

Overview

- · Chain ladder loss reserving algorithm
 - Which statistical models generate it by maximum likelihood?
 - What is the bias of their forecasts?
 - How efficient are their forecasts?

© 2010 The Actuarial Profession • www.actuaries.org.

1

Chain ladder algorithm

Claims reserving trapezium

Chain ladder algorithm

- Chain ladder as described is an intuitive algorithm
- But not a statistical model
- Is the algorithm generated by any genuine models?
 - In fact there are two known families of models that do so

2010 The Actuarial Profession • www.actuaries.org.

Chain ladder models - recursive

- Mack model (Mack, 1993)
 - (M1)Accident periods are stochastically independent, ie $Y_{k_1j_1}, Y_{k_2j_2}$ are stochastically independent if $k_1 \neq k_2$.
 - (M2) For each k = 1, 2, ..., K, the X_{kj} (j varying) form a Markov chain.
 - (M3) For each k = 1, 2, ..., K and j = 1, 2, ..., J 1, $E[X_{k,j+1} | X_{kj}] = f_j X_{kj}$ for some parameters $f_j > 0$.

 $Var[X_{k,j+1}|X_{kj}] = \sigma_j^2 X_{kj}$ for some parameters σ_j .

Parameters f_i are referred to as age-to-age factors

Recursive because each observation depends on predecessor in same

Chain ladder models - recursive (2)

- Mack model is distribution free
- · A distribution is needed to discuss:
 - Maximum likelihood estimates
 - Forecast efficiency, i.e. forecast error relative to its minimum over all forecasts
- We would like the family of distributions available to be fairly general

2010 The Actuarial Profession • www.actuaries.org.u

Exponential dispersion family of distributions

· EDF likelihood is

$$\ell y, \theta, \phi = [y\theta - b \theta]/a \phi + c y, \phi$$

where

- $-\theta$ is a location parameter (the **canonical parameter**)
- φ is a dispersion parameter (the scale parameter)
- a, b and c are functions with:
 - a continuous
 - b differentiable and one-one
 - c such as to produce a total probability mass of 1
- Properties
 - $E[Y] = \mu = b'(\theta)$ $Var[Y] = a(\phi) b''(\theta) = a(\phi) V(\mu)$

°2010 The Where "∀(µ) is called the variance function

Sub-families of the EDF

- EDF
 - $Var[Y] = a(\phi) V(\mu)$
- Tweedie family
 - $-a(\phi) = \phi$
 - V(μ) = μ ^p, p≤0 or p≥1

p=0: normal

p=1: (over-dispersed) Poisson

1.5 < p < 2: compound Poisson

p=2: gamma

p=3: inverse Gaussian

- Over-dispersed Poisson (ODP) family
 - Tweedie with p=1, i.e. $Var[Y] = \varphi \mu$

2010 The Actuarial Profession • www.actuaries.org.u

Back to recursive chain ladder models

Mack model was distribution free

Equip it with a distribution from the EDF to obtain **EDF**Mack model

- (M1) Accident periods are stochastically independent, ie $Y_{k_1j_1}, Y_{k_2j_2}$ are stochastically independent if $k_1 \neq k_2$.
- (M2) For each k = 1, 2, ..., K, the X_{ki} (j varying) form a Markov chain.
- (M3) For each k=1,2,...,K and j=1,2,...,J-1, $E\left[X_{k,j+1} \mid X_{kj}\right] = f_j X_{kj} \text{ for some parameters } f_j > 0.$ $Var\left[X_{k,j+1} \mid X_{kj}\right] = \sigma_j^2 X_{kj} \text{ for some parameters } \sigma_j$

© 2010 The Actuarial Profession • www actuaries oro ut

Back to recursive chain ladder models

- Mack model was distribution free
 - Equip it with a distribution from the EDF to obtain **EDF**Mack model
 - **(EDFM1)** Accident periods are stochastically independent, ie $Y_{k_1j_1}, Y_{k_2j_2}$ are stochastically independent if $k_1 \neq k_2$.
 - (M2) For each k = 1, 2, ..., K, the X_{kj} (j varying) form a Markov chain.
 - (M3) For each k=1,2,...,K and j=1,2,...,J-1, $E\left[X_{k,j+1} \mid X_{kj}\right] = f_j X_{kj} \text{ for some parameters } f_j > 0.$ $Var\left[X_{k,j+1} \mid X_{kj}\right] = \sigma_j^2 X_{kj} \text{ for some parameters } \sigma_j$

2010 The Actuarial Profession • www.actuaries.org.u

Back to recursive chain ladder models

- Mack model was distribution free
- Equip it with a distribution from the EDF to obtain **EDF**Mack model
 - (EDFM1) Accident periods are stochastically independent, ie $Y_{k_1j_1}, Y_{k_2j_2}$ are stochastically independent if $k_1 \neq k_2$.
 - **(EDFM2)** For each k = 1, 2, ..., K, the X_{kj} (j varying) form a Markov chain.
 - (M3) For each k = 1, 2, ..., K and j = 1, 2, ..., J 1, $E\left[X_{k,j+1} \mid X_{kj}\right] = f_j X_{kj} \text{ for some parameters } f_j > 0.$ $Var\left[X_{k,j+1} \mid X_{kj}\right] = \sigma_j^2 X_{kj} \text{ for some parameters } \sigma_j$

© 2010 The Actuarial Profession • www actuaries or out

Back to recursive chain ladder models

- Mack model was distribution free
- Equip it with a distribution from the EDF to obtain **EDF**Mack model
 - **(EDFM1)** Accident periods are stochastically independent, ie $Y_{k_1j_1}, Y_{k_2j_2}$ are stochastically independent if $k_1 \neq k_2$.
 - **(EDFM2)** For each k = 1, 2, ..., K, the X_{kj} (j varying) form a Markov chain.
 - **(EDFM3)** For each k = 1, 2, ..., K and j = 1, 2, ..., J 1, $E[X_{k,j+1} | X_{kj}] = f_j X_{kj}$ for some parameters $f_j > 0$.

 $Var[X_{k,j+1}|X_{kj}] = \sigma_j^2 X_{kj}$ for some parameters σ_j

$$Y_{k,j+1} \mid X_{kj} \sim EDF \ \theta_{kj}, \phi_{kj}; a,b,c$$

for some functions a, b, c that do not depend on j and k

D 2010 The Actuarial Profession • www.actuaries.org.u

Proof of MVU property

- · By means of Lehmann-Scheffé theorem
 - Find sufficient statistics
 - Different for recursive and non-recursive cases
 - Prove completeness of family of admissible distributions

2010 The Actuarial Profession • www.actuaries.org.

Summary of results

Model	Chair	n ladder al	gorithm is
	MLE?	Unbiased?	MV?
Recursive:			
Distribution-free	n/a	Y	
EDF	Y*	Y	Binomial, negative binomial or ODP*
Non-recursive:			
ODP	Y	N	Y*
Other	N	N	

^{*} Indicates that some further assumption is required

© 2010 The Actuarial Profession • www.actuaries.org.u

Questions or comments?

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

8 2010 The Actuarial Profession • www.actuaries.org.u