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methodology (i.e., a corresponding Fin Re Toolbox) is discussed in some detail and then
applied to rate current example Fin Re contracts taken from the Swiss Re New Markets
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1. Introduction
Pricing financial reinsurance (Fin Re) contracts involves a proper assessment of

(a) the liabilities (excess-of-loss claims, usually {imited or “finite™) arising from the
reinsurance part of the Fin Re contract;

(b) the financial instruments (fixed income securities, swaps, etc.) “built around” the
above liabilities (with cashflows potentially contingent on the loss events on the
liability side).

We present here a state-of-the-art pricing/rating methodology for financial reinsurance
contracts that is based upon a consistent stochastic model (of the jump diffusion type) for
financial market variables (like, e.g., interest rates, foreign cumrencies. stocks, stock indices.
etc.) as well as for (excess-of-loss) reinsurance claims. A lattice-based implementation of this
pricing methodology (i.e., a corresponding Fin Re Toolbox) is discussed in some detail and
then applied to rate current example Fin Re contracts taken from the Swiss Re New Markets
business area.

2. Modelling Excess-of-Loss Claims
List and Zilch [1], Geosits. List and Lohner [2] and List and Lohner [3} describe a consistent
set of state-of-the-art techniques and tools for modelling excess-of-loss claims data. These

tools are available in the form of a comresponding Extreme Value Techniques (EVT)
Toolbox that runs under Windows 3.1, 95, NT 3.51 and NT 4.0:
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- Value Quantification

Fig. I: Extreme Value Techniques (EVT) Toolbox
Extreme Value Techniques have within Swiss Re so far primarily been applied in the
development of Swiss Re’s recently launched “Beta™ program for Oil & Petrochemicals
industry high-excess property and casualty layers [that are taken here as an example for more
general “catastrophic” non-life (re)insurance exposures]:

“Beta” provides multi-year, high-excess, broad form property and comprehensive general
liability coverage with meaningful total limits for Fortune 500 clients in the Oil &
Petrochemicals industry (“Beta” is also available in other Forrune 500 segments. its program
parameters are industry-specific, however).

Coverage is provided at optimal layers within prescribed minimum and maximum per
occurrence attachment points and per occurrence (i.e., each and every loss: E.E.L., see Fig. 2
below) and aggregate (AGG.) limits, split appropriately between property and casualty. These
attachment points and limits are derived from the risk profiles and the needs of the insureds
(Swiss Re’s Value Proposition for the Oil & Petrochemicals industry).

The aggregate limits provide “Beta” base coverage for one year and over three years. Simply
stated, if the base coverage is not pierced by a loss, then its full, substantial limits (USD
200M property and 100M casualty) stay in force over the entire three year "Beta™ policy
term.

Insureds might be concerned they would have no (or only a reduced) coverage if losses were
to pierce the base coverage. Therefore, “Beta” includes a provision to reinstate all or a
portion of the base coverage that is exhausted.

Lastly, the “Beta” design includes an option at the inception of the base coverage fo extend
its initial three year high-excess insurance coverage (i.c., the property and casualty base
coverage and the provision for a single reinstatement of the base coverage) for an additional
three year policy term at a predetermined price.
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Fig. 2: The “Beta” Insurance Coverage for the Oil & Petrochemicals Industry

—i

From Swiss Re’s risk management point of view, optimal layers for “Beta” property and
casualty excess coverages are defined as follows:

No annual loss should pierce the chosen property or casualty excess layer more frequently
than once every four years (based both on the historical and scenario annual aggregate
loss distributions). This translates inte a 75% confidence that annual aggregate losses for a
given layer of “Beta” coverage will equal zero.!

The risk quantification process leading to the above optimal “Beta” layers for multi-year
(i.e., three years) high-excess property and casualty Oil & Petrochemicals industry insurance
coverage in principle follows standard actuarial tradition ~ however with some new elements:

The “Beta” implementation team (consisting of Swiss Re and ETH Zurich? personnel) has
developed and implemented a consistent and stable (with respect to small perturbations in the
input data) actuarial modelling approach for “Beta” high-excess property and casualty layers
(see Fig. 3 below). This new methodology is based on Extreme Value Theory (Peaks-Over-
Threshoids ModefP) and fits a generalized Pareto distribution® 1o the exceedances of a data-

' This optimality criterion is mainiy derived from Swiss Re’s perception (based upon an extensive Oil &
Petrochemicals industry analysis) of a “Beta” or “catastropiic” event. In the case of “Beta” programs with
combined single limits/deductibles. lower percentiles and thus shorter contract maturities may be preferable
from a marketing point of view.

1 The ETH Zurich “Beta” implementation team was lead by Prof. Dr. Hans Bihimann. Prof. Dr. Paul
Embreciits (Extreme Value Theory) and Prof. Dr. Freddy Delbaen (“Beta™ Options).

3 it has to be noted that claims histories are usually incomplete, i.c., only losses in excess of a so-cailed

displacement & are reported. Let therefore (X;) be an i.id. sequence of ground-up losses. (YJ) be the

N
associated foss amounts in the “Beta” layer DX <D+ L and Z= ZYx the corresponding aggregate
3=l

N
loss. Similarly, tet (ﬁ‘) ia = X;14,.5, be the losses greater than the displacement 3 and 2= ZY?,

i=l

N=Y1

oy

x.»s » the corresponding “Beta” aggregate loss amount. Some elementary considerations then show

)
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specific threshold. Once the frequency and severity distribution parameters are determined.
per claim loss layers are selected and aggregate distributions bot within the selected layers
and excess of those layers up to the maximum potential individual loss (MPL) in the Ofl &
Petrochemicals industry (e.g., USD 3 billion for property and USD 4 billion for casualty)
calculated. This procedure is repeated for sequential layers (usually chosen at the discretion
of the underwriter to approximate the anticipated “Beta™ program structures reflecting the
needs of the insureds or the entire Oil & Petrochemicals industry). thus mapping out the
“Beta” risk potential. The resulting probabilistic (excess-of-loss) profiles (“Beta™ risk
landscapes or risk maps, see Fig. 4 below) can also be used for the securitization® of “Beta”
portfolio components (see further below).

that F, = Fi holds for the aggregale loss distributions, provided that & < D . The Peaks-Over-Thresholds
Model (Pickands-Balkema-de Haan Thearem) on the other hand says that the exceedances of a high thresiold
(x) diswributed, where G

t < D are approximately G (X) is the generalized Pareto distribution with

Etlo ito

shape & | location t= [ and scale G > 0. The threshold t < D is chosen in such a way that in a
neighbourhood of t the MLE-estimate of £ (and therefore the “Beta™ premium) remains reasonably stable
{se¢ Fig. 3}.

* The generatized Pareto distribution (GPD) is defined by

X—Y
I-—(1+
Gm_c(x) = N g o

=0

o

N
¢

ol 4
o

1-e ={

AN

where X2 p for £20 and p<x<p—— for £ <0. Compare this with the ordinary Pareto

o | Q

distribution (PD):

{a 8
Fej(x)zl—b) L X>a.

5 From an actuarial standpoint, securitization is a modern capital markets alternative for traditional retrocession
agreements (see also Davis and List {4]).
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Fig. 4a: Oil & Petrochemicals Industry Risk Landscape® (Property)

6 The minimum layer width can be determined as follows: Consider the 86* percentile in the risk map
containing the one year aggregate loss distributions below the attachment points 10M, 20M, ... 100M, .. etc.
(keeping in mind that this percentile indicates the expected maximum loss in the fourtl year) and start with the
“Beta” attachment point of 300M, i.e., an expected one year aggregate loss of about 535M. Moving to the upper
“Beta” E.E.L. coverage point of 500M (= 300M “Beta” artachment point + 200M “Beta” limit), we have an
expected annual aggregate loss of about 630M. This means that the expected one year aggregate loss int tie
envisaged “Beta” property layer is about 9SM (= 630M - 535M) or, in other words, the “Beta” property
coverage (without reinstatement) absorbes two such expected losses on an E.E.L. and a 3 Y AGG. basis. This
was according to an extensive analysis (carried out during the “Beta” product engineering process) of the risk
preferences in the Oil & Petrochemicals industty Forture 500 segment considered to be sufficient for
catastrophic events causing property damage. Similarly, on the cesualty side, it transpired that a “Beta” layer
width of 100M was considered sufficient; the expected one year aggregate loss in the envisaged “Beta”
casualty layer (i.c., 100M xs 200M) being 59M (= 371M - 312M).
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7 The determination of standard layers (i.e., optimal SIRs and limits) for “Beta” alternative risk fransfer
solutions in the Oil & Petrochemicals industry (a similar approach is used in the other “Beta” target industries)
is very important for the quantification of Swiss Re’s Value Proposition for corporate clients in the Fortune 500
group of companies. The Value Proposition argument itself would be as follows: (1) Optimal layers for “Beta”
coverages are characterized by efficiency and cost transparency, a high degree of structural flexibility to
optimaily fit clients’ asset liability management (ALM) needs (sce also Davis and List [4]), significant
capacity for property and casualty, long-term stability (Swiss Re capacity} and high financial security (AAA
capital base). (2) “Beta” is a genuine alternative risk transfer product that may also include sophisticated
i ial markets comp ts (balance sheet protection, see also Davis and List {4]) and a new element in the
comprehensive range of Swiss Re’s (re)insurance coverages and related services for Fortune 500 companies.
Note that the “Beta” program also allows for property and casualty layers different from the standard layers (see
List and Zilch [1] and Geosits, List and Lohner [2]).
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The optimal “Beta” attachment points (=SIRs) for the Oil & Petrochemicals industry are:

A. Basic Scenariod.

{'Bas:c Scenario (3% Property, 10% Casualty)
P

roperty
BP Opt. Attachment Point 300.00
EAP QOpt. Attachment Point 350.00
Onshore
BP Opt. Attachment Point 250.00
EAP Qpt. Attachment Point 290.00
Offshore
BP Opt. Attachment Point 90.00
EAP Opt. Attachment Point 110.00
Casualty
BP Opt. Attachment Point 250.00
EAP Opt. Attachment Point 300.00

Basic Scenario (5% Property, 10% Liability)
Fire & Explosion

BP Opt. Attachment Point 5$50.00
EAP QOpt. Attachment Point 600.00
Marine

BP Opt. Attachment Point 300.00
EAP Opt. Attachment Point 350.00
Tanker Pollution

BP Qpt. Attachment Point 300.00
EAP Opt. Attachment Point 400.00

Basic Scenarie (3% Property, IT% Liability)
Property Damage

BP Opt. Attachment Point 650.00
EAP QOpt. Attachment Point 700.00
Business Interruption

BP QOpt. Attachment Point 656.00
EAP Opt. Attachment Point 750.00
Property Damage and Business [nterruption

BP Qpt. Attachment Point 1500.00
EAP Opt Attachment Point 1500.00
Offshore

BP QOpt. Attachment Point 230.00
EAP Opt. Attachment Point 270.00
General Lizbility

BP QOpt. Attachment Point 300.00
EAP Opt. Attachment Point 45G.00
Product Liability

BP Opt. Antachment Point 60.69
EAT Opt. Attachment Point 80.00
Employer's Liability

BP QOpt. Attachment Point 10.00
EAP Opt. Attachment Poiat 10.00
Hutomobile Liability

BP Opt. Attachment Point 10.00
CAP Opt. Antachment Point 10.00
(Marine Liability

BP Opt. Attachment Point 40.00
EAP Opt. Attachment Point 50.00
{1l Liability Claims

B Opt. Attachment Point 450.00
EAP Opt. Attachment Poiat 500.00

8 The time periods 1997 to 1999 and 2000 to 2002 are called “Beta” base period (BP} aud “Beta” extended
agreement period (EAP), respectively (see List and Zilch [1]). Three different reference datasets characterizing
the Oil & Petrochemicals industry are analyzed (see List and Lohner [31).
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B. Adjustment Scenario?.

Xajusimenf Scenario llU’/’o Properfy, Z0% Casual(ﬂ

Property

BP Opt. Attachment Point 600.00

EAP Opt. Attachment Point 800.00

Onshore

BP Opt. Attachment Point 500.00

EAP Opt. Attachment Point 700.00

O ffshore

BP Opt. Attachment Point 180.00

EAP Opt. Attachment Point 240.00

Casualty

BP Opt. Attachment Point 550.00

EAP Opt. Attachment Point 850.00
jusiment Scenario e Property, 20 % Liability}

Fire & Explosion

BP Opt. Attachment Point 1000.00

EAP Opt. Attachment Point 1500.00

|Marine

BP Opt. Attachment Point 600.00

EAP Opt. Attachment Point 800.00

Tanker Pollution

BP Opt. Attachment Point 900.00

EAP Opt. Attachment Point 1500.00

[Adjustment Scenario (10% Property, 20% Liability)

|Property Damage

BP Opt. Attachment Point 1500.00
EAP Opt. Attachment Point 1500.00
Business Interruption

BP Opt. Attachment Point 1500.00
EAP Opt. Attachment Point 2000.00
Property Damage and Business Interruption

BP Opt. Attachment Point 2500.00
EAP Opt. Attachment Point > 2500.00
\0ffshore

BP Opt. Attachment Point 450.00
EAP Opt. Attachment Point 600.00
General Liability

BP Opt. Attachment Point 700.00
EAP Opt. Attachment Point 15¢0.00
Product Liability

BP Opt. Attachment Point 120.00
EAP Opt. Attachment Point 250.00
Employer's Liability

BP Opt. Attachment Point 20.00
EAP Opt. Attachment Point 30.00
ldutomobile Liability

BP Opt. Attachment Point 20.00
EAP Opt. Attachment Point 30.00
\Marine Liability

BP Opt. Attachment Point 80.00
EAP Opt. Attachment Point 130.00
41l Liability Claims

BP Opt. Attachment Point 1500.00
‘EAP Opt. Attachment Point 2000.00

9 To make this presentation simple, we only consider the basic scenario and an adjustment scenario (see List
and Zilch {1} for more details on the general classes of “Beta” threat scenarios identified).
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Goodness-of-fit tests (e.g., the LEV comparison test, see List and Lohner [3]} show that
Extreme Value Techniques are applicable basically from ground-up to the maximum
potential loss. Similar results hold for the other “Beta” target industries in the Fortune 500
segment of Swiss Re’s corporate clients.

3. Modelling Interest Rates

Modern Value Proposition (VP) -based client solutions for Fortune 500 companies often
require sophisticated financial engineering, too. Davis and List {4, 5, 6, 7, 8] and Davis and
Biihimann, Bochiccio, Junod and List {9, 10, 11] present the corresponding stochastic models
and applications (for excess-of-loss claims on the liability side and interest rates, foreign
currencies, stocks and stock indices, etc. on the asset side). Moreover, a sophisticated
Jfinancial/(re)insurance toolbox for the design of such alternative risk transfer solutions is
outlined: EVT handels the liability side while an extended form of the Rubinstein implied
tree model is used for the asset side (with asset cashflows potentially contingent on loss
events on the lability side) of such transactions. This toolbox again runs under Windows 3.1,
95, NT 3.51 and NT 4.0:

Access Basket Layer 4
Qr
LP LRA
Layer 3
Simplex EVT Claims

Fig. 5: Financial/(Re)insurance Toolbox (see Davis and List [6])
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Lattices and matrices are the main information processing structures used in corporate- and
investment banking and (re)insurance applications. These structures tend to be quite large and
have to be accessed and updated many times to obtain the results needed in quantitative
financial/(re)insurance decision making. The PC is widely used as a convenient low-cost
financial services platform in modem banking/(re)insurance. Its main limitations are the small
64 KB data segment size, the typically insufficient RAM size and the usually rather slow and
limited harddisk. Ore of the main objectives in the design of our generic PC-based software
environment for Fin Re pricing applications (Fin Re Toolbox) was consequently to
overcome these architectural limitations and to allow networked PCs to process very large
financial information structures as efficiently as possible. A direct node access capability and
a fast direct data access capability are the two key features which we built into the lattice
manager (Lattices) and the virtual memory manager (VML) to achieve this goal. Given the
time/state coordinates (i,j) of a lattice node, its address in virtual memory (VML) is looked
up in a lattice access structure (LAS) with a binary search algorithm and the node is then
directly accessed with one physical memory (RAM, disk or network) operation. Dynamic
programming procedures that operate on the lattice are considerably speeded up with the help
of a bounds access structure (BAS) which stores the consecutive upper and lower lattice
bounds over time. These acceleration structures themselves run on corresponding VML-
kernels (VMLAS and VMBAS). Given the address in virtual memory (VML) of a data
element (lattice node), its address in physical memory (RAM, disk or network drive) is
looked up in an area access structure (IASL) and an address access structure (KASL) which
both again use the services of a corresponding VML-kernel (VMIASL and VMKASL). The
data element is then as mentioned above directly accessed with one physical memory (context
or cache) operation. A similar concept was used to implement large matrices (Matrices,
VMM, etc.). With the above two design ideas the processing of large financial information
structures on a PC network is always almost at the speed of RAM although the data may
actually be stored on disk or even on a (remote) network drive.

State (j)
“Node
2 @2
Future Node Node
1 Market {1.h @,n
State
Present Node Node Node
0 Market 0.0 {1,0) 0
Conditions Root
] i 2 Time (@)

354



Fig. 6: Fin Re Lattice

The Fin Re Toolbox (which is derived from the above more general financial/(re)insurance
toolbox) determines the current price and the current sensitivities (derivatives risk
parameters) of a contingent claim (note that fixed income securities are interest rate
contingent claims) as well as their future evolution over the claim's entire lifetime by using a
dynamic programming procedure that operates on the underlying (binomial) lattice. Each
node in this lattice represents a potential securities market state at a given future time and the
root describes the current market conditions that are relevant in a Fin Re pricing context.

Development of a simple Fin Re pricing strategy involving American payer's swaptions
(APSW) for example is based on the following lattice structure (see Fig. 7 below). DF0 - DF4
are the discount functions prevailing in the interest rate scenarios under study, the underlying
variable is a swap (SWP), PO - P4 are the prices of the securities under the above mentioned
interest rate conditions, alpha and beta are model sensitivities with respect to potential
estimation errors in the relevant model parameters (we use the extended Ho & Lee interest
rate model, see below) and DO and D1 (delta), gamma and theta are the contingent claim
sensitivities (defined as rates of change of the contingent claim value with respect to
instantaneous changes in the underlying initial term structure of interest rates and
conditionally expected rates of change of the contingent claim value with respect to changes
in time) in the given interest rate scenarios.

With this information about the future dynamics of the underlying securities market variables
corresponding (consistent within an arbitrage pricing theory framework) contingent claim
price and sensitivity (derivatives risk exposure) forecasts, i.e., expected values

E[x,;] ;iinijxij (3.1

and standard deviations

Dx,]=VIx] = yE[(x, ~ BIx,D*] = VElx ']~ E[x,
: i 2 3.2)
= Z Xy ‘(Z "uxij)

=0

[m; is the time/state probability!? associated with node (i. ) and x,,..,x;,..,x; are the time

i realizations of the stochastic process (xi) denoting the discrete price or derivatives risk
parameter dynamics over time], are possible (see Fig. 8 below). These forecasts (which have
an adaptive update property) can then be used as an effective quantitative guideline in
(conventional) every-day hedging decisions as well as in the design and implementation of
longer-term Fin Re portfolic magagement strategies. Furthermore, this data can be stored in a
relational database system and on demand be consolidated into appropriate risk management
reports for a book of business, a desk, a department and the entire company (Swiss Re). The
simple portfolio management component (Basket) of the PC-based Fin Re platform supports

10 In a Fin Re pricing context, the financial time/state probabilities (risk-neutral) are usually modified to take
excess-of-loss probabilities (risk-averse) on the liability side into account. Lattices are very convenient for such
applications, as they can store the necessary information on the associated Girsanov transformation of
probability measure in each node (see Davis and List [4, 5, 6, 7, 8] and the literature mentioned there for more
details).
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these tasks on the user interface level. It also contains all the necessary functionality for P&L

accounting, derivatives risk management and hedging strategy evaluation.

[Nodes
[Coordinate T T T ) T ]
i~Courdinate 0 o 1 0 1 2
[PARERTS T T ] ] T T
[ 0 [ ° 1 0
[CHICDREN [] [] T ] T )
1 1 2 I 2 3
[CXEELS T TSI [ 550 B X1 %3.C R XX X M X5 & 11 S (X115 k1 B
Term 2 0.986747 9.98674 0.986741 0.986703 0.985703 0.986703
Structures 3 0.980173 0.98015 6.93015 0.980115 0.980116 0.980117
DFO 4 0973627 0.973606 0.973607 0.97357 0.97387 0.373571
s 0.967127 0.967104 0.967105 0.967113 0.967114 0.967115
DF1 1 0.993345 0.993358 0.993359 0993337 0.993337 0.993338
2 0.986747 098674 0.986741 0.986702 0.986703 0.986703
3 0.980173 0.980149 8.98015 0.980115 0.980116 0.980116
4 0973627 0.973606 0.973607 0.97357 0.97357 0.973571
5 0.967127 0.967104 0.967105 0.967113 0967114 0.967115
DF2 1 0.993345 0993389 0.993359 0.993337 0.993338 0.993138
2 0.986747 0.98674 0.98674 0.986703 0.985703 0.986703
3 0.980173 098015 0.98015 0.980116 0.980116 0.980116
4 0.973617 0.973606 0.973607 0.97357 0.97357 0.973571
5 0.967127 0.967104 0967108 0.967113 0.967114 0967114
DF3 H 0992359 0992373 0.992373 0992352 0.992352 0.992352
2 0.98479 0.984783 0.984783 0.984745 0.984746 0.984746
3 0.977258 0.97723¢ 0977235 097712 0.977201 0.977202
1 0.969768 0.969747 0.969748 0.969711 0.965712 0.969713
5 9.962333 0.962315 0962316 0962324 0.962325 0.962326
DF4 1 2.991375 8.991389 0.991389 0.991368 0.991368 0.991368
2 0.982838 0.982831 0.982832 0982794 0.982794 0.982794
3 0.974354 0.974331 0.974332 9574297 0.974298 0.974298
4 0.965928 0.965908 0.965908 0.965871 0.965872 0.965871
s 0.957577 0957555 0957556 0.957563 0.957564 0.95756%
Underlying Price, PO 17.41971 1753579 17.53165 17.65239 17.65366 17.65493
Variable P1 17.42034 17.5363 17.53757 17.65278 17.65406 1765533
SWP P2 17.41811 17.5345 17.53513 17.65141 17.65205 17.65268
P3 114745 11.56228 11.56342 11.65087 11.65172 11.65287
P4 6.123498 6181301 6.182331 6234473 633551 6236547
Alpba 0.006382 0.005159 0.005159 0.003926 0.003926 0.003926
Beta -15956.1 128973 -19228.7 -9814.39 -16170.3 -22526.4
Delta, DO -420.39 422.391 “224 424,393 424,402 ~424.41
D1 -373.019 ~380.491 ~384.5 -382.976 -382.984 -382,992
Gamma 2596.068 2962.654 296211 2928.625 2928.68 2928.734
Theta 0.116712 0017243 0.117248 0.118401 0.118406 o.118411
Contingent Price, PO 3121769 3.15296 3152543 3174251 3.17383 3.17341
Claim P1 3131818 3.152746 3,152329 3.174078 3173657 3.173237
APSW 73 3.132403 3153494 3.153286 3.174683 3074473 3.174263
P3 5.02049% 5059333 5058981 5.098397 5.09804) 5.09768S
Pe 6.674396 6732898 6.732027 6.79182 6.79094 6.79006
Alpha -0.0025¢ -0.00214 -Q.00214 -0.00173 ~0.00173 000173
Beta 634129 $342.43 T427.137 315,679 6427.445 8529314
Deita, D3 133.5534 134.301 134.3055 136.0577 136.0622 136.0668
o 116.9481 1183389 1183022 119.743 119.706 119.669
Camma -1174.17 -1264.04 -1166.96 -1183.62 -1156.56 11595
Theta £.020983 001108 0.021077 0.021291 0.021287 0.021234
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Fig. 7: APSW Lattice Nodes
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Note that derivatives portfolio stress testing as recommended by the G30 banking industry
best practices standard can be carried out simultaneously with the initial pricing / Fin Re
portfolio selection!! process. The Fin Re Toolbox described here even goes one important
step further: the securities and derivatives portfolic determined is optimal in all stress
scenarios. This statement means in quantitative terms (see Davis and List [5, 6, 7, 8] for
details): If x,(t) is a lattice approximation of the continuous-time securities market dynamics
x(t), 0<t<T, E,(t,x) is a corresponding discrete-time futures contract value function,
furthermore ¢, (t,x) and p,(t,x) are corresponding discrete-time European call and put
value functions and moreover C, (t,x) and P,(t,x) are corresponding discrete-time
American call and put value functions and x¢(t) and xp(t) the associated discrete-time
optimalb exercise boundaries, then we have uniform convergence
i g1)1_1’1(1 F,(1,8) = F(t,x)

6, (5.8) = o(t,X) PED=RE) 5y

(x. E)-*(' X) (r E) (1

« ;,ii‘& LGB =Ctx) él)m(lu)P (1.8) = P(t,)

on compacts in [0, T]x [0,00) as well as uniform convergence

limx¢(t) = X (1) limxp(t)=x,(t) (3.4)
on [0,T]. If in these numerical approximations the respective discrete-time contingent claim
sensitivities are defined according to the finite difference method, then the above uniform

convergence results on compacts also hold for the sensitivities. Futhermore, we have uniform
convergence

. . ) i ]
(n:)—»(tx)n (7.8 = n(t.x) (r.é?.,,‘«)v“-(r’&) Va(t:%)
Eﬂg‘}[AR:n] EF R, ] ‘ v‘{;"}[AR:_] ViR ] (3.5)
um = lim =
o0 A dt st AT dt

on compacts in [0,T]x[0,) for the optimal solutions of the two Fin Re portfolio selection

programs
00
a(tx

RA: AC:
ln(t, )78 x)| <8, (delta) V. (t,x)2V, (value)  (3.62)
In(t, )T y(t, )| <7, (gamma) A{t,x)n(t,x)+b(t,x) <0
n(t,x)T 8(t,x) 2 9, (theta) Ct,x)n(t,x)+d(t,x)=0

1 Fin Re portfolios (to offset potential future liabilities under the reinsurance part of the contracts) are typically
chosen by using more or less heuristic modifications of classical hedging strategies. It can be shown, however,
that a limited risk arbitrage (LRA) approach to Fin Re portfolio selection would perform better than hedging
strategies (see Davis and List [4] and the corresponding literature mentioned there for details). One important
reason why LRA techniques are very well suited for this kind of application lies in the fact that they achieve
an overall allocation of the asse/liabillty risks involved that meets set targets at a reasonable price whereas
the otherwise commonly applied hedging techniques (for the financial part of a Fin Re program) often
unnecessarily avold financial risks at an unacceptably high price while the (potentially dominating) risk
exposure on the lability side remains high.
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(variance of return minimization) and

rx(x‘a>§n(t, x)T At,x)
RA:
V. (t,x) 2V, (value) AC:

3.6b
[n(t,x)78(t,x)| < 8, (delta)  A(t,x)n(t,x) +b(t,x) <0 (3.60)

’n(t, x)Ty(t,x), <7, (gamma) C(.X)n(t,x)+d(t,x)=0

n(t,x)T8(t,x) = 9, (theta)

(expected return maximization) and their discrete-time approximations

max V. (t,x)

ny(t,x) "

RA: AC:

n,(42)78,(6%)| <5 [deltn) VI (L,x)2V, (value)  (3.79)
0,(6,3)77,(,%)| <7, (amma)  A(Lx)n, (£,%)+b(t,x) 0
n,(t,x)7S, (t,x) 2 8, (theta) (LI (LX) +d(L.x)=0

and
maxn, (LA (t,%)
RA:

V:_ (t,x) 2 'V, (value) AC: 3.7b)

n, (6. X)78, (6,%)] <8, (delta)  A(t,x)n, (t,%)+b(t,x) <0
C(t,0)n, (t,x) +d(t,x) = 0

nn(t,x)ryn(t,x)| <7, (gamma)

n,(t,x)"8,(t,x) > 9, (theta)
(where the constraints on the portfolio value are necessary to ensure locally uniform
convergence of the conditional moments of the portfolio return)!2.

The Ho & Lee Interest Rate Model. The simple Fin Re pricing application presented at the
beginning of this section (no liability contingent cashflows and excess-of-loss probabilities
for simplicity of presentation, yet) operates within the Ho & Lee interest rate model

dr = @(t)dt +odz o)y = %(O,t) +c%t  (3.8)

(see Ho and Lee [12] and Davis and List [5, 6, 7, 8] for details) [where f(t,T) is the
instantaneous forward rate at time t for an investment at time T]. In discrete-time we have
then: (1) Security markets clear at time points 0,12,...i,..,H (where H is the given
investment horizon) which are separated into regular intervals (model time periods). For each
of these time points i the initial discount factor P(i) (relative to the time origin 0) is known.
Furthermore, at each time point i=12,..,FH [where FH<H is the relevant forward
horizon] there are i+1 possible future discount functions Py(k), j=0,,..,i and
k=0,1,...,MH [where MH = H—~FH is the associated maturity horizon]. (2) The evolution

12 Note that the Fin Re portfolio selection programs outlined above are of the LRA type (see Davis and List {5,
6, 7, 8] for details). Module LRA of the Fin Re Toolbox (taken from the more general financial/(re)insurance
toolbox, see Fig. 5 above) can solve such stochastic (time/state contingent) linear programs very efficiently.
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of the term structure of interest rates over the investment period [0,H] is modelled by a
recombining binomial lattice with root
Py(k)=P(k) (3.93)

and branching process
| Py(k+1)
Pi+lj¢l(k) Piuju(k) =h,(k) Pij(l)
PN‘
Pi(k) (3.9b)
l—yo
By(k+D
Pus®) R0 =005
where
1 k
=g MO 619

are the corresponding upward and downward perturbation functions, the model probability is
p and the model delta is d, 0<p,d <1. With the length At of the model time periods we

have then
1 [p(L-p)log(d)’
T=-p log(P(1)) and o~ NG (3.11)

for the current short-term interest rate and the term structure volatility. (3) The risk-rextral
pricing formula'? is in this context

L PlVia +XGE+Li+D] | ] 0<i<T-1
Vo= DI DL gyt xar L Y 0sisi gy

vy =F(j) 0<j<T
where T<H is the contingent claim maturity (4) With the forward rates

(k) =~ 10g( (k) (B.13)
we define the derivatives risk parameters (contmgent claim sensitivities) as follows
Vistjet = Vi Vietij 7 Y5
S, = 1-p)
P50 TP TR m
8|+U+l 8} 5i+1j —6ij
) 3.14
IO YO e e

_ Vigia TV Vi) = Y5
Sy va Gl D
(conditionally expected rates of change of the option value with respect to the underlying
short-term interest rate and time). (5) The time/state probabilities associated with the Ho &

Lee Fin Re lattice are

Y =P

=(p'a-p 315

and consequently the contingent claim price and sensitivity forecasts

13 X (intertemporal cashfiows) and F (terminal condition) characterize the contingent claim. L £ v < U are
boundary conditions for its price process (see Davis and List [5, 6, 7, 8] for details).
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W= Znﬁvij o) = /Znijvijz - “ivz (price)

i = (3.16a)
u=2mb; o = ‘fz myy —ui' (delta)

=0 =0

i i ;
B o= zﬂuh o] = Z"inijz -i{"  (gamma)
o0 =0

i - — (3.16b)
pd =Znijsij ol = }Znﬁs; —u’® (theta)
j=0 =0

(and similar for higher order moments of the corresponding distributions). (6) Structured
options portfolio optimization (for Fin Re kedging purposes) involves the solution of either
one of the following (limited risk arbitrage, LRA) programs

max Vy [Vi? = “ijTVij] “},fxnista
RA: RA:
[nijrsij <3, (delta) AC: Vi 2V, (value) AC: (3.17a)
A +b, <0 T An; +b, 50
T L it Ty n,; 81 < 8, (delta) U
’nij Yijl <Y, (gamma) Cyn, +d, =0 l TJ il =% C,n, +d, =0
n,’3, > 8, (theta) Iy, <7, (gamma)
in a general (state dependent linear optimization) or
Ti o fgn_ =T, v =T 8
mﬁflle! [Vn =0l ] m‘l‘?‘xni B
RA: RA:
B,7| <5, (delta) AC Vi 2V, (valuc) AC: (3.17b)
=Ty A +b, <0 l—'Tu'sl <8, (delta) ARD +b,<0
181!} <7, (gamma) CiH +d =0 ERGEL Ch+d, =0
7, Tp® > 9, (theta) ;1! | < v, (gamma)

in a simplified (linear optimization based on forecast expectations) context. Note that the
optimal positions (over the whole lifetime of the portfolio) are known before the portfolio is
actually set up. This allows Fin Re portfolio managers to.use hedging strategies that minimize
holding and transaction costs. (7) The parameters of the above outlined Ho & Lee interest rate
model are p (model probability), d (model delta) and R(1),R(2),..,R(i),..,R(H) (initial
term structure of simple, annualized interest rates). We have then
. . N
(i) =log(1+R(i)) and P(i)=e™" = -———-———(1 TROMN (3.18)
for the corresponding continuously compounded interest rates and discount factors. In
addition to these parameters we now also consider the quantities
Ap (probability increment), Ad (delta increment) and  (3.19a)
AR(1),AR(2),..,AR(),.., AR(H) (interest rate increments) (3.19b)
and construct a recombining binomial lattice for the term structures
Pép.d,R)(k)’ Pé’"Ap’d‘R)(k), pigp.hM.R)(k), Pigp.d.mn)(k) and Pép.d,knm{)(k). (3'20)

For an interest rate contingent claim we then calculate the corresponding scenario dependent
prices
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v{PdR) ((p+apd.R) V(v,d'rAd.R) ngp.d.R+AR)

Vi s Vi s Vi >

and vPARI (3 91a)

and sensitivities
(p*Ap 4R} _ V(p .d.R) (pd+ad R} _ ((p.d.R)
a(pd &R) __—A_p_,______ B(pd RY _ ____Ag._”__ (3.21b)
(pd.R+AR) _ _(p.d.R)
SpdRy A (PAR+AR) _ 5 (pd.R)
j X p.d.
’ “AR“ {pd.R) _ E____-S"_ 321
(p 4,R+1AR) _ v(p 4 R+AR) Yy IaR] (3.21¢)
SPAR+AR) _
I Jar|
VEER) _ 048 PdR) _ (pdR)
‘d‘R — 1+] lJ i+l l)
Si(j" )—p A +(-p) 0 (3.21d)

Note that the probability and delta exposure

v av
=g ad B=gg (322)

of a contingent claim in the Ho & Lee interest rate model can be written in the form

a-—ogg+ B= uac+ (3:23a)
7 .
where
% _(-2p)logd) 3 _p(l-p)logd)
ap 2or’At? ad~  dor’at’ (3:239)

holds. This extension of the original Ho & Lee interest rate model can still be easily
calculated (simultaneous scenario analyses) and is very suitable for Fin Re pricing and
portfolio management (hedge portfolios) under varying securities market scenarios.

Fixed Income Securities (Bonds). Fixed income securities play a major role in Fin Re pricing
applications: institutional investors such as investment trusts, pension funds and (life)
insurance companies invest large funds in order to satisfy future liabilities resulting from the
various contractual obligations entered into with their clients. Bonds have cashflow
characteristics that make them very attractive investments for these purposes: by monitoring
credit risk and call risk and adequately diversifying a bond portfolio by type of issuer, an
investor can expect its promised cashflows with a high degree of certainty. The sources of
return from investing in a bond are its coupon payments, the interest on these payments and
potential capital gains over the investment horizon. Holding aside credit risk and embedded
options, there are therefore three components to evaluating the attractiveness of a bond: yield,
duration and convexity. If the bond's price is P and its cashflows are ¢,,..,c,,..,c; (where T
is the maturity period), then its yield to maturity (YTM) is defined by the equation

T

P=Y—2_ (329
el (S9N ’

Given an investment horizon H, a realized end price P; of the bond and a set of
reinvestment rates 1,,..,T,,-., Ty the bond's realized compound yield (RCY) is defined by the
equation

P(1+Y)" =P, +cR+Zc(1+ r)-(l+5).  (3.25)
Portfolio managers typically use these sunple yield measures as a basis for undertaking bond
swaps in order to enhance the performance of their bond portfolio over some investment
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period. There are five basic types of bond swaps: pure yield pickup swaps, substitution
swaps, interest rate anticipation swaps, intermarket spread swaps and tax swaps. A rate
anticipation swap involves the portfolio manager's expectations about future interest rate
movements and the idea is to position the bond portfolio on the basis of its interest rate
sensitivity (duration) to take advantage of anticipated shifts in market interest rates: if rates
are expected to fall, the portfolio’s duration is increased; if rates are expected to rise, high
duration bonds in the portfolio are swapped for lower duration bonds in the market. The

Macaulay duration of 2 bond is
T

Z tC‘~

t
D = 2=t (1P+ y) (3.26)
and the relationship
dp dy
= =-DT; ; (3.27)

shows that Macaulay duration is indeed a measure of its first order interest rate exposure.
This equation also explains the above mentioned simple bond portfolio optimization strategy.
Convexity, the bond's second order interest rate sensitivity, is

T
(t+tc,
_1 dIP:g’ (i+y)" 3.28)
2P dy?  2P(1+y)? ’

and the relationship

AP Ay 2

P Dl+y+CAy (3.29)
shows that a high convexity bond outperforms a bond with the same yield and duration
characteristics but lower convexity in all conceivable interest rate scenarios. Generally,
therefore, high convexity bonds offer lower yields, that is, the market prices convexity. This
yield discount can be substantial in times of high anticipated interest rate volatility. The
modified duration

D=D/+y) (330

and the convexity C of a bond portfolio are value-weighted averages of the respective
component quantities, 1.e.,

1 dp 1 dp
P 1 2
1 dxPrghy NG ay) TR 5
x,P, +x,P, dy - %P +x,P, '

This fact is the basis for another class of simple bond portfolio optimization strategies the
objective of which is to improve portfolio performance (RCY) while keeping interest rate
exposure (duration and convexity) at the same level. These so called duration-equivalent
portfolio swaps typically replace a bond currently held (bulle) with a synthetic security
(barbell) consisting of two bonds in amounts chosen according to the equation system

xPD+xBD, 5 xPCuPC,

PP X,P 4+ %,P

and work well under parallel shifts of the current term structure of interest rates. Duration
adjustments of bond portfolios are usually carried out by using bond futures contracts instead
of the bonds themselves. The futures price [where S <T is the contract maturity period] is
related to the bond's spof price via the equation

=C (3.32)

366



F S ¢
Toor Ly O

from which the contract's modified duration and convexity can immediately be calculated,

ie.,
i tc,
~ Sy
~ 1dF *T pl+y) S
D= 34
F7 Fdy i ¢, 1+y (3:34)
E={(E2))
p
ZS: (t+1te,
& (xyy
1 dF " 2PQ+y)  (S-DS
PSR dy? i o Taiayr G
[ (1+y)
P
The futures position is then chosen according to the equation system
xFD, +V,Dy XFCp + V,Cy
F+V, =D xF+V, =C (39

where V,, D, and Cj are the bond portfolio value, modified duration and convexity. The
same technique can also be used by managers of mixed asset portfolios (bonds and stocks) to
change their optimal asset allocation on a duration-equivalent basis. The bond futures
position is in this case chosen according to the equation system

XFD+VD, ~  « XFCe +V,C,
—E211-5 =D ——l-c, (337

VT T VT
where V;, Vp, D, D;, C, and C; are the initial and target bond portfolio values, modified
durations and convexities. Unlike the simple swap strategies described so far, structured
bond portfolic management strategies do not rely on expectations of interest rate movements
or changes in yield spread relationships. Instead, the objective is to design a portfolio that will
achieve the performance of some predetermined benchmark (indexing) or finance a single
future liability (émmunization) or an entire future liability stream (cashffow matching). If
P,..,P},...Py and P{,..,P’,..,P} are the asked and the bid prices, respectively, of the bonds
currently available in a specific bond market and if cf,..,c},..,c}; [where H2T, is the
relevant investment horizon] are the (adjusted) cashflows of bond j, 15 j<N, during the
investment period under consideration, then the gemeral structured bond portfolio
management problem can be stated in the form

N
max > x?PP -x:P!  (3.38)

X§X5 =l

N
u < Z}[x} -xjlel < v,
I

N
u, Szl[x? -XN(+1)el +ed]l<y,
e
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N
uy szl[x; —x?][(l+r,)[(1 +1)e] +cl J+eli< v,
e

N
uy le[x‘; o (R (LW A RPN WU A P

(see Ronn [14], Ehrhardt [15] and Davis and List {5, 6, 7, 8] for details) where 1,,..,5,,.- Ty
are the consecutive implied one period forward rates in the market and the respective long
and short bond portfolio positions satisfy 0<x{<a, and 0x X‘,—’ <b,, 1<jsN. If
R,,...R,,..,Ry is the term structure of simple interest rates per trading period, then the above
forward rates satisfy

_(1+R2)2 __(+Ry"
1+r2——————1+Rl 1+ru—m (3.39)

This linear program has two interpretations: (a2} from a bond arbitrage point of view the
objective is to maximize the current market value of the portfolio (by exploiting relative
mispricing - €.g., as a result of different tax brackets - of bonds in the market) while at the
same time constraining the risk exposure of the arbitrage ‘transactions @in terms of their
implications on the future portfolio cashflows) to values within a specified tolerance band
(u,,v,); (b) from a term structure estimation point of view by solving the associated dual

problem
2N

ZY f (3.40)

min
4,20,y;20 =t
H
b i .
PP<Y deli+y;, 1SjSN
t=1

H
>~y <P, 1SN
t=1

d,=1,0<d,-(I+p)Md,,,,0<t<H
a corresponding (tax-specific) term structure dy,d,,...d . .»d,; of discount factors and
associated simple interest rates per trading period

1 1 ’l
R‘-dI-I’RZ— d, TI""RH—HE‘:“I 3.41)

that is consistent with a given exogenous (minimal) one period reinvestment rate p and
prices all bonds in the market within their respective bid/offer spreads (P?,P?) can be

. i*7y
obtained.

The Hull & White Class of Interest Rate Models. The Hull & White class of (one-factor)
interest rate models has the generic representation

dr(t) = m(B(),¢(t), r(t), ydt +s(r(1), )d2(t)  (3.424)
(see Hult & White [13] and Davis and List {5, 6, 7, 8] for details) and is rich enough to mode!
a wide variety of different interest ratc scenarios occurring in practical corporaic and
investment banking as well as financial (re)insurance applications. Here, we are especially
interested in the model

dr(t) =[B() - dOr(Mat +or(dz(ty (3 42b)
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of the extended Cox, Ingersoll and Ross (CIR) type {belonging to the Hull & White class of
interest rate models just as the above-mentioned Ho & Lee model

dr=p()dt+odz  @(t) =%f—(o, t)+o’t].

The generic class of Hull & White models has a very efficient (recombining) trinomial lattice
implementation (see Huif and White {13] and Davis and List {6] for details) and is abfe to fit

(a) the current term structure of short-term interest rates [specification of the
function 8(t) which is deterministic and varies with time t J;

(b) the current volatility structure of short-term interest rates [specification of the
function ¢(t) which is also deterministic and varies with time t ].

The risk-neutral pricing formula and the contingent claim sensitivities (derivatives risk
parameters) are defined as in the Ho & Lee model above - with the obvious modifications to
take the trinomial structure of the underlying lattice implementation into account. Note that
the term structure estimation approach (3.40) above can be used to provide customized (i.e.,
taking client-specific tax-brackets, corporate debt structures, etc. into account) estimates of
the initial term structure of short-term interest rates for the Hull & White (and the Ho & Lee)
model. Current volatilities-are usually estimated from historical (discount) bond yield data.

4. Modelling Exchange Rates / Stocks / Stock Indices
The Black & Scholes Model. Fin Re pricing in a Black & Scholes securities market setting is

driven by the following analytics (see Black and Scholes [16], Black {17] and Davis and List
[5, 6, 7, 8] for details):

A. Bond and Stock Options. The Black & Scholes equation for bond and stock options is
v ov o’ v
Xt —— IV = 1
P TR 0 @1

(note that coupons or dividends during the lifetime of the option have to be discounted and

subtracted from the current bond or stock price). With

x(t) o!
log(——")+(+—XT-1)
d,(t) =—=& cJT-—tz 4,0 =d,()-ovT—1 (4.2)

this linear partial differential equation can in the case of futures contracts and European
options be integrated by using a risk-neutral valuation argument. The results are as follows.

Futures (4.3):

F(t) = x(t)e™™v
B(t) =e ™Y
1) =0
8(t) = ~x(t)re" ™V
o(t)=0
p(t) = x(t)(T ~1)e ™"
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Call Option (4.4):

o(t) = x(ON(d, (1)) — Xe " TIN(d, (1))
8(t) =N(d (t)
_ N'(,()
1= x(t)o T -t
S =- 2"‘}"?_:’? N'(d, (1)) - rXe"TIN(, (1))
u(t) = x(VT - tN'(d,(1))
p(t) = (T - )Xe™IN(d, (1))

Put Option (4.5):

p(t) = Xe ™ TIN(=d, (1)) ~ x(ON(=d,(t))
3(1) =N(d(t) -1
_ N (®)
Y= x(t)c\/'f:
(1) =~ 2’:}% N'(d, (1)) + 1 Xe ™ IN(=d, (1))
(1) = x(OVT - IN'(d, (1)
p(t) = (T~ )Xe ™ IN(~d, (1))

In the case of American bond and stock options, the above Black & Scholes equation can be
solved with numerical techniques, i.e., finite difference methods and lattice approaches. A
discretization with the implicit finite difference operators leads to the (tridiagonal) system

avy,+ ijij +C Ve =Y,

ij~1 i i+lj

4.6
i=0..m-1  j=l.n-1 59

of linear equations with (state dependent) coefficients
jAt . . jAt .
a, =-“2—(r—0'2]) b= 1+Al(r+o’f) ¢, = -J—2—(r+czj) (4.6b)

that can easily be solved backwards in time by using the boundary conditions and early
exercise criteria which characterize the given contingent claim v. A discretization with the
explicit finite difference operators substantially simplifies these calculations. The
corresponding linear equation system is in this case

Vi =2V +B¥i005 € Vi
i=0,..,m~1 i=1..0-1 7
and the (state dependent) coefficients are
jAt 2 1 122 JAt 2
= .=} \4 L o ——— 4,
8= eran IO D YT o TAY =5 Ay (r+o’))  (470)
[where the local consistency conditions
1
olzr At Sm 4.8)

(see Davis and List [4, 5, 6, 7, 8] and the literature mentioned there) have to be satisfied].
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State (j)
Point Point Point
2 0.2) L2 2.2)
v{0.2) v(12) v(2.2)
Point Point Point
1 Q1) LIy @n
¥(8,1) ¥(L1) v(2,1}
Point Point Poiat
0 0,0 1,09) 2.0
v(8,0) v(1,0) v(2,0)
0 1 2 Time (i)
Fig. %a: Finite Difference Method
The parameters
risk - averse _ _  risk-neutral
p,u B, U 4.9)

state evolution state evolution
of a lattice approximation of the bond and stock price dynamics
dx = pxdt + oxdz = rxdt + oxdZ

Eulx(t+a01=xe"  V[x(t+An]=xie™ e 1]
(risk - averse state evolution) (4.10)
E [x(t+At)] = xe™ Y, [x(1+ At)] = x7e™™ [e"”" - 1]

(risk - neutral state evolution)
in a risk-averse and in a risk-neutral financial economy are

c++/c? —4a’ a-d
U=

2a P= u-d @.11)
_ E+fet-4n? _oE-d
u=% p=~ —
23 u-d
where
a=e bz”em‘[e"z‘“ 1] c=a’+b’+
a 3 y (4.12)
F=e¢" bl—em‘[e”‘ 1] T=3+b"+1
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holds.

State (j)
Node
2 pp o3
xuu
Node Node
1 P .n patqp @0
xu xud=xdu
Node Node Node prq=1

Y 0,0y q (1,0 qq Q0 du=ud=1
X xd xdd

0 1 2 Time (i)

Fig. 9b: Lattice Approach

B. Index Options. The Black & Scholes equation for index options is
oo oW Py
a TR T e
where y is the associated constant, continuously compounded, annualized dividend yield [if

dividends were reinvested, then the index would grow from value x(t) at time t to value
x(T)e’™" at time T]. With

—rv=0 (4.13)

102D 4 (r—y+ S xT-)
d,(1) = —=% = 2 d, () =d,()—oVTot  (4.14)

this linear partial differential equation can in the case of futures contracts and European
options be integrated by using a risk-neutral valuation argument. The results are as follows.

Futures (4.15):

F(1) = x(1)et ™
B(t) = g(r-¥XT-0)

¥(=0
§(t) = —-x(t)(r~ y)e(f—yXT~1)
v(t)=0

1 For the risk-neutral pricing formula and the definition of the contingent claim sensitivities (derivatives risk
parameters), see further below (Rubinstein model = generalization of the Black & Scholes model).
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. () = x(t)(T - t)el--+1T-n
p,(1) = =X()(T = )et KT
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Call Option (4.16):

c(t) = x(£)e " TON(d, (1)) - Xe " TIN(d, (1))

3(t) =e TN, (1)
(0 = e TIN'(d, (1)

T OodT—t

8= —f%e"““’N'(d, (1) +yx()e > TIN(d, (1)) - £Xe ™ TIN(d, (1))
u(t) = VT —tx(0)e Y TIN'(d, (1))
p.(t) = (T~ Xe " TIN(d, (1))
p, (1) =—~(T-1)x(t)e™TON(d, (1))

Put Option (4.17):

p(t) = Xe TN (=d, (1)) ~ x(t)e " TIN(~d, (1))
8(1) =" TV[Nd, (1) - 1]
e TIN'(d, (1)
Y0 = edTt

MOC_g-rtr-0: ()~ yx()e " TIN(, (1) + X" IN(-d (1)

Y=

u(t) =T - tx(D)e " TIN'(d, (1)
P, (1) = ~(T~)Xe ™ N(=d (1))
p, (1) = (T~ Dx()e™TON(=d, (1))

In the case of American index options the above Black & Scholes equation can be solved
with numerical techniques, ie., finite difference methods and lattice approaches. A
discretization with the implicit finite difference operators leads to the (tridiagonal) system

av +hv v, =V

i=0,..,m-1 j=1,..,n-1

of linear equations with (state dependent) coefficients
jAt

-
that can easily be solved backwards in time by using the boundary conditions and early
exercise criteria which characterize the given contingent claim v. A discretization with the
explicit instead of the implicit finite difference operators substantially simplifies these
calculations. The corresponding linear equation system is in this case

Vi =8,V 0 v +o,

i1 i+

(4.18a)

2 jAt .
(r~y-c*)) b;=1+At(r+o’f) cJ.=—J—2—(r—y+czj) {4.18b)

i i+l jridipt
4.19
{=0,..,m-1 jeln-1 &9
and the (state dependent) coefficients are
oA TP S 1 S L SR
2= A O T b=y (- TAY o =g oy ety (M19D)

[where the local consistency conditions
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1
P2ir-y| M<———5 (420
o2s] wsn @20
have to be satisfied). The parameters
risk - averse ___ risk-neutral

p, u B, T (421

state evolution state evolution
of a lattice structure approximating the index dynamics
dx = pxdt + oxdz = (r — y)xdt + oxdZ

E, [x(t + AD)] = xe™* V, [x(t+AD]= xzezum[eu*m _ 1]
(risk - averse state evolution) (4.22)
Emix(t + At)] = Xe(r-—y)At V,X[X(t + At)} = xzez(r—y)m[eozm _ 1}

(risk - neutral state evolution)
in a risk-averse and in a risk-neutral financial economy are

c+vc? —4a’ a—d

u P=
-d
2a 9T w2
T+ a7 5=a—§
u= 25 i-d
where
2=t b = e[ ] c=a’+b7+1
~ 4.24
F=elnd g2 em-nm[e«’m ,1] s=aibrey O
holds.

C. Currency Options. The Black & Scholes equation for currency options is
?—V-+(r -1, )xﬂ+9_2_"ii"_
ot ek 2 &
where 1, is the associated constant, continuously compounded, annualized, risk-free foreign
interest rate. With

~rv=0 (425)

x(t) o’
log(—)+(@ -, +—XT-1)
4,(t) =—=X gy 2 d,(t=d () -ovT—t (4.26)

this linear partial differential equation can in the case of futures coniracts and European
options be integrated by using a risk-neutral valuation argument. The results are as follows.

Futures (4.27):

F(t) = x(1)el X
(1) = elXT
() =0
9(t) = —x(t)(r - )e-
u(t)=0
P, () = X(t)(T = t)e ¥
P, (1) = ~x(t)(T - el X1
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Call Option (4.28):

o(t) = x()e " TIN(, (1)) — Xe ™ IN(d, (1))
8(t) = "IN, (D)
(0 = e “TIN'(d, (1)
x()ovT-t
9= ~§):/—(—-%2§——t—e"'(T")N'(dl(t)) +1x(D)e T ON(, (1) - rXe " TIN(d, (1))
u(t) = T = tx(D)e ™ TIN'(d, (1))
p, (1) =(T-t)Xe™TIN(d, (1))

P, (1) =~(T-tx(e ™ IN(d,(1))

Put Option (4.29):

p(t) = Xe TIN(-d, (1)) — x(t)e ™" ON(~d, (1))
8(t) =e ™ ™I[N(d, (1) ~ 1]
e TIN'(dy ()
1= x(t)om
x(t)o

8(1) = —N—Tt——t—c"'(T“)N'(dl(t)) - 1x (e TIN(=d, (1)) + £Xe ™ IN(=d, (1))

u(t) =T - tx(t)e*TIN'(d, (1))
p. (1) = ~(T - ) Xe " TIN(~d, (1))
P, (1) = (T—)x()e ™ TIN(~d, (1)

In the case of American currency options the above Black & Scholes equation can be solved

with numerical techniques, i.e., finite difference methods and lattice approaches. A

discretization with the implicit finite difference operators leads to the (tridiagonal) system
a;vy bV Hevy,, =V

ij+! itij

. 4.30
i=0,..,m-1 }1=1,..,n-1 (4302)
of linear equations with (state dependent) coefficients
jAt jAt ..
a,-:-J-i—(r—rr—czj) b, =1+ Al(r + o7 f%) Cj=—"]2—(r—‘rr+0"_]) (4.30b)

that can easily be solved backwards in time by using the boundary conditions and early
exercise criteria which characterize the given contingent claim v. A discretization with the
explicit instead of the implicit finite difference operators substantially simplifies these
calculations. The corresponding linear equation system is in this case

Vi =8V 0+ 0V € Ve (431a)
i=0,.,m-1 j=hon-1
and the (state dependent) coefficients are
jAt . ) jAt .
a =m(rf—r+czj) b; = 1+rAt(l-o'2fAt) ¢ ‘-:ﬁrm)(r—rf +c’j) (4.31b)

[where the local consistency conditions
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1
2
2lr - At € 55— 4.32
o' 2fr-r] asor—r @32
have to be satisfied}. The parameters
risk -averse _ . risk-neutral 433
P cate evolution p,u state evolution (4.33)

of a lattice structure approximating the foreign exchange rate dynamics
dx = pxdt + oxdz = (r - 1, )xdt + oxdZ

E,[x(t+At)] = xe* Vo [x(t+AD)] = e [e“’z‘“ - 1]
(risk - averse state evolution) (4.34)
Eu[x(t+A0]= x0T, [x(t+A0] = xietenee’s -]

(risk - neutral state evolution)
in a risk-averse and in a risk-neutral financial economy are

c++c’ —4a’ . a-d
= ——

2a u-d
_ o~ {435
T 4T ~_a-d
= P=2"%
25 u—-d
where
a=eHt b’ =C2"A‘[°°IA'—1] c=a’+b’+1
- 4.36
T = e(“fr)m 'EZ = eZ(r—r;)At[eulAt _ 1] T = '52 + bz 1 ( )
holds.

D. Futures Options. The Black & Scholes equation for futures options is
& 2 &
where we assume a relationship F(t) = $(t)e®™ with constant coefficient « between the
futures price F(t) [= x(t) ] and the spot price S(t). With
x(t), o’
log(") + =T~ -
d, ()= d,H=4d,t)~cJT~t (438
(D Py s A =4,(1) (4.38)
this linear partial differential equation can in the case of European options be integrated by
using a risk-neutral valuation argument.

Call Option (4.39):

—rv=0 (437)

oft) =TI x(N(d, (1)) ~ XN(d, (1))]
8(t) = TIN(d, (1))
e “TON'(d, (1)
1= GovT—t
x(t)o
JT-t

()=~ > - e TIN'(d, (£) + (e T IN(d (D) - rXe"(T“’N(dz(t))
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o(t) = VT~ tx(t)e " TIN'(d, (1))
p(t) = (T~ 1)Xe ™ N(d, (1)

Put Option (4.40):

p(t) = ¢ O [XN(=d, (1)) - x()N(=d, (1))
8(t) =e "IN, (1) - 1]
_ETINGE, ()
1= x(t)ovT -t
x(t)o

8() =~ 5 =e " TON'(d,(9) ~ (D™ IN(=d; (1) + £ TIN(=d (1)

(1) = VT - tx(D)e " TON'(d, (1)
p(t) =~(T-1)Xe " ™IN(-d,(t))

In the case of American futures options the above Black & Scholes equation can be solved
with numerical techniques, ie., finite difference methods and lattice approaches. A
discretization with the implicit finite difference operators leads to the (tridiagonal) system

a;vy  +byvy+ovy, =V

i1 i+l

. ] (4.41a)
i=0,..,m-1 j=L.,n-1

of linear equations with (state dependent) coefficients

a;=-057'c’At b;=1+At(r+0’j’) c;=-05j""At (4.41b)

that can easily be solved backwards in time by using the boundary conditions and early

exercise criteria which characterize the given contingent claim v. A discretization with the

explicit instead of the implicit finite difference operators substantially simplifies these

calculations. The corresponding linear equation system is in this case

. V=Vt ijmJ: +CiViLiju (4422)
1=0,...m-1 j=L.,n-1
and the (state dependent) coefficients are
2.2 2 2
joTAt 1 24 Jo At
= = - f L T re——— 4.
G erAn T et O TAD & =gy (4D

[where the local consistency condition
At<l/[c*(n—1)"] (4.43)
has to be satisfied]. The parameters

risk - averse . .. risk-neutral

P, u (4.44)

, U . .
P state evolution state evolution

of a lattice structure approximating the futures price dynamics
dx = pxdt + oxdz = oxdZ

E [x(t+ Af)] = xe" V, [x(t+Af)] = xlelum[ec*m _ 1]
(risk - averse state evolution) (4.45)
B lx@+AD]=x ¥ [x(t+At)]= xz[e.,m _ 1]
(risk - neutral state evolution)
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in a risk-averse and in a risk-neutral financial economy are

_c+w/c2~4az a—d

u p=
-d
22 1T @as)
_ T+4E -4 5:'“‘1
u= 2 i-d
where
" b =82”A'[e°2“—l] c=al+bi+1 wan
a=e - .
Bzz[eﬂ’m_l] T=b2+2
holds.

The Rubinstein Model. The above simple but quite important Black & Scholes model can
immediately be extended to have the following properties (see Rubinstein [18] and Davis and
List [4, 5, 6, 7, 8] for details): (1) The market variable follows a general diffusion process
dx = x[p(t,x)dt + o(t,x)dz]
= x[(r(t,x) — y(t,x))dt + o(t,x)dZ]
which evolves in discrete-time on a recombining binomial lattice structure with parameters
u(t,x) d(t,x) p(t,x) q(t,x) (4.49a)

(4.48)

such that
u(t, x)d(t + At, xu(t, x)) = d(t, x)u(t + At, xd(t, x))
p(t, x)q(t+ At,xu(t, x)) = q(t,x)p(t + At, xd(t, x))
p(t,x) +4(1,x) =1
p(t,x)ut,x) +q(t,x)d(t,x) -1 (4.49b)
u(t,x) =~ A
p(t,x)u(t, x)* +q(t, x)d(t,x)* —[p(t, x)u(t,x) +q(t, x)d(t,x)]?
ot X))~ A

(risk-averse state evolution) and parameters
utx) dtx) BLx) qbx (4508

such that

(L, x)d(t+ At, xii(t, X)) = d(t, K)TU(t + At, xd (1, %))

Bt X)q(t + At XT(t, %)) = (4, )t + At, xd (1, X))

Pt x)+q(Lx) =1
P, R, x) + G, x)d(t,x) — 1 (4.50b)
6 X) - y(6,5) = Bt x)u( X)+;( x)d(t,x)
Bt )Tt %) +G(4,x)d(8, %)” ~[B(t, X)L, %) + Gt 0O
o(t,x)~ A

(risk-neutrai state evolution). (2) Denoting with n(t,x) the number of paths ending in node
(t,x) and with =n(t,x) and 7(t,x) the associated risk-averse and risk-neutral time/state
probabilities we have

n(t+ At xu(t,x)) - w(t+ At xd(, %))
n(t+At,xu(t,x))  n(t+At,xd(t,x))"
_ n(t,x) n(t + At, xu(t,x))

"~ n(t+At, xu(t, x)) (t,x)

7i(t,x) = n(t,x)[
(4.51a)

p(t,x)
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(risk-averse state evolution) and

(L, x) = n(t,x){

7t + At,xu(t,x)) . T(t+ At xd(t,x))
n(t+At,xu(t,x)) n(t+ At,xd(t,x))
B(t.x) = n{t,x) F(t+ At,xu(t,x))
P(t.0) = n(t + At, xu(t,x)) 7(t, %)
(risk-neutral state evolution). Note that
A i-j+lfy i-j+l

n(t,x) =n; = (J) = —j_—(j-l) T e [mo=1] @52

holds and therefore the one step transition probabilities

p(t,x)=p; q(t,x)=q; (risk -averse state evolution)
B(t,x)=P; q(t,x)=0; (risk-neutral state evolution)
and the time/state probabilities
n(t,x)=mn; (risk -averse state evolution)
m(t,x) =%; (risk-neutral state evolution)
can be determined from a corresponding terminal probability distribution
n(T,x)=mn, (risk-averse state evolution)
R(T,x)=7, (risk-neutral state evolution)
by solving equations (4.51a) and (4.51b) backwards in time from i=m-1 to i=0.
Simultaneously solving equations (4.49b) and (4.50b) at each node also leads to the
remaining lattice parameters
u(t,x) =u; d(t,x}=d; (risk-averse state evolution)
U(t,x) =%; d(t,x)=d; (risk-neutral state evolution).
Specifically, we have

(4.51b)

(4.54)

(4.55)

(4.56)

at.x)
p(t,x)
p(t.x)
q(t,%)

u(t,x) = 1+ u(t, x)At + o(t,x) At
(4.57a)

d(t,x) =1+ p(t, x)At - o(t,x), [ ——=At

(risk-averse state evolution) and

Wt %) = 1+r(t, %)~ y(t, O]At + (1, x)"?,gt’ ;At

30,50 = 1+[r(t, X) - y(t, X)JAL ~ (£, %) f’,ﬁt ;At
(risk-neutral state evolution). (3) If U(R) =log(R) is the representative utility of the return
R of a risky investment in equilibrium, then the myopic optimization program

p(t,X)UCE(t, %) +[1 - p(t, )]U((L,x))
u(t x)d(t X} (458)
Pt x)U(L,x) +{I- Bt x)Jd(t,x) = L+[r(t, x) — y(t,x)]At

allows us (KKT first order conditions, see Davis and List {4] and the literature mentioned
there for details) to relate risk-neutral and risk-averse one step transition probabilities, i.e., we
have

(4.57b)

(t,x)
1+[r(t,x) - y(t,x)]At

p(t,x) = p(t,x) (4.59)
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(4) The risk-neutral pricing formula!s is’in this context
LA ). minfe™® BylViagjor + X +1,j+ 1) - 0<i<m-1
v; = max} L(i, j), min[e £,V + X1, D] , UL )] 0
v =F(j) 0<j<m

[note that for standard American options

. max{x; ~X,0] (call)
LG, = _
max[X~x;,0] (put)
is the corresponding intrinsic value] and the contingent claim sensitivities (derivatives risk
parameters) are

8(t,x) ~ p(t,x)
Av
=E.[5/]
. v(t+ At x + Ax) ~ v(t,%) v(t + At,x — Ax) — v(1,X)
O Sy L UL R R

(a.61)

v(t+Atx +A?x) -v(t,x) rq(t9) v(t+At,x —Afx) ~v(t,x)

(4.62a)

(4.62b)
Av

= E(x[—_]
Ax

S(t+ At,x + Ax) - 8(t,x) rq(t,x) S(t + At,x— Ax) —5(t,x)
(x+Ax)-x s (x—AX) —x

y(t,x) =~ p(t,x)
4.62c
=E [A—S] ( )
" Ax
(conditionally expected rates of change) and
v(t+ At x + AX) — v(t + At,x — AX)
(x+ Ax) - (x~ Ax)
S(t+ At,x +Ax) —8(t + At,x — Ax)
(x+ Ax) - (x - Ax)

8(t, %) ~
(4.63)

y{t.x) =

(finite difference method) where
X+ Ax = xu(t,x) x—Ax=xd(t,x) (4.64)
holds. Theta can be defined via the relationship

2 2
80 =Mt 0 -xu(e0860 -2y @6s)

and the approximation
v(t+ At,x +A?x) -v(t,x) +q(t,%) v(t+At,x —Az:x) —v(t,x)

A(t,x) =~ p(t,x)
(4.66)

Av
= Enx [E]
[ xu(t,x)d(t + At,xu(t,x)) # x in general]. (5) A risk-neutral terminal probability distribution
F(T,x) =%, can be determined by solving the quadratic program

15 X (intertemporal cashflows) and F (terminal condition) characterize the contingent claim. L < v <.U are
boundary conditions for its price process (see Davis and List [5, 6, 7, 8] for details). In the simpler Black &

Scholes model considered above, the discount rate T and the risk-neutral transition probabilities P and q,
P+ =1, are constant.
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win Z (o — T’ [Z =1 T2 0]
" - 4.67)
xP <eTINTN g 0 <t of <eTUY E - max(x?, - X, 0] < ch
j=0 j=0
where
dx = (YKt +0xdZ [T, & B G | (468)
is a simple (standard) approximation of the market variable dynamics
dx = x[(r(t,x) - y(t,x))dt + o(t,x)dZ]  (4.69)

and c; and ¢} are the bid and ask prices at time t of European call options with maturity T
and exercise values X, . The market variable itself is also assumed to be the price of a traded
asset (with x* and x* the bid and ask prices, respectively, at time t).

“Catastrophic” Claims Portfolio Securitization. In the final part of this section, we should like
to briefly mention another potentially inferesting area of application for the limited risk
arbitrage (LRA) techniques underlying the Fin Re Toolbox (see Davis and List [4] and the
literature mentioned there for details): the securitization of “catastrophic” non-life
(re)insurance exposures in the capital markets.

One important reason why LRA techniques are very well suited for this kind of application
lies in the fact that they achieve an overall allocation of the asset/liability risks involved
that meets set targets at a reasonable price whereas the otherwise commonly applied
nedging techniques (for the finance part of a securitization program) often unnecessarily
avoid financial risks at an unacceptably high price while the (potentially dominating) risk
exposure on the liability side remains high.

Based upon a risk management target for “Beta” portfolio excess-of-loss probabilities (sec
Fig. 4 above), a corresponding securitization structure might then look as follows (in simple
terms that could be made more precise with some financial engineering, see Davis and
Biithimann, Bochicchio, Junod and List [9, 10, 11] for details):

1. AAA Swiss Re bond with coupon
a.  rfixed = best financial markets conditions
b.  +x variable = linked to performance of underlying risk portfolio
and a maturity schedule that is adapted to the coverage structure of the underlying risk
portfolio, i.e., in the case of “Beta” a maturity of at least 3 years.

2. For tax reasons, (the fixed part r of) the coupon would (at the investor’s discretion)
not actually be payed out, i.e., the bond would be of the deep-discount type.

3. Inthe case of a catastrophic loss in the underlying risk portfolio, the notional principal
of the bond would be transfonmed into a‘long-term loan (i.e., the investor would not
loose any money). With some financial engineering, interest rates at best financial
market conditions could be guaranteed to both sides at the outset.

4. In the case where an existing Swiss Re share-holder participates in such a structure,
the notional principal of the bond could altematively be transformed into Swiss Re
shares at a fixed price (i.e., Swiss Re would not actually have to pay it back).

5. The limited risk arbitrage (LRA) techniques outlined in the publication series (Davis
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and List [4, 5, 6, 7, 8] and Davis and Bithimann, Bochicchio, Junod and List [9, 10, 11])
could be used to effectively expioit any opportunities for arbitrage profits offered by the
global financial markets (disparity in interest rate regimes, exchange rates, etc.).

Note that such a securitization program can also be designed according to specific risk
management requirements (w.r.t. exposures, capital, cashflows, etc.) of a particular client.
Usually, however, securitization (the “back-end” of an alternative risk transfer process) is
completely transparent to “Beta” clients, i.c., Swiss Re takes complete care of the allocation
of (re)insurance risks in the capital markets.

Returning to LRA (advanced Fin Re pricing and portfolio management) techniques now, we
note that the above mentioned financial engineering critically depends upon an efficient
model for interest-rates, stocks and foreign currency which is also reflective of the “Beta”
excess-of-loss probabilities. The main idea is fo start with an interest rate model (as interest
rates are the most significant factor in the above securitization scheme) and to combine
this in a consistent way with a model for stocks / stock indices / currencies (on the same
lattice):

A. Processes.

@  dx(t) = x(t)[pdt + cdz(t)] for stocks, stock indices and currencies
Reference: J.C. Hull, Options, Futures and Other Derivative Securities,
Prentice-Hall 1993
Generalization: M. Rubinstein, Implied Binomial Trees, Joumnal of Finance 49,
771 - 818 (1994)
() dr(t) =[8(t) — (t)r(t)]dt + or(t)* dz(t) for interest rates (volatilities)
Reference: J.C. Hull and A. White, One-Factor Interest-Rate Models and the
Valuation of Interest-Rate Derivative Securities, Journal of Financial
and Quantitative Analysis 28, 235 - 254 (1993)

B. Rubinstein Implied Tree (consistent with Hull & White interest rates).

Stock / Stock Index / Currency Dynamics (as in the Rubinstein model above):

dx(t) = x()]u(t, x(1))dt + o(t, x(1))dz(1)]

4.70
= x(O[(r(t, x(1) ~ y(t, x())dt + (6, X(1)dZ(D)] @70

Interest Rates and Dividend Yields (Ito formula!6):

16 Let y=f(t,x), dx(t)=a(t,x(t))dt+b(t,x(t))dz(t), a(t,x) eR™, b(t,x) eR™". Then (Ito
formulay: dy =[f, +a"V £ +05tr(bb"V2E) Jdt + (V, )" bdz.
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2 2 2
[ (t,x(t»+x(t)u(t,xa»-g’x—(t,x(t»+"—“l‘-’%5@—§x—§(t,x(t»]dt
dr(t) = (4.71a)

+x(t)o(t,x(t»%(t,x(t»dz(t)

2 2 2
[%(t,x(t»«»x(t)u(nx(t»—gy;(t,x(t))+i‘ﬂi%ﬂ§x—§(t,x<t»}dt
dy(t) = 4.71b)
(00, K(0) 2 (1 K(O)2()

Hull & White Interest Rates (comparison of respective drift and diffusion terms):

x*o(t,x)? 8°r

%(t,X)+xu(t,X)%(t,X)+ A 2L (=00 - (0, %)

N “.72)
xo-(t,x)gx-(t, x) = or(t,x)"

Simplification r(t,x) = a + bt + cx +dx?:

b+ xp(t, x)(c +2dx) + x o (t,x)’d = B(t) — d(t)r(t, x)

4.73
xo(t, x)(c +2dx) = or(t, x)? @732

8(t) —¢(Mr(t,x)~b do’r(t,x)**

p(t,x) = 3
x(c ;- 2dx) x(c+2dx) (473b)
o(t,%) = or(t,x)
x(c+2dx)

This defines the stock / stock index / currency evolution (consistent with interest rates). The
simplification y(t,x) = e+ ft + gx then leads to the parameters (initial conditions)

a=r,—cx,—dx; (4.74a)

do’r,”
b ‘—“90 -¢nr0 —puxo(c+2dxo)—a:—;—2?x5—z- (4.74b)
B
=0 _2dx, (4.74c)
OXq

e=y, —gX, (4.74d)

with the remaining model specifications
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19
for r(t,x): ——(t,x)=d; (4.752)
2 x?

for y(t,x): %ty~(t,x) =f %(t, x)=g. (4.75b)

Using this model, the LRA (advanced Fin Re pricing and portfolio management) techniques
presented in this paper can be implemented on a notebook computer with reasonable response
times for both lattice construction and contingent claim (portfolio) evaluation. The
corresponding sophisticated financial/(re)insurance toolbox runs under Windows 3.1, 95, NT
3.51 and NT 4.0 (see Davis and List {6] and Fig. 5 above).

5. A Financial Reinsurance (Fin Re) Toolbox
The Financial Components. In a first step, we focus our attention on Fin Re pricing (rather

than Fin Re hedge portfolio management) and choose simple stochastic models for financial
market state evolution:

(a) the Ho & Lee and extended Cox, Ingersoll and Ross (CIR) models
for short-term interest rates;
(b) the Black & Scholes model for stocks, stock indices and foreign currencies.

Later on, more sophisticated models like the above described combination of the extended
CIR model for interest rates and the Rubinstein model for stocks / stock indices / foreign
currencies can be used together with the LRA module for advanced Fin Re hedge fund
management (see Davis and List [4, 5, 6, 7, 8] and Davis and Bithimann, Bochicchio, Junod
and List [9, 10, 11]).

Modelling Loss Event Contingent Claims. In order to keep the implementation of our Fin Re
pricing models simple, we make the following working assumptions:

(2) loss events arising from the reinsurance part of a Fin Re contract do not affect
the financial market state evolution, i.e., any such effects are limited to the Fin
Re contract itself [the future cashflows of which can therefore, conditional on a
loss event, be modified in accordance with this event and then valued using the
above (unchanged) financial models and risk-neutral valuation techniques];

(b) Fin Re contracts are not traded securities (yet) and are therefore rated with
actuarial techniques, i.e., a loading proportional to the variation of the discounted
(loss event contingent) cashflows of the Fin Re contract across all considered loss
event scenarios is added to the corresponding expected value.

Our Fin Re rating approach is then:
(1) Determination of the financial market parameters relevant in a Fin Re pricing context

(i.e., current term structure of interest rates, volatilities of short-term interest rates, exchange
rates, stocks and stock indices).
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(2)  Calibration of the financial models, i.c., valuation of a characteristic set of benchmark
securities and readjustment of the model parameters if necessary (i.e., if the calculated prices

nea tan for affiha Ahomerad macl-at valiiac)

arc 100 1al U1l ui€ GoSCIvEd MarksS vaiucs).

(3) Determination of the occurrence times and severity of excess-of-loss events under the
reinsurance part of the Fin Re contract (using the above-mentioned EVT Toolbox or some
equivalent actuarial approach, see the concrete example befow and also Fig. 4 above):

TUSS EVENT SCENARIUS
cenario Probabil me of [oss Severity of Loss
1 2 3 1 2 3
T T
{
2 I
[ 4
- ——
-
7 —
8 A
e ——
T .
1

(4) Determination of the corresponding (loss event contingent) cashflow modifications to
the financial part of the Fin Re contract (see the concrete example below):

CASHFLOW IMPLICATIORS'
Toss Event conungent —
Scenario Probability Time of Cashflow Cashflow Modification
1 2 3 1 2 3

!
]

© ol ~4 gl el bl el )

Recall from the above risk-neutral pricing formulas (see also Davis and List [3, 6, 7, 8]) that
the financial part of any Fin Re contract can be uniquely characterized by

(@) acashflow function X(i,});
(b) aterminal condition ¥(j);
(c) two boundary conditions 1.(1,}) < U(4,j).

Contingent on a loss event scenario (row in the above tables), these characteristic
Jfunctions have in a Fin Re pricing context now to be modified (loss event contingent
cashflow modifications) before they are applied in the risk-neutral pricing formula. This is
a consequence of our first working assumption stated at the beginning of this section.
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(5) Risk-neutral valuation of the modified (loss event contingent) financial part of the
Fin Re contract (one valuation per loss event scenario considered). We obtain, conditional on
the loss event scenarios considered, a price forecast (stochastic process) and also forecasts for
the contingent claim sensitivities (i.e., delta, gamma, theta, etc.).

(6) Actuarial rating of the resulting (loss event contingent) Fin Re price distribution. The
loading is determined in accordance with Swiss Re’s Value Proposition (i.e., RAC-based)
pricing principle (see List and Zilch {1] and Geosits, List and Lohner [2]). Furthermore, we
just take the expectations of the contingent claim sensitivity (derivatives risk parameter)
forecasts across all considered loss event scenarios,

6. A Note on Implementation (Example Fin Re Contracts)

In this last section of the paper, we are going to look into the implementation of the above
outlined approach to Fin Re pricing in some detail. Specifically, as a first example, we
consider a 6 year “Beta” bond written on the Oil & Petrochemicals industry (“Beta” target)
portfolio with both coupon and principal (in USD) at risk.

EEL. Second Loss EEL. Second Loss
Reinstatement Reinstatement
¥ ¥
5004 50
Base Coverage Option Base Coverage
to Extend
Property i Property
30 300,
LiahilityJ Liability_}
20 20
t -+ + -
100 200 AGG. 100 200 AGG.

| |
| I
Initial 3 Year Contract Term | Extended 3 Year Contract Term |
i i
T 1

P

1 ] i
t g

1
1 1 L]
/ 0 1 2 3 4 5 Time 6 \

o
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6 Year "Beta” Bond

70.00
60.00
j‘ 50.00
i g 4000
.
& 3000
o
20.00
10.00
0.00 | m
IFixed Payment :
Period
Fig. 10: 6 Year “Beta” USD Bond!”
—§ vear "Beta’ Bond
Notional Frincipal 100,00
Guaranteed Principat 25700
Fixed Coupon 400%
Variable Coupon 6.00%
Feriod Fixed Payment Variable Payment Total Payment
] 4.00 3.07! 12.07
2 400 8.62] . 1262
B 3 4.00 508 9.09]
4 400 5.57] 9.51
5 4.00 7721 1.72
[ 29.00 32.21; R : § W3 |
Price T00.00
Period Payment
1 120
2 128
3 S.08
4 851
5 S R
[ 61727
[internal Rate of Return ] 3.40%

As this (Fin Re / securitization) structure is quite involved, we are going to analyze its key
components in several separate steps:

(1) The Oil & Petrochemicals industry “Beta” target portfolio (i.e., 50 standard coverages
USD 200M xs 300M property and USD 100M xs 200M casualty, see List and Zilch [1] and

17 The above shown variable cashflows of the bond are of course Jjust one realization of its in general
stochastic (i.e., “Beta” portfolio loss evemt contingent) cashflows. So is the internal rate of return (IRR)
shown below.
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Geosits, List and Lohner [2]) has

distributions:

the following one, three

and six year aggregate loss

800.00

1Y AGG Loss Distributions

708,00

6080.00

500.00

400.00

Vaive

30000
200.00

16000

Fig. 1la:

[ ——Bask Scenarm (8P A
! g—Basic Sconario (EAF)
i —a—Adjustment Scenario {RP} |
| —g=Adjustment Scenario (EAP):

1 Year Aggregate Loss Distributions

1600.00
T400.00 ¥
1'200.00
1000.00

B00.00

Value

600.00

Fig. 11b:

3Y AGG Loss Distributions

88%
7%
81%
85%

3 Year Aggregate Loss Distributions
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2500.00

2000.00

1500.00

500.00

099

Fig. 11c: 6 Year Aggregate Loss Distributions
(2) The corresponding loss event scenarios are consequently (in two steps) 18:

8 The number of loss event scenarios (= size of loss categories) is of course determined by the rules
governing their effects on the bond’s (variable) cashflows. In this application, we use USD 100M steps in the 1
year loss event scenarios, USD 200M steps in the 3 year loss event scenarios and USD 300M steps in the 6 year
loss event scenarios. Qur Fin Re pricing toolbox can handle any number of loss event scenarios although, in
practice, only a few are usually needed.
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17 Loss event Scenarios (i)

Basic scenaro ZM PmB)

Base Perlod (1997-1999)

Extendad Agreement Period {2009-2002)}

Basic Scenario (95% Frob.)

Size of Loss |Probability of Loss |Probability of Loss |Size of Loss

Probability of Loss

PFOEBIHW of Loss

{Cond. on Scen.) |{Unconditional) {Cond. onScen.)  {{Uncondkicnal)

0.00 55.00% 5225% 0.00 48.00% 45.60%|
100.00 22.00% 20.90% 1CC.00 24.00% 22.30%)|
200.06 15.00% 14.25% 200.00 17.00% 16.15%,
300.00 5.00% 4.75% 300.00 7.00% B.55%)|
400.00 2.00% 1.90% 400.00 2.00% 1.90%

'500.00 1.00% 0.95% 500.00 1.00% 0.95
600.00 0.00% 0.00%, 600.00 T.00% 0.95%
700.00 0.00% 0.00% 700.00 0.00% 0.00%
800.00 0.00% 0.00% 800.00 0.00% 0.00%
S00.00 0.00% 0.00% 900.00 0.00% 0.00%
1000.00 0.00% 0.00% 1000.00 0.00% 0.00%

Adfustient Sceraro (5% Frob.)

Adjusiment Scenario (5% Prob.)

Size of Loss |Probabilty of Loss |Probability of Loss 1Size of Loss

nee 1Prhabilify of Loces |

Y] il
ey OF LOSS (i TCD20NY CF LO0SS

Fig. 12a:

{Cond. on Scen.)  [(Unconditional) {Cond. on Scen.y |(Uncondifional)
.00 27.00% 1.35% 0.00 12.00% 0.60%!
100.00 24.00% 1.20%)| 100.00 20.00% 1.00%
200.00 23.00% 1.15% 200.00 22.00% 1.10%
300.00 13.00% 0.55% 300.00 18.00% U90%]
400.00 7.00% 0.35% 400.00 13.00% 0.65%
500.00 3.00% 0.15%) 500.00 7.00% 0.35%
600.00 2.00% 0.10%) 600.00 4.00% 0.20%)
700.00 1.00% 0.05% 700.00 2.00% 0.10%
800.00 0.00% 0.00%) 800.00 1.00% 0.05%
900.00 0.00% 0.00% 900.00 1.00% 0.05%
T000.00 0.00% 0.00% 1000.00 0.00%! 0.00%
TY oSS Event Scenarios (1)
Base Perlod (1987-1999) ~ |Extended Agreement Period (2000-2002)
[Size of LOSs  |Probabiiity Of LOSs |Oizé OTLoss — |Probability of Loss |
(Total) (Totan

0.00 53.60% 0.00 46.20%

[ 10X ¢ ] >3 [1)74 10000 23.830%]

200.00 15.40%) 20000 17.25%

300.00 5.40% 300.00 755%

400.00 2.25% 400700 2.55%

500.00 110% 500.00 1.30%

[ T600.00 0.70% 600.00 1.15%

700.0C 0.05% 700.00 0.10%

800.00 0.00% 800.00 0.05%

900.00 0.00% 900.00 0.05%

1000.00 0.00% 1000.00 0.00%

1 Year Loss Event Scenarios
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I Y LGS Event Scenarios (1)
Base Period (1997-1999) Extended Agreement Period (2000-2002)
[Basic Scenano (95% Prob.) Basic Scerano (95% Prob.)
Size of Loss [Probability of Lods |Probability of Loss |Size of Loss [Probability of Loss |Probability of Loss
{Cond. on Scen.) [(Unconditional) (Cond. onScen) |(Unconditional) |
0.00 17.00% 16.15% 0.00 11.00% 10.45%
200.00 44.00% 47.80% 200,00 ~39.00% 3705%]
400.00 27.00% 25.65% 400.00 32.00% 30.40%
600.00 9.00% 8.55% 600.00 13.00% 12.35%
800.00 3.00% 2.85% 800.00 4.00% 3.807
1000.00 0.0U0% 0.00% 1000.060 1.00% 0.95%
1200.00 0.00% 0.00% 1200.00 0.00% 0.00%
1400.00 0.00% 0.00% 1400.00 0.00% 0.00%
1600.00 0.00% 0.00%) 1600.00 0.00% 0.00%|
180000 0.00% 0.00% 1800.00 0.00% 0.00%
2000.00 0.00% 0.00% 2000.00 0.00% 0.00%
|Adjustment Scenario (5% Prob.} Adjustment Scenario (5% Prob.)
Size of Loss |Probability of Loss [Probabi 0ss |Size of [oss [Probability of Loss |Probability of Loss |
{Cond. on Scen.) |(Unconditional) {Cond.on Scen.) |(Unconditional) |
0.0 2.00% 0.10% 0.00 0.00% 0.00%
200.0 17.00% 0.85% 200.00 4.00% 0.20%
400.00 30.00% 1.50% 400.00 15.00% 0.75%
600.00 26.00% 1.30% 600.00 2400% 1.20%
8000C 15.00%] 0.75% 800.00 25.00% 1.25%)
1000.00 7.00% 0.35% 1000.00 16.00% 0.80%]
1200.00 3.00% 0.15% 1200.00 10.00% 0.50%
140000 0.00% 0.00% 1400.00 300% T TTT015%)
| 1600.00 0.00% 0.00%, 1600.00 3.00% 0.15%
1800.00 0.00% 0.00%] 1800.00 0.00% “0.00%]
2000.00 0.00% 0.00% 2000.00 0.00% 0.00%!
3 ¥ LOSS Eveir scenarios (i)
Base Period (1997-1999) [Extended Agreement Period (2000-2002)
[SIZ6 of LOSS . |ProDabnity of Loss |SiZe of Loss Probability of Loss
(Tofal) {Totaly
0.00 16.25% 0.G0 10.45%
| 20000 42 65% 200.00 37 25%
400.00 27.15% 400.00 31.75%;
600.00 9.85%, 600.00 13.55%
8C0.00 3.60% 800.00 5.05%
1000:00 0.35% 1000.G0 1.75%
1200.00 0.75% 1200.00 0.50%
1400.00 0.00% 1400.00 0.15%
1600.00 0.00% 1600.00 0.15%
1800.00 0.00% 1800.00 0.00%)|
2000.00 0.00% 2000.00 0.00%
Fig. 12b: 3 Year Loss Event Scenarios!?

19 Considering one, three and six year (distributions and) loss event scenarios may be useful because
investors might like different maturity investment opportunities in the Oil & Petrochemicals industry “Beta”
Pportfolie. We analyze a 6 year “Beta” bond in detail here; a I year (forward) “Beta” bill and a 3 year
(forward) “Beta” note might however be sensible complementary instruments to consider. Because of the
independence of loss events resulting from the “Beta” portfolio and financial markets events, “Beta” loss
event contingent claims such as the “Beta” bills, notes and bonds mentioned here enhance the risk/return
characteristics of institutional in ! asset allocati f{e.g., Markowitz portfolio selection: efficient
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{ 655 Event Scenarios ‘

Period (1997.2002)

Dasic Scenano (95% Prob.)
SZé of Loss |Probabiity of Loss

ProEaSlﬁfi of Loss

ond. on Scen.) [(Unconditional) |

g.00 2.00% 1.90%

300.00 31.00% 29.45%
600.00 42.00% 39.90%

[ 000.00] 19.00% 18.05%
1200.01 6.00% 5.70%
1500.00 0.00% 0.00%
1800.00 0.00% 0.00%
27100.00 0.00% 0.00%
2400.0 0.00% 0.00%
2700.00 0.00% 0.00%

| 3000.00] 0.00% 0.00%

| Adjustment Scenario (5% Prob.)

Size of Loss [Probability of Loss ™ [Probability of Loss |
ond. on Scen.)  |(Unconditionaly |
0.00 0.00% 0.00%
300.00 0.00% 0.00%
80000 8.00%| 0.40%
900.0 23.00% 115%
1200.00 29.00% 1.45%
1500.00 22.00% T30%
I 1800.00 12.00% 0.60%
2100.00 4.00% 0.20%
2400.00 Z.00% 0.10%
2700.00 0.00% 0.00%
3000.00 0.00% 0.00%
GSS EVent SCenarios
Peniod (1997-2002)
Size of LOSS Probapiity of LOSS |
(Total)

0.00 1.90%

300.00 29.45%

©00.00 40.30%

900.00 19.20%

1200.00 7A5%

1500.00 1.10%

180000 0.60%

2700.00 0.20%:

2400.00 0.10%

2700.00 0.00%

3000.00 0.00%,

Fig. 12c: 6 Year Loss Event Scenarios20

allocation of risk with higher expected returns) and should therefore, from a microeconomic point of view, be

useful instrurments to add to the financial markets,

20 the sequel, we shall focus only on the above 6 year loss event scenarios in our detailed analysis of the Qil

& Petrochemicals industry “Beta” bond. The same principles apply however also to the 1 year “

the 3 year “Beta” note. Futures and options on “Beta” bills, notes and bonds are “Beta” loss event contingent
laims just as the corresponding underlyings and can be analyzed and priced in exactly the same way.
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(3) The cashflow implications are now defined as follows:

T Y Cashilow Impllca[lons

Base Period (1997-1999}

Extended Agreement Period (2000-2002)

In order to keep matters simple for this presentation, we shall interpret the above tables as

Sfollows:
(a)
(b)

394

Stze of Loss |Coupon Principal Size Of LosS | Coupon Principal
0.00 6.00% 100.00 0.00 6.00% 10000
100.00 5.00% 95.00 100.00 5.00% 8500
200.00 4.00% 90.00 200.00 4.00% 90.00
300.00 3.00% 80.00 300.00 3.00% 80.00
400.00 2.00% 50.00 400.00 2.00% 50.00
500.00 1.00% 25.00 500.00 1.00% 25.00
600.00 0.00% 25.00 600.00 0.00% 25.00
700.00 0.00% 25.00 700.00 0.00% 25.00
| 800.00 0.00% 25.00 800.00 0.00% 25.00
900.00 0.00% 25.00 900.00 0.00% 25.00
F000.00 0.00% 25.00 1000.00 0.00% 25.00
3 Y Cashilow Tmphcations
Base Period (1997-1999) Extended Agresment Period (2000-2002)
Size of Loss jLoupon Principal . [Size of Loss jeoupon Principal
0.00 6.00% 100.00 OO0 6.00% 100.00
200000 5.00% 95.00 200.00 5.00% 95.00
400.00 4.00% 90.00 400.00 4.00% 80.00
600.00 3.00% 80.00 600.00 3.00% 80.00]
8G0.00 2.00% 50.00 800.00 2.00%: 50.00
1000.00 1.00% 25.00 1000.00 1.00% 25.00
120000 0.00% 25.00 1200.060 0.00% 25.00
1400.00] 0.00% 2500 1400.00 0.00% 25.00
1600.00 0.00% 25.00 1600.00 0.00% "25.00
1800.00 0.00% 2500 1800.00 0.00% 25.00
2000.00 0.00% 25.00 2000.00 0.00% 25.00
[ 6 Y Cashilow Implcatons |
Period (1997-2002)
Tize of L05s jooupon Principal
0.00 6.00% 100.00
300.00 5.00% 95700}
600.00 4.00% 30.00
900.00 3.00% 80.00
1200.00 2.00% 50.00
1500.00 1.00% 25.00
1800.00 0.00% 25.00
2100.0G 0.00% 25.00
2400.00] 0.00%:! 25.00
2700.00 0.00% 25.00
3000.00 0.00% 25.00

the fixed coupon (i.e., 4%) and the guaranteed principal (i.e., 25.00) are paid on
the respective due dates just as in the case of a straight bill, note or bond;
the adjusted variable coupon (i.e., between 0% and 6%) and the non-guaranteed




principal (i.e., between 0.00 and 75.00) are paid at maturity, depending on the
outcome of the associated aggregate loss (i.c., 1, 3 or 6 year) in the underlying Oil
& Petrochemicals indusiry “Beta” portfolio. Interest rate adjustments for the
coupons are made in order to refléct the time value of money.

(4) Loss event contingent risk-neutral valuation with the extended Cox, Ingersoll and
Ross (CIR) model

dr(t) = [8(t) ~ ¢()r(t) [dt + or(t)° dz(t)
[see (3.42b) above] finally yields:

A. USD Term Structure and Term Structure Volatilities / Model Calibration.

To start with, we note the following USD pields (as of 11 August 1997):

[CIBOR GOV BUNDS SWAPS

o B.5313%|2Y | 5.0640%|2Y B.3050%)|
W 5 5625%|3Y B.09T0%|3Y 5.4250%
™ 5.6563%|5Y 2080%4Y 6.4960%
3M 56406%[7Y B.3400%{5Y 6.5450%
6N’ 5.7656%(10Y 8.3910%|7Y 6.6550%
i\ 5.9243%]30Y 5.6640%T0Y | 6.7650%

The usual cabic spline-interpolation?! then leads to the corresponding USD term structure of
interest rafes:

USD Term Structure
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Interest Rate

56%
54%
5.2%
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SN PEOCINILEEP2IANLILER

Time Period (Years)

Fig. 13: USD Term Structure of Interest Rates

21 Note also the more sop
income securities (p. 24 - 27).

{ approaches to term estimation outlined in the section on fixed
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We choose the bond yield curve for our application and note secondly the associated yield
volatilities (as of 11 August 1997)

[GOVT BONDS ]
zY 22.9000%
) 24.5000%
5Y 25.0000%)
7Y 25.5000%
10Y 24.0000%
30Y 21.0000%

which we translate into a monthly USD ferm structure of interest rate volatilities

USD Term Structure Volatility
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|
Fig. 14: USD Term Structure of Interest Rate Volatilities

with the same cubic spline-interpolation approach as above. As a final step, we choose
B =052 and ¢ =4.25% . Note that any model calibration should

(a) always also incorporate future market expectations?, not just historically
estimated quantities;

(b) include a sensitivity analysis (i.e., how sensitive are securities prices and risk
parameters with respect to changes in the model parameters).

With the above input, the Fin Re Toolbox calculates the 6 Y “Beta” bond’s price process and
the corresponding risk parameter processes (on an expected value basis across loss event

2 B=05 seems to be a good parameter choice for the US Treasury market also according to various
empirical studies fooking into the application of the extended CIR model in various bond markets world-wide.
233 We are grateful to Dr. Dellsperger and his team at Credit Suisse Asset Management for helping us out on
this rather difficult task.
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scenarios) as follows [BND = 6 Y “Beta” bond, ECB = 1 Y European call optionon the 6 Y
“Beta” bond with (loss event contingent) option strike = bond principal].

B. Bond Price Process.

Risk Management Report (Expectations)
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D. Delta.

Time Value

Delta

Risk Management Report (Standard Deviations)
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E. Gamma.

Gamma
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F. Theta.
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Risk Management Report (Standard Deviations).
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In order ‘o be consistent with Swiss Re’s Value Proposition approach, we choose
K = K ons petsochemicals sy = 16324 (3'Y) (which is equivalent to a RORAC of r=65% (p.a.)
for the Oil & Petrochemicals industry “Beta” target portfolio, sedf List and Zilch [1] and
Geosits, List and Lohner [2]). The Fin Re Toolbox then calculates the actuarial prices of the
6 Y “Beta” bond (BND) and the associated 1 Y European and American call and put
options (ECB, EPB, ACB, APB) with loss event contingent strikes at the level of the “Beta”
bond’s principal as follows:

instrument Priciog
Contingent Claim Price txpectation | Standard Deviation Actuarial Price
~BND 93.2835 18.4151 16324 123.3444
ECB 6.1377 3.3990 1.6324 11.6862
EPB 0.1850 0.3537 1.6324 0.7625
ACB 12.1156 5.1580 1.6324 20.5356
APB 0,1914 0.3871 1.6324 0.8232

As a second example, we now consider the case of an excess-of-loss financial reinsurance
contract having the attachment point linked to some predefined financial index 1. The
index under consideration can either be an already quoted index such as the Nikkei 225 or the
S&P 500 or then a “tailor-made”, customized index built up with stocks, bonds or a
combination of the two. As an illustration, consider the figure below showing the evolution of
the Nikkei 225 stock index over the past twenty-five years:
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Fig. 15: Nikkei 225 Index Over the Past Twenty-five Years

Let now A(I) be the financially linked attachment point, C the reinsurance cover and L the
aggregate loss incurred during the contractually agreed time period. Then the excess-of-loss
contract puts the reinsurer under the obligation to pay the policy holder a contingent claim of

X(L,L) = min|max(L - A(D,0).C].  (6.1)
Verbally, this means that at maturity of the contract the reinsurer pays for the total loss in
excess of A(T) with a coverage limit of C. In order to get a basis for the determination of the
contract’s premium?4, the expected value of the final cashflows given by
E=E,[XQD]=EXCLLL] ¢2)
is needed. Here, the subscripts on E mean that the expectation is taken with respect to the
bivariate distribution of both I and L. But as stated in the working assumptions in section 5
of the paper, loss events arising from the reinsurance part of the contract do rot affect the
financial market state evolution. This then implies in our current setting stochastic
independence between the index I and the aggregate loss L and thus the expectation
operator E,, {-] “factorizes” as follows:

E [I=EJ[E[L]. 63
This fact enables us to rewrite the expected value E needed for an actuarial rating of the
excess-of-loss contract in the form
E=E[E[XQLIL]. 64

This last formula now tells us that the calculation of the expected part of the contract’s
premium. may be interpreted as a firancial pricing of the loss event contingent cashflow
X(1,L). Therefore, at this point, we are again in the same framework as the one outlined in
our Fin Re pricing approach in section 5 and in the first example (6 Y “Beta” bond) of this
section. We conclude this section by pointing out an interesting link between excess-of-loss
contracts and opfion theory. If we graph the final payoff of the (“dual-trigger”) contingent
claim X(I,L), we get:

24 ‘The actuarial rating approach is as in the above example of the 6 Y “Beta” bond and the associated 1 Y
European and American call and put options.
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Final payoff
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AT Total loss

Fig. 16: Excess-of-Loss Contract in Options Theory Framework

This payoff pattern is very interesting because it makes quite obvious the identity
X(I,L) = max(L ~ A(1),0)~ max(L - [A(]) + C1,0)

= max(L — A(1),0) - max([L - C]- A(1),0). €3
From this identity we can conclude that for any fixed level of aggregate loss L the final
payoff corresponds to the one of a combined long and short position in a European put option
both with the underlying market variable A(f) and strike prices given, respectively, by L
and L~C. In financial option theory, this strategy corresponds to a bull spread with
Stochastic strike prices. Keeping in mind that financial point of view, the problem of pricing
an excess-of-loss contract can therefore be reformulated as the problem of pricing European
put options with stochastic strike prices (see the “Beta” bond options above).
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