



3

## **Workshop Outline**

- Introduction
- Approach to Validation Report
- Case Study I: Large Loss Parameters
- Case Study II: Dependencies and Diversification
- Questions and Discussion

## **Workshop Outline**

- Introduction
- Approach to Validation Report
- Case Study I: Large Loss Parameters
- Case Study II: Dependencies and Diversification
- Questions and Discussion







| "Validation is onerous" |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|-------------------------|-------------|------------|--------------------------------------------------------------------|------------------|--------------------------------------------------------|---------------------|--------|----------------------------------------------------------------------------------------------------------|
| ontrol                  | Control Ref | Validation | Validation Component                                               | Control Type     | Description                                            | "Validation Tool"   | Pass / | Comment                                                                                                  |
| 1                       | UR_UKL_LL1  | UW Risk    | UK Liability                                                       | Data             | Check that parameters                                  | Manual check        | Pass   |                                                                                                          |
| 2                       | UR_UKL_LL   | UW Risk    | - Large Loss Parameters<br>UK Liability                            | Parameterisation | imported correctly<br>Check large loss curve           | Sense-check         | Pass   | Curve not much different from last time.                                                                 |
| 3                       | UR_UKL_LL3  | UW Risk    | - Large Loss Parameters<br>UK Liability<br>- Large Loss Parameters | Parameterisation | Check fitted curve<br>against historical<br>experience | Backtest            | Pass   | Limited data, but data does not invalidate<br>curve (no observations outside 90%<br>confidence interval) |
| 4                       | UR_UKL_LL4  | UW Risk    | UK Liability<br>- Large Loss Parameters                            | Parameterisation | Judgemental analysis                                   | Qualitative opinion | Pass   | Parameterisation gives a 1-in-10 loss of \$5m.<br>Seems reasonable.                                      |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
| 1000                    |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        |                                                                                                          |
|                         |             |            |                                                                    |                  |                                                        |                     |        | _                                                                                                        |











# Scope of Opinion

Opinion on overall capital

## Lloyd's:

"...the SCR is calculated in line with applicable regulations and is not materially mis-stated"

 Precise wording of opinion at discretion of managing agent, but "positive assurance" required

- ...subject to various caveats around uncertainty

## Controversial

- Mis-stated? Mis-estimated?
- Prudence allowable? Not materially understated?





17

# Independence & Objectivity

Aspen approach

- Validation Report co-authored by:
  - Risk Management (signed by Group Head of Risk)
  - Internal Audit (signed by Group Head of Internal Audit)
- Independent opinion is expressed
  - ...but relies on non-independent validation activity
- Even then, achieving true independence is not possible for all areas
  - Rely on demonstrating objective challenge
  - Rely on professionalism
  - Disclosure where opinion is not "independent"

© 2011 The Actuarial Profession • www.actuaries.org.uk

## Independence & Objectivity

Further considerations

## Independence vs. Objectivity

- Is demonstrating objectivity sufficient?
- Independence vs. level of understanding
  - As independence increases, is validation less rigorous?

## Independence over time

 What happens when non-independent individuals change role?





| <b>STEP 3: Identify Material Sources of Risk</b> |
|--------------------------------------------------|
| Summary of Capital by Risk Type                  |

(All numbers in this section are fictitious, and are for illustrative purposes only)

|                                                              | Standalone Capital<br>(\$000s) | as %  |
|--------------------------------------------------------------|--------------------------------|-------|
| Insurance Risk                                               | 1,400                          | 70%   |
| Underwriting Risk                                            | 1,000                          |       |
| Reserving Risk                                               | 600                            |       |
| Diversification Credit                                       | (200)                          |       |
| Asset Risk                                                   | 300                            | 15%   |
| Counterparty Default Risk                                    | 100                            | 5%    |
| Reinsurers                                                   | 80                             |       |
| Premium Debtors                                              | 40                             |       |
| Diversification Credit                                       | (20)                           |       |
| Operational Risk                                             | 200                            | 10%   |
| TVaR 99% Economic Capital (Undiversified between Risk Types) | 2,000                          | 100%  |
| Total Diversification Credit between Risk Types              | (400)                          | (20%) |
| TVaR 99% Economic Capital (Diversified between Risk Types)   | 1,600                          |       |

# STEP 3: Identify Material Sources of Risk Summary of Capital by Class

|   |                        | Economic<br>Capital Metric | as %  | Capital<br>Allocation<br>Metric | as %  |
|---|------------------------|----------------------------|-------|---------------------------------|-------|
| Γ | Class 1                | 25,000                     | 2%    | 6,000                           | 2%    |
|   | Class 2                | 60,000                     | 5%    | 17,000                          | 6%    |
|   | Class 3                | 100,000                    | 9%    | 25,000                          | 9%    |
|   | Class 4                | 170,000                    | 15%   | 48,000                          | 18%   |
|   | Class 5                | 130,000                    | 12%   | 30,000                          | 11%   |
|   | Class 6                | 105,000                    | 9%    | 28,000                          | 10%   |
|   | Class 7                | 160,000                    | 14%   | 31,000                          | 11%   |
|   | Class 8                | 80,000                     | 7%    | 23,000                          | 9%    |
|   | Class 9                | 40,000                     | 4%    | 6,000                           | 2%    |
|   | Class 10               | 90,000                     | 8%    | 18,000                          | 7%    |
|   | Class 11               | 60,000                     | 5%    | 14,000                          | 5%    |
|   | Class 12               | 80,000                     | 7%    | 14,000                          | 5%    |
|   | Class 13               | 20,000                     | 2%    | 10,000                          | 4%    |
|   | Total - undiversified  | 1,120,000                  | 100%  | 270,000                         | 100%  |
|   | Diversification Credit | (448,000)                  | (40%) | (94,500)                        | (35%) |
|   | Total - diversified    | 672,000                    |       | 175,500                         |       |

21

## **STEP 3: Identify Material Sources of Risk** Capital Contribution by Loss Type

|          |                            | Relative Contribution to TVaR 99% |                       |       |         |  |  |
|----------|----------------------------|-----------------------------------|-----------------------|-------|---------|--|--|
|          | TVaR 99%<br>(Total Losses) | Attritional                       | Large<br>(exc. Clash) | Clash | Nat Cat |  |  |
| Class 1  | 30,000                     | 18.0%                             | 16.4%                 | 65.6% | 0.0%    |  |  |
| Class 2  | 140,000                    | 59.4%                             | 39.1%                 | 1.5%  | 0.0%    |  |  |
| Class 3  | 160,000                    | 15.2%                             | 60.1%                 | 0.9%  | 23.8%   |  |  |
| Class 4  | 350,000                    | 23.2%                             | 71.7%                 | 0.3%  | 4.8%    |  |  |
| Class 5  | 220,000                    | 26.4%                             | 53.8%                 | 19.8% | 0.0%    |  |  |
| Class 6  | 150,000                    | 2.8%                              | 97.2%                 | 0.0%  | 0.0%    |  |  |
| Class 7  | 200,000                    | 5.7%                              | 94.2%                 | 0.1%  | 0.0%    |  |  |
| Class 8  | 120,000                    | 0.0%                              | 98.9%                 | 1.1%  | 0.0%    |  |  |
| Class 9  | 60,000                     | 15.6%                             | 9.0%                  | 0.2%  | 75.2%   |  |  |
| Class 10 | 115,000                    | 5.0%                              | 93.2%                 | 1.8%  | 0.0%    |  |  |
| Class 11 | 100,000                    | 100.0%                            | 0.0%                  | 0.0%  | 0.0%    |  |  |
| Class 12 | 90,000                     | 10.6%                             | 89.4%                 | 0.0%  | 0.0%    |  |  |
| Class 13 | 20,000                     | 2.7%                              | 97.3%                 | 0.0%  | 0.0%    |  |  |



# STEP 4: Detailed Validation by Risk Area General Approach

- Overall Methodology
  - High-level summary of method
  - Opinion: overall approach suitable / fit for purpose?

## Key Assumptions / Judgements

- Itemise key assumptions / judgements
- Opinion (two-fold):
  - Appropriateness
  - Significance of assumption / judgement to capital

## · Detailed review of parameters (if relevant)

- Summary approach to parameterisation
- Review of specific calibrations / selections
  - Backtesting / Sensitivity testing / Qualitative opinions etc.
- Opinion: overall assessment of suitability of parameters
- Overall Opinion on Risk Area

# **STEP 4: Detailed Validation by Risk Area** "Hierarchy" of Opinion

| Class     | Summary Observations                                                                                             | Rating |
|-----------|------------------------------------------------------------------------------------------------------------------|--------|
| [Class 1] | Overall method / parameters appropriate                                                                          | Green  |
|           | Improvements noted, which could enhance modelling of reinsurance recoveries to class                             |        |
| [Class 2] | Overall method / parameters appropriate                                                                          | Green  |
|           | Improvements noted, which could reduce capital allocated to class                                                |        |
| [Class 3] | Overall method appropriate, but selected parameters could materially understate standalone capital for the class | Amber  |
|           | Improvements noted, which would increase the appropriateness of allocated capital for the class                  |        |
| etc       |                                                                                                                  |        |

| OVERALL           | Overall method / parameters appropriate                                                                                                                                                                                                                   | GREEN |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| GROSS<br>U/W RISK | Improvements noted, which could enhance modelling for purposes other than<br>determining regulatory / economic capital. N classes are rated Amber, but these are<br>collectively not material to the overall economic capital, as per earlier "heat map". |       |
|                   |                                                                                                                                                                                                                                                           |       |
|                   |                                                                                                                                                                                                                                                           | 2     |





- Particularly important for assumptions / judgements identified to have significant impact
- Highly instructive in communicating reliance on certain assumptions and overall level of uncertainty in regulatory / economic capital
- · Identifies key drivers of capital in the model
- Gives confidence that capital is not materially misestimated
- (Note certain assumptions may be judged to be entirely appropriate, but nonetheless have significant uncertainty associated with them)

# STEP 7: Summary of Findings, Conclusions, Recommendations Revisit findings by area "Top-down approach" likely to be easiest to communicate Order (approximately) by descending importance



## Case Study Underwriting Risk Parameters

- Gross losses made up of:
  - Natural catastrophes
  - Man-made catastrophes / "clash" losses
  - (Per risk) large losses (< \$1m)</p>
  - Attritional losses
- Walkthrough showing previous approach applied in practice for a particular important and "controversial" liability class of business
- Proportionality must be applied: would not expect to analyse all ~50 classes to the same level of detail!



# Large / Attritional Parameterisation Key Assumptions

| Assumption                                       | Description                                                                                                                                                                                                                                            | Appropriateness | Significance to<br>Class |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|
| Planned 2012 Limits /<br>Attachments Profile     | Planned limits / attachments profile representative of business actually written over the projected year.                                                                                                                                              | Blue            | High                     |
|                                                  | We believe this to be an appropriate assumption, but note that it is a highly material reliance of our modelling.                                                                                                                                      |                 |                          |
| Choice of ILFs                                   | Assumption that the choice of ILFs made by pricing actuaries are<br>appropriate and representative of the nature of the underlying<br>risks.                                                                                                           | Blue            | Medium                   |
|                                                  | The significance of the selection of the ILFs diminishes for<br>exposures written at higher attachments, which are more likely to<br>give rise to limit losses driving the tail of the distribution.                                                   |                 |                          |
| etc                                              | etc                                                                                                                                                                                                                                                    |                 |                          |
| etc                                              | etc                                                                                                                                                                                                                                                    |                 |                          |
| Poisson claims<br>frequency for each<br>contract | The assumption of a Poisson distribution for claims frequency is<br>generally considered to be an appropriate model where claim<br>frequency is expected to be low, with claims occurring<br>independently and at a constant rate, as is the case here | Blue            | Low                      |

# Large / Attritional Parameterisation Key Judgements

| Assumption                                                   | Description                                                                                                                                                                                                                                                                                                                                                          | Appropriateness | Significance<br>to Class |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|
| Selection of Negative<br>Binomial distribution               | Judgemental selection of Negative Binomial distribution to<br>allow for clustering of large losses.                                                                                                                                                                                                                                                                  | Blue            | Medium                   |
| for Large Loss<br>Frequency                                  | This is a prudent assumption, which we consider to be more appropriate than Poisson.                                                                                                                                                                                                                                                                                 |                 |                          |
| Selection of Negative<br>Binomial Distribution<br>Parameters | Judgemental selection of the variance parameter of the<br>Negative Binomial distribution as a percentage of the<br>mean. Initial backtesting indicates that this is likely to be<br>an appropriate assumption.                                                                                                                                                       | Blue            | Medium                   |
| etc                                                          | etc                                                                                                                                                                                                                                                                                                                                                                  |                 |                          |
| Estimation of Mean<br>Attritional Loss Ratio                 | The sensitivity of this assumption is likely to be immaterial<br>to capital, but impacts large loss frequency (as overall loss<br>ratio must reconcile back to plan). Could therefore<br>potentially affect capital allocation. The judgements in<br>relation to the mean attritional loss ratio set out in the<br>class-specific parameter reviews in next section. | Green           | Low                      |
|                                                              | Recommendation: future sensitivity testing of these assumptions for capital allocation / reinsurance modelling.                                                                                                                                                                                                                                                      |                 |                          |









39

# **Workshop Outline**

- Introduction
- Approach to Validation Report
- Case Study I: Underwriting Risk Parameters
- Case Study II: Dependencies and Diversification
- Questions and Discussion

## **Case Study** Dependencies and Diversification Credit

- Diversification credit is a material component in capital calculation
  - 2<sup>nd</sup> greatest source of (anti-)risk according to earlier capital breakdown
- Diversification credit arises where risks are not 100% correlated
- Therefore we need to assess the validity both of:
  - Modelled dependencies
  - Unmodelled dependencies
- Suggests the need for a dual approach to validation:
  - Bottom-up
    - Are the modelled dependencies, copulas, drivers etc. appropriate?
  - Top-down
    - Is the level of diversification observed appropriate?
    - Useful to compare diversified vs. undiversified risk at multiple levels of granularity



# <section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

## **"Bottom-Up" Approach** Testing Correlation Coefficients

- 50 x 50 correlation matrix  $\rightarrow$  1225 correlation coefficients
- May need to define "rules" to calibrate High / Medium / Low
- Assessment of High / Medium / Low
  - Highly judgemental
  - Important to get risk management input
- · How material are these assumptions?
  - "Block" sensitivity tests

(a) Set all correlation coefficients between classes to 0% Capital reduced by 19%

(b) Add 10% to all non-zero correlation coefficients between classes Capital increased by 3%

## **"Bottom-Up" Approach** Testing Copulas

- "Expert judgement" is the only reasonable means by which copulas can be selected and calibrated
- Judgement can be elicited by polling underwriters / subject matter experts
  - Based on "return period" implications of a given copula
    - ...but increasingly tenuous as return period increases above 1-in-100
  - Based on "joint exceedance probabilities"
    - P(X > a | Y > b)...but expressed in real-world terms:
    - e.g. Credit & Political Risk:

"Selecting 5 degrees of freedom for t-copula increases the probability that 5 US risks default by around 20 times, given severe defaults from Egypt or Ukraine. This may be excessive, based on the limited nature of trade links between the US and these countries."

43

## "Bottom-Up" Approach Further Sensitivity Testing

- Aggregation between risk types
  - Full independence assumed: capital decrease of ~25%
  - Perfect positive dependence assumed: capital increase of ~ 11%
- Suggests prudent basis of aggregation

## "Bottom-Up" Approach Testing Causal Drivers

- Test:
  - Observe empirical linear / rank correlations between classes / risk types
  - "Switch off" all statistical dependencies between classes and repeat the above
  - Difference in observed correlation statistics is the impact of the causal drivers
- Judgemental assessment of the appropriateness of any causal effects
  - And identification of any notable omissions
  - ...link to Stress & Scenario Testing

45

# <section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

# Workshop Outline Introduction Approach to Validation Report Case Study I: Underwriting Risk Parameters Case Study II: Dependencies and Diversification Questions and Discussion

