): 

In the case of American futures options the above Black & Scholes equation can be solved 
with numerical techniques, i.e., finite difference methods and lattice approaches. A 
discretization with the implicit finite difference operators leads to the (tridiagonal) system 

(4.41a) 

of linear equations with (state dependent) coefficients 
(4.41b) 

that can easily be solved backwards in time by using the boundary conditions and early 
exercise criteria which characterize the given contingent claim v . A discretization with the 
explicit instead of the implicit finite difference operators substantially simplifies these 
calculations. The corresponding linear equation system is in this case 

(4.42a) 

and the (state dependent) coefficients are 

(4.42b) 

[where the local consistency condition 
(4.43) 

has to be satisfied]. The parameters 
risk -averse risk - neutral 

P, u state evolution state evolution (4.44) 

of a lattice structure approximating the futures price dynamics 

(risk -averse state evolution) (4.45) 

(risk-neutral state evolution) 
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in a risk-averse and in a risk-neutral financial economy are 

(4.46) 

where 

holds. 

(4.47) 

The Rubinstein Model. The above simple but quite important Black & Scholes model can 
immediately be extended to have the following properties (see Rubinstein [18] and Davis and 
List [4,5,6, 7, 8] for details): (1) The market variable follows a general diffusion process 

(4.48) 

which evolves in discrete-time on a recombining binomial lattice structure with parameters 

such that 

(4.49b) 

(risk-averse state evolution) and parameters 

such that 

(4.50b) 

(risk-neutral state evolution). (2) Denoting with n(t,x) the number of paths ending in node 
(t,x) and with and the associated risk-averse and risk-neutral time/state 
probabilities we have 

(4.5la) 
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(risk-averse state evolution) and 

(4.5lb) 

(risk-neutral state evolution). Note that 

(4.52) 

holds and therefore the one step transition probabilities 
(risk -averse state evolution) 

(risk-neutral state evolution) 
(4.53) 

and the time/state probabilities 
(risk-averse state evolution) 

(risk - neutral state evolution) 
(4.54) 

can be determined from a corresponding terminal probability distribution 
(risk-averse state evolution) 

(risk -neutral state evolution) 
(4.55) 

by solving equations (4.51a) and (4.51b) backwards in time from i= m-l to i =0. 
Simultaneously solving equations (4.49b) and (4.50b) at each node also leads to the 
remaining lattice parameters 

(risk -averse state evolution) 

(risk -neutral state evolution). 
(4.56) 

Specifically, we have 

(4.57a) 

(risk-averse state evolution) and 

(4.57b) 

(risk-neutral state evolution). (3) If U(R) = log(R) is the representative utility of the return 
R of a risky investment in equilibrium, then the myopic optimization program 

(4.58) 

allows us (KKT first order conditions, see Davis and List [4] and the literature mentioned 
there for details) to relate risk-neutral and risk-averse one step transition probabilities, i.e., we 
have 

(4.59) 
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(4) The risk-neutral pricing formula15 is in this context 

(4.60) 

[note that for standard American options 

(4.61) 

is the corresponding intrinsic value] and the contingent claim sensitivities (derivatives risk 
parameters) are 

(4.62a) 

(4.62b) 

(4.62c) 

(conditionally expected rates of change) and 

(4.63) 

(finite difference method) where 
(4.64) 

holds. Theta can be defined via the relationship 

(4.65) 

and the approximation 

(4.66) 

in general]. (5) A risk-neutral terminal probability distribution 
can be determined by solving the quadratic program 

15 X (intertemporal cashflows) and F (terminal condition) characterize the contingent claim. are 
boundary conditions for its price process (see Davis and List [5, 6, 7, 8] for details). In the simpler Black & 
Scholes model considered above, the discount rate r and the risk-neutral transition probabilities and 

= l, are constant. 
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(4.67) 

(4.68) 

is a simple (standard) approximation of the market variable dynamics 
(4.69) 

and and are the bid and ask prices at time t of European call options with maturity T 
and exercise values Xk . The market variable itself is also assumed to be the price of a traded 

asset (with xb and xa the bid and ask prices, respectively, at time t ). 

“Catastrophic” Claims Portfolio Securitization. In the final part of this section, we should like 
to briefly mention another potentially interesting area of application for the limited risk 
arbitrage (LRA) techniques underlying the Fin Re Toolbox (see Davis and List [4] and the 
literature mentioned there for details): the securitization of “catastrophic” non-life 
(re)insurance exposures in the capital markets. 

One important reason why LRA technique are very well suited for this kind of application 
lies in the fact that they achieve an overall allocation of the asset/liability risks involved 
that meets set targets at a reasonable price whereas the otherwise commonly applied 
nedging techniques (for the finance part of a securitization program) often unnecessarily 
avoid financial risks at an unacceptably high price while the (potentially dominating) risk 
exposure on the liability side remains high. 

Based upon a risk management target for “Beta” portfolio excess-of-loss probabilities (see 
Fig. 4 above), a corresponding securitization structure might then look as follows (in simple 
terms that could be made more precise with some financial engineering, see Davis and 
Bühlmann, Bochicchio, Junod and List [9,10,1l] for details): 

1. AAA Swiss Re bond with coupon 
a. r fixed = best financial markets conditions 
b. + x variable = linked to performance of underlying risk portfolio 
and a maturity schedule that is adapted to the coverage structure of the underlying risk 
portfolio, i.e., in the case of “Beta” a maturity of at least 3 years. 

2. For tax reasons, (the fixed part r of) the coupon would (at the investor’s discretion) 
not actually be payed out, i.e., the bond would be of the deep-discount type. 

3. In the case of a catastrophic loss in the underlying risk portfolio, the notional principal 
of the bond would be transformed into along-term loan (i.e., the investor would not 
loose any money). With some financial engineering, interest rates at best financial 
market conditions could be guaranteed to both sides at the outset. 

4. In the case where an existing Swiss Re share-holder participates in such a structure, 
the notional principal of the bond could alternatively be transformed into Swiss Re 
shares at a fixed price (i.e., Swiss Re would not actually have to pay it back). 

5. The limited risk arbitrage (LRA) techniques outlined in the publication series (Davis 
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and List [4, 5,6, 7, 8] and Davis and Bühlmann, Bochicchio, Junod and List [9, 10, 11]) 
could be used to effectively exploit any opportunities for arbitrage profits offered by the 
global financial markets (disparity in interest rate regimes, exchange rates, etc.). 

Note that such a securitization program can also be designed according to specific risk 
management requirements (w.r.t. exposures, capital, cashflows, etc.) of a particular client. 
Usually, however, securitization (the “back-end” of an alternative risk transfer process) is 
completely transparent to “Beta” clients, i.e., Swiss Re takes complete care of the allocation 
of (re)insurance risks in the capital markets. 

Returning to LRA (advanced Fin Re pricing and portfolio management) techniques now, we 
note that the above mentioned financial engineering critically depends upon an efficient 
model for interest-rates, stocks and foreign currency which is also reflective of the “Beta” 
excess-of-loss probabilities. The main idea is to start with an interest rate model (us interest 
rates are the most significant factor in the above securitization scheme) and to combine 
this in a consistent way with a model for stocks /stock indices /currencies (on the same 
lattice) : 

A. Processes. 

(I) for stocks, stock indices and currencies 
Reference: J.C. Hull, Options, Futures and Other Derivative Securities, 

Prentice-Hall 1993 
Generalization: M. Rubinstein, Implied Binomial Trees, Journal of Finance 49, 

771 - 818 (1994) 

(II) for interest rates (volatilities) 
Reference: J.C. Hull and A. white, One-Factor Interest-Rate Models and the 

Valuation of Interest-Rate Derivative Securities, Journal of Financial 
and Quantitative Analysis 28,235 - 254 (1993) 

B. Rubinstein Implied Tree (consistent with Hull & White interest rates). 

Stock / Stock Index / Currency Dynamics (as in the Rubinstein model above): 

(4.70) 

Interest Rates and Dividend Yields (Ito formul16): 

Then (Ito 

formula): 
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(4.7la) 

(4.71b) 

Hull & White Interest Rates (comparison of respective drift and diffusion terms): 

(4.72) 

Simplification

(4.73a) 

(4.73b) 

This defines the stock / stock index / currency evolution (consistent with interest rates). The 
simplification y(t,x) = e + ft + gx then leads to the parameters (initial conditions) 

(4.74a) 

(4.74b) 

(4.74c) 

(4.74d) 

with the remaining model specifications 

384 



for r( t, x) : (4.75a) 

for y(t,x) : (4.75b) 

Using this model, the LRA (advanced Fin Re pricing and portfolio management) techniques 
presented in this paper can be implemented on a notebook computer with reasonable response 
times for both lattice construction and contingent claim (portfolio) evaluation. The 
corresponding sophisticated financial/(re)insurance toolbox runs under Windows 3.1, 95, NT 
3.51 and NT 4.0 (see Davis and List [6] and Fig. 5 above). 

5. A Financial Reinsurance (Fin Re) Toolbox 

The Financial Components. In a first step, we focus our attention on Fin Repricing (rather 
than Fin Re hedge portfolio management) and choose simple stochastic models for financial 
market state evolution: 

(a) the Ho & Lee and extended Cox, Ingersoll and Ross (CIR) models 
for short-term interest rates; 

(b) the Black & Scholes model for stocks, stock indices and foreign currencies. 

Later on, more sophisticated models like the above described combination of the extended 
CIR model for interest rates and the Rubinstein model for stocks / stock indices / foreign 
currencies can be used together with the LRA module for advanced Fin Re hedge fund 
management (see Davis and List [4,5,6,7,8] and Davis and Bühlmann, Bochicchio, Junod 
and List [9,10,11]). 

Modelling Loss Event Contingent Claims. In order to keep the implementation of our Fin Re 
pricing models simple, we make the following working assumptions: 

(a) loss events arising from the reinsurance part of a Fin Re contract do not affect 
the financial market state evolution, i.e., any such effects are limited to the Fin 
Re contract itself [the future cashflows of which can therefore, conditional on a 
loss event, be modified in accordance with this event and then valued using the 
above (unchanged) financial models and risk-neutral valuation techniques]; 

(b) Fin Re contracts are not traded securities (yet) and are therefore rated with 
actuarial techniques, i.e., a loading proportional to the variation of the discounted 
(loss event contingent) cashflows of the Fin Re contract across all considered loss 
event scenarios is added to the corresponding expected value. 

Our Fin Re rating approach is then: 

(1) Determination of the financial market parameters relevant in a Fin Re pricing context 
(i.e., current term structure of interest rates, volatilities of short-term interest rates, exchange 
rates, stocks and stock indices). 
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(2) Calibration of the financial models, i.e., valuation of a characteristic set of benchmark 
securities and readjustment of the model parameters if necessary (i.e., if the calculated prices 
are too far off the observed market values). 

(3) Determination of the occurrence times and severity of excess-of-loss events under the 
reinsurance part of the Fin Re contract (using the above-mentioned EVT Toolbox or some 
equivalent actuarial approach, see the concrete example below and also Fig. 4 above): 

LOSS EVENT SCENARIOS 

Scenario Probability Time of Loss Severity of Loss 
1 2 3 1 2 3 

1 

2 
3 

4 

5 

6 
7 
8 
9 

10 

(4) Determination of the corresponding (loss event contingent) cashflow modifications to 
the financial part of the Fin Re contract (see the concrete example below): 

Recall from the above risk-neutral pricing formulas (see also Davis and List [5,6,7,8]) that 
the financial part of any Fin Re contract can be uniquely characterized by 

(a) a cashflow function X(i, j) ; 
(b) a terminal condition F(j) ; 
(c) two boundary conditions L(i, j) U(i, j) 

Contingent on a loss event scenario (row in the above fables), these characteristic 
functions have in a Fin Re pricing context now to be modified (loss event contingent 
cashflow modifications) before they are applied in the risk-neutral pricing formula This is 
a consequence of our first working assumption stated at the beginning of this section. 
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CASHFLOW IMPLICATIONS

Scenario Probability Time of Cashflow
Loss of Event Contingent

1 2 3 1 2 3 
1 

2 
3 

4 

5 

6 
7 
8 
9 

10 

Cashflow Modification



(5) Risk-neutral valuation of the modified (loss event contingent) financial part of the 
Fin Re contract (one valuation per loss event scenario considered). We obtain, conditional on 
the loss event scenarios considered, a price forecast (stochastic process) and also forecasts for 
the contingent claim sensitivities (i.e., delta, gamma, theta, etc.). 

(6) Actuarial rating of the resulting (loss event contingent) Fin Re price distribution. The 
loading is determined in accordance with Swiss Re’s Value Proposition (i.e., RAC-based) 
pricing principle (see List and Zilch [1] and Geosits, List and Lohner [2]). Furthermore, we 
just take the expectations of the contingent claim sensitivity (derivatives risk parameter) 
forecasts across all considered loss event scenarios. 

6. A Note on Implementation (Example Fin Re Contracts) 

In this last section of the paper, we are going to look into the implementation of the above 
outlined approach to Fin Re pricing in some detail. Specifically, as a first example, we 
consider a 6 year “Beta” bond written on the Oil & Petrochemicals industry (“Beta” target) 
portfolio with both coupon and principal (in USD) at risk. 
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Fig. 10: 6 Year “Beta” USD Bond17 
6 Year “ Beta” Bond 

Notional Principal 100.00 
Guaranteed Principal 

4.00% Fixed Coupon 
25.00 

Variable Coupon 6.00% 

Period Fixed Payment Variable Payment Total Payment 
1 4.00 8.07 12.07 
2 4.00 8.62 12.62 
3 4.00 5.09 9.09 
4 4.00 5.51 9.51 
5 4.00 7.72 11.72 
6 29.00 32.21 61.21 

Price 100.00 
Period Payment 

1 12.07 
2 12.62 
3 9.09 
4 9.51 
5 11.72 
6 61.21 

3.40% Internal Rate of Return 

As this (Fin Re / securitization) structure is quite involved, we are going to analyze its key 
components in several separate steps: 

(1) The Oil & Petrochemicals industry “Beta” target portfolio (i.e., 50 standard coverages 
USD 200M. xs 300M property and USD 100M xs 200M casualty, see List and Zilch [1] and 

17 The above shown variable cashflows of the bond are of course just one realization of its in general 
stochastic (i.e. “Beta” portfolio loss event contingent) cashflows. So is the internal rate of return (IRR) 
shown below. 
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Geosits, List and Lohner [2]) has the following one, three and six year aggregate loss 
distributions: 

Fig. 11a: 1 Year Aggregate Loss Distributions 

Fig. 11b: 3 Year Aggregate Loss Distributions 
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Fig. 11c: 6 Year Aggregate Loss Distributions  
(2) The corresponding loss event scenarios are consequently (in two steps) 18: 

18 The number of loss event scenarios (= size of loss categories) is of course determined by the rules 
governing their effects on the bond’s (variable) cash/lows. In this application, we use USD 100M steps in the 1 
year loss event scenarios, USD 200M steps in the 3 year loss event scenarios and USD 300M steps in the 6 year 
loss event scenarios. Our Fin Re pricing toolbox can handle any number of loss event scenarios although, in 
practice, only a few are usually needed. 
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1 Y Last Event Secnarios (II) 
Base Period (1997-1999) Extended Agreement Period (2000-2002) 

Size of Loss Probability of Loss Text Size of Loss Probability of Loss 
(Total) (Total) 

0.00 53.60% 0.00 40.20% 
100.00 22.10% 100.00 23.80% 
200.00 15.40% 200.000 17.25% 

300.00 5.40% 300.00 7.55% 
400.00 2.25% 400.00 2.55% 
500.00 1.10% 500.00 1.31% 

600.00 0.10% 600.00 1.15% 
700.00 0.05% 700.00 0.10% 
800.00 0.00% 800.00 0.05% 
900.00 0.00% 900.00 

1000.00 0.00% 1000.00 
0.05% 
0.00% 

Fig. 12a: 1 Year Loss Event Scenarios 

1 Y Loss Event Scenarios (1) 
Base Period (1997-1999 Extended Agreement Period (2000-2002) 

Basic Scenano(95% Prob.) Basic Scenano (95% Prob.)
Size of Loss Probability of Loss) Probability of loss Size of Loss Probability of Loss Probability of Loss 

(Cond. on Scen.) (Unconditional ) (Cond. on Scen.) (Unconditional ) 
0.00 55.00% 52.25% 0.00 48.00% 45.60% 

100.00 22.00% 20.90% 100.00 24.00% 22.80% 
200.00 15.00% 14.25% 200.00 17.00% 16.15 
300.00 5.00% 4.75% 300.00 7.00% 6.65% 

400.00 2.00% 1.90% 400.00 2.00% 1.90% 

500.00 1.00% 0.95% 500.00 1.00% 0.95% 

600.00 0.00% 0.00% 600.00 1.00% 0.95% 
700.00 0.00% 0.00% 700.00 0.00% 0.00% 

800.00 0.00% 0.00% 800.00 0.00% 0.00% 
900.00 0.00% 0.00% 900.00 0.00% 0.00% 

100.00 0.00% 0.00% 1000.00 0.00% 0.00% 
Adjustment Scenario (56% Prob.) Adjustment Scenario (5% Prob.) 
Size of Loss Probability of Loss Probability of Loss Size of Loss Probability of Loss Probability of Loss 

(Cond. on Scen.) (Unconditional ) (Cond. on Scen.) (Unconditional ) 
0.00 27.00% 1.34% 0.00 12.00% 0.60% 

100.00 24.00% 1.20% 100.00 20.00% 1.00% 
200.00 23.00% 1.15% 200.00 22.00% 1.10% 
300.00 13.00 0.65% 300.00 18.00% 0.90% 
400.00 7.00% 0.35% 400.00 13.00% 0.65% 
500.00 3.00% 0.15% 500.00 7.00% 0.33% 
600.00 2.00% 0.10% 600.00 4.00% 0.20% 
700.00 1.00% 0.05% 700.00 2.00% 0.10% 
800.00 0.00% 0.00% 800.00 1.00% 0.05% 
900.00% 0.00% 0.00% 900.00 1.00% 0.05% 
1000.00 0.00% 0.00% 1000.00 0.00% 0.00% 
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3 Y Loss Event Scenarios (I)
Base Period (1997-1999) Extended Agreement Period (2000-2002) 

Basic Scenario (95% Prob.) Basic Scenario (95% Prob.) 
Size of Loss Probability of Loss Probability of Loss Size of Loss Probability of Loss Probability of Loss 

(Cond. on Scen.) (Unconditional) (Cond. on Scen.) (Unconditional) 
0.00 17.00% 16.15% 0.00 11.00% 10.45% 

200.00 44.00% 41.80% 200.00 39.00% 37.05% 
400.00 27.00% 25.65% 400.00 32.00% 30.40% 
600.00 9.00% 8.55% 600.00 13.00% 12.35% 
800.00 3.00% 2.85% 800.00 4.00% 3.80% 

1000.00 0.00% 0.00% 1000.00 1.00% 0.95% 
1200.00 0.00% 0.00% 1200.00 0.00% 0.00% 
1400.00 0.00% 0.00% 1400.00 0.00% 0.00% 
1600.00 0.00% 0.00% 1600.00 0.00% 0.00% 

1800.00 0.00% 0.00% 1800.00 0.00% 0.00% 
2000.00 0.00% 0.00% 2000.00 0.00% 0.00% 

Adjustment Scenario (5% Prob.) Adjustment Scenario (5% Prob.) 
Size of Loss Probability of Loss Probability of Loss Size of Loss Probability of Loss Probability of Loss 

(Cond. on Scen.) (Unconditional) (Cond. on Scen.) (Unconditional) 
0.00 2.00% 0.10% 0.00 0.00% 0.00% 

200.00 17.00% 0.85% 200.00 4.00% 0.20% 
400.00 30.00% 1.50% 400.00 15.00% 0.75% 
600.00 26.00% 1.30% 600.00 24.00% 1.20% 
800.00 15.00% 0.75% 800.00 25.00% 1.25% 

1000.00 7.00% 0.35% 1000.00 16.00% 0.80% 
1200.00 3.00% 0.15% 1200.00 10.00% 0.50% 
1400.00 0.00% 0.00% 1400.00 3.00% 0.15% 
1600.00 0.00% 0.00% 1600.00 3.00% 0.15% 
1800.00 0.00% 0.00% 1800.00 0.00% 0.00% 

2000.00 0.00% 0.00% 2000.00 0.00% 0.00% 

3 Y Loss Event Scenarios (II) 
Base Period (1997-1999) Extended Agreement Period (2000-2002) 

Size of Loss Probability of Loss Size of Loss Probability of Loss 
(Total) (Total) 

0.00 16.25% 0.00 10.45% 
200.00 42.65% 200.00 37.25% 
400.00 27.15% 400.00 31.15% 
600.00 9.85% 600.00 13.55% 

800.00 3.60% 800.00 5.05% 
1000.00 0.35% 1000.00 1.75% 
1200.00 0.15% 1200.00 0.50% 
1400.00 0.00% 1400.00 0.15% 
1600.00 0.00% 1600.00 0.15% 
1800.00 0.00% 1800.00 0.00% 
2000.00 0.00% 2000.00 0.00% 

Fig. 1 2 b : 3 Y e a r L o s s E v e n t S c e n a r i o s 1 9

19 Considering one, three and six year (distributions and) loss event scenarios may be useful because 
investors might like different maturity investment opportunities in the Oil & Petrochemicals industry “Beta”
portfolio. We analyze a 6 year "Beta" bond in derail here; a 1 year (forward) “Beta” bill and a 3 year
(forward) “Beta” note might however be sensible complementary instrumento consider. Because of the
independence of loss events resulting from the "Beta” porfolio and financialmarkets events, "Beta” loss
event contingent claims such as the “Beta” bills, notes and bonds mentioned hue enhance the risk/return
characteristics of institutional investor'sasset allocations (e.g., Markowitz portfolio selection: efficient
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6 Y Loss Event Scenarios (1) 
Period (1997-2002) 

Basic Scenario (95% Prob.) 
Size of Loss Probability of Loss Probability of Loss 

(Cond. on Scen.) (Unconditional) 
0.00 2.00% 1.90% 

300.00 31.00% 29.45% 
600.00 42.00% 39.90% 
900.00 19.00% 18.05% 

1200.00 6.00% 5.70% 
1500.00 0.00% 0.00% 
1800.00 0.00% 0.00% 
2100.00 0.00% 0.00% 
2400.00 0.00% 0.00% 
2700.00 0.00% 0.00% 
3000.00 0.00% 0.00% 

Adjustment Scenario (5% Prob.) 
Size of Loss Probability of Loss Probability of Loss 

(Cond. on Scen.) (Unconditional) 
0.00 0.00% 0.00% 

300.00 0.00% 0.00% 
600.00 8.00% 0.40% 
900.00 23.00% 1.15% 

1200.00 29.00% 1.45% 
1500.00 22.00% 1.10% 
1800.00 12.00% 0.60% 
2100.00 4.00% 0.20% 
2400.00 2.00% 0.10% 
2700.00 0.00% 0.00% 
3000.00 0.00% 0.00% 

6 Y Loss Event Scenarios (11) 
Period (1997-2002) 

Size of Loss Probability of Loss 
(Total) 

0.00 1.90% 
300.00 29.45% 
600.00 40.30% 
900.00 19.20% 

1200.00 7.15% 
1500.00 1.10% 
1800.00 0.60% 
2100.00 0.20% 
2400.00 0.10% 
2700.00 0.00% 
3000.00 0.00% 

112C: Fig. 6 Year Loss Event Scenarios20 

allocation of risk with higher expected returns) and should therefore, from a microeconomic point of view, be 
useful instruments to add to the financial markets. 
20 In the sequel, we shell focus only on the above 6 year loss event scenarios in our detailed analysis of the Oil 

& Petrochemicals industry “Beta” bond. The same principles apply however also to the 1 year “Beta” bill and 
the 3 year “Beta” note. Futures and options on “Beta” bills, notes and bonds are “Beta” loss event contingent 
claims just as the corresponding underlyings and can be analyzed and priced in exactly the same way. 
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(3) The cashflow implications are now defined as follows: 

TY cashflow implications 
Base Period (1997-1999) Extended Agreement period (2000-2002) 

Size of Loss Coupon Principal Size of Loss Coupon Principal 
0.00 6.00% 100.00 0.00 6.00% 100.00 

100.00 5.00% 95.00 100.00 5.00% 95.00 
200.00 4.00% 90.00 200.00 4.00% 90.00 
300.00 3.00% 80.00 300.00 3.00% 80.00 
400.00 2.00% 50.00 400.00 2.00% 50.00 

500.00 1.00% 25.00 500.00 1.00% 25.00 
600.00 0.00% 25.00 600.00 0.00% 25.00 
700.00 0.00% 25.00 700.00 0.00% 25.00 
800.00 0.00% 25.00 800.00 0.00% 25.00 
900.00 0.00% 25.00 900.00 0.00% 25.00 

1000.00 0.00% 25.00 1000.00 0.00% 25.00 

3 Y Cashflow Implications 
Base Period (1997-19999) Extended Agreement Period (2000-2002) 

Size of Loss Coupon Principal Size of Loss Coupon Principal 
0.00 6.00% 100.00 0.00 6.00% 100.00 

200.00 5.00% 95.00 200.00 5.00% 95.00 
400.00 4.00% 90.00 400.00 4.00% 90.00 

600.00 3.00% 80.00 600.00 3.00% 80.00 

800.00 2.00% 50.00 800.00 2.00% 50.00 
1000.00 1.00% 25.00 1000.00 1.00% 25.00 

1200.00 0.00% 25.00 1200.00 0.00% 25.00 
1400.00 0.00% 25.00 1400.00 0.00% 25.00 
1600.00 0.00% 25.00 1600.00 0.00% 25.00 
1800.00 0.00% 25.00 1800.00 0.00% 25.00 
2000.00 0.00% 25.00 2000.00 0.00% 25.00 

6 Y Cashflow Implications 
Period (1997-2002) 

Size of Loss Coupon Principal 
0.00 6.00% 100.00 

300.00 5.00% 95.00 
600.00 4.00% 90.00 
900.00 3.00% 80.00 

1200.00 2.00% 50.00 
1500.00 1.00% 25.00 
1800.00 0.00% 25.00 
2100.00 0.00% 25.00 
2400.00 0.00% 25.00 
2700.00 0.00% 25.00 
3000.00 0.00% 25.00 

In order to keep matters simple for this presentation, we shall interpret the above tables as 
follows: 

(a) the fixed coupon (i.e., 4%) and the guaranteed principal (i.e., 25.00) are paid on 
the respective due dates just as in the case of a straight bill, note or bond; 

(b) the adjusted variable coupon (i.e., between 0% and 6%) and the non-guaranteed 
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principal (i.e., between 0.00 and 75.00) are paid at maturity, depending on the 
outcome of the associated aggregate loss (i.e., 1,3 or 6 year) in the underlying Oil 
& Petrochemicals industry “Beta” portfolio. Interest rate adjustments for the 
coupons are made in order to reflect the time value of money. 

5.9640% 

(4) Loss event contingent risk-neutral valuation with the extended Cox, Ingersoll and 
Ross (CIR) model 

[see (3.42b) above] finally yields: 

A. USD Term Structure and Term Structure Volatilities / Model Calibration. 

To start with, we note the following USD yields (as of 11 August 1997): 

LIBOR GOVTBONDS SWAPS 
1D 5.313% 2Y 2Y 6.3050% 
1W 5.5625% 3Y 6.0910% 3Y 6.4250% 
1M 6.6563% 5Y 6.2080% 4Y 6.4960% 
3M 5.6406% 7Y 6.3400% 5Y 6.5450% 
6M 5.7656% 10Y 6.3910% 7Y 6.6550% 
1Y 5.9243% 30Y 6.6640% 10Y 6.7350% 

The usual cubic spline-interpolation21 then leads to the corresponding USD term structure of 
interest rates: 

Fig.13: USD Term Structure of Interest Rates 

21 Note also the more sophisticated approaches to term structure estimation outlined in the section on fired 
income securities (p. 24 - 27). 
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We choose the bond yield curve for our application and note secondly the associated yield 
volatilities (as of 11 August 1997) 

30Y 

GOVT BONDS 
2Y 22.5000% 
3Y 24.5000% 
5Y 25.0000% 
7Y 25.5000% 
10Y 24.0000% 

21.0000% 

which we translate into a monthly USD term structure of interest rate volatilities 

USD Term Structure Volatility 

Fig. 14: USD Term Structure of Interest Rate Volatilities 

with the same cubic spline-interpolation approach as above. As a final step, we choose 
= 0.522 and = 4.25%. Note that any model calibration should 

(a) always also incorporate future market expectations23, not just historically 
estimated quantities; 

(b) include a sensitivity analysis (i.e., how sensitive are securities prices and risk 
parameters with respect to changes in the model parameters). 

With the above input, the Fin Re Toolbox calculates the 6 Y “Beta” bond’s price process and 
the corresponding risk parameter processes (on an expected value basis across loss event 

22 = 0.5 seems to be a good parameter choice for the US Treasury market also according to various 
empirical studies looking into the application of the extended CIR model in various bond markets world-wide. 
23 We are grateful to Dr. Dellsperger and his team at Credit Suisse Asset Management for helping us out on 
this rather difficult task. 
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scenarios) as follows [BND = 6 Y “Beta” bond, ECB = 1 Y European call option on the 6 Y 
“Beta” bond with (loss event contingent) option strike = bond principal]. 

B. Bond Price Process. 

C. Time Value. 
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3 9 8

D . D e l t a .

Risk Management Report (Expectations) 

Risk Management Report (Standard Deviations) 

Risk Management Report (Standard Deviations) 



E. Gamma. 

Risk Management Report (Expectations) 

Risk Management Report (Standard Deviations) 

F. Theta. 

Risk Management Report (Expectations) 
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In order to be consistent with Swiss Re’s Value Proposition approach, we choose 

k = kOil & Petrochemicals Industry = 1.6324 (3 Y) (which is equivalent to a RORAC of r = 65% (p.a.) 
for the Oil & Petrochemicals industry “Beta” target portfolio, see List and Zilch [1] and 
Geosits, List and Lohner [2]). The Fin Re Toolbox then calculates the actuarial prices of the 
6 Y “Beta” bond (BND) and the associated 1 Y European and Americancall and put 
options (ECB, EPB, ACB, APB) with loss event contingent strikes at the level of the “Beta” 
bond’s principal as follows: 

Instrument Pricing 
Contingent Claim Price Expectation Standard Deviation Actuarial Price 

BND 93.2835 18.4151 1.6324 123.3444 
ECB 6.1377 3.3990 1.6324 11.6862 

0.3537 EPB 0.1850 1.6324 0.7625 
ACB 12.1156 5.1580 1.6324 20.5356 
APB 0.1914 0.3871 1.6324 0.8232 

As a second example, we now consider the case of an excess-of-loss financial reinsurance
contract having the attachment point linked to some predefined financialindex 1. The 
index under consideration can either be an already quoted index such as the Nikkei 225 or the 
S&P 500 or then a “tailor-made”, customized index built up with stocks, bonds or a 
combination of the two. As an illustration, consider the figure below showing the evolution of 
the Nikkei 225 stock index over the past twenty-five years: 
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Fig. 15: Nikkei 225 Index Over the Past Twenty-five Years 
Let now A(I) be the financially linked attachment point, C the reinsurance cover and L the 
aggregate loss incurred during the contractually agreed time period. Then the excess-of-loss 
contract puts the reinsurer under the obligation to pay the policy holder a contingent claim of 

(6.1) 

Verbally, this means that at maturity of the contract the reinsurer pays for the total loss in 
excess of A(I) with a coverage limit of C. In order to get a basis for the determination of the 
contract’s premium24, the expected value of the final cashflows given by 

(6.2) 
is needed. Here, the subscripts on E mean that the expectation is taken with respect to the 
bivariate distribution of both I and L. But as stated in the working assumptions in section 5 
of the paper, loss events arising from the reinsurance part of the contract do not affect the 
financial market state evolution. This then implies in our current setting stochastic 
independence between the index I and the aggregate loss L and thus the expectation 
operator “factorizes” as follows: 

(6.3) 
This fact enables us to rewrite the expected value E needed for an actuarial rating of the 
excess-of-loss contract in the form 

(6.4) 

This last formula now tells us that the calculation of the expected part of the contract’s 
premium may be interpreted as a financial pricing of the loss event contingent cashflow 
X(1, L). Therefore, at this point, we are again in the same framework as the one outlined in 
our Fin Re pricing approach in section 5 and in the first example (6 Y “Beta” bond) of this 
section. We conclude this section by pointing out an interesting link between excess-of-loss 
contracts and option theory. If we graph the final payoff of the (“dual-trigger”) contingent 
claim X(1, L), we get: 

24 The actuarial rating approach is as in the above example of the 6 Y “Beta” bond and the associated 1 Y 
European and American call and put options. 
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Fig. 16: Excess-of-Loss Contract in Options Theory Framework 

This payoff pattern is very interesting because it makes quite obvious the identity 

(6.5) 

From this identity we can conclude that for any fixed level of aggregate loss L the final 
payoff corresponds to the one of a combined long and short position in a European put option 
both with the underlying market variable A(I) and strike prices given, respectively, by L 
and L – C. In financial option theory, this strategy corresponds to a bull spread with
stochastic strike prices. Keeping in mind that financial point of view, the problem of pricing 
an excess-of-loss contract can therefore be reformulated as the problem of pricing European 
put options with stochastic strike prices (see the “Beta” bond options above). 
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