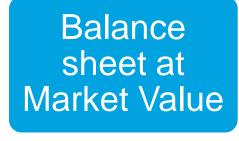
How to estimate Risk Margins under IFRS

Jessica Leong, FIAA, FCAS, MAAA Lead Casualty Specialty Actuary

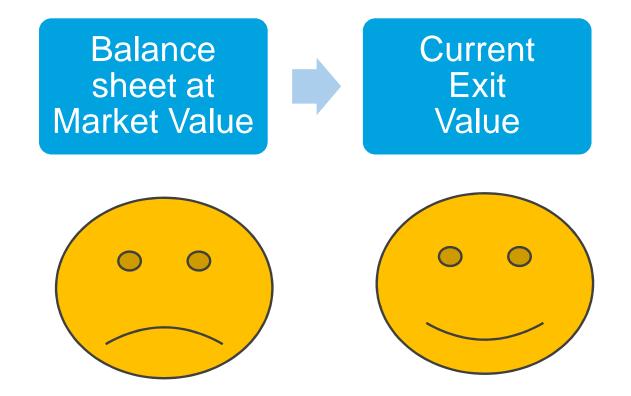
- 1. Overview
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II

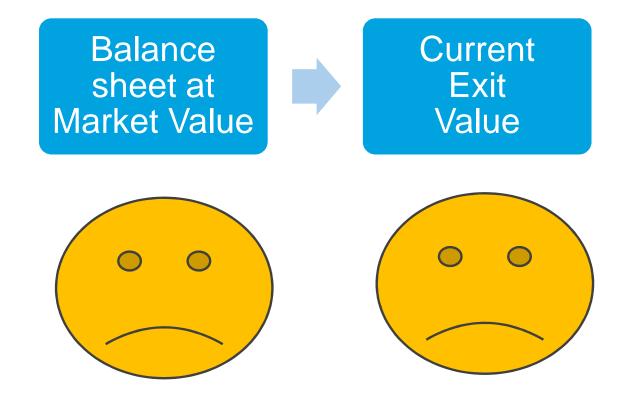
- 1. Overview
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II

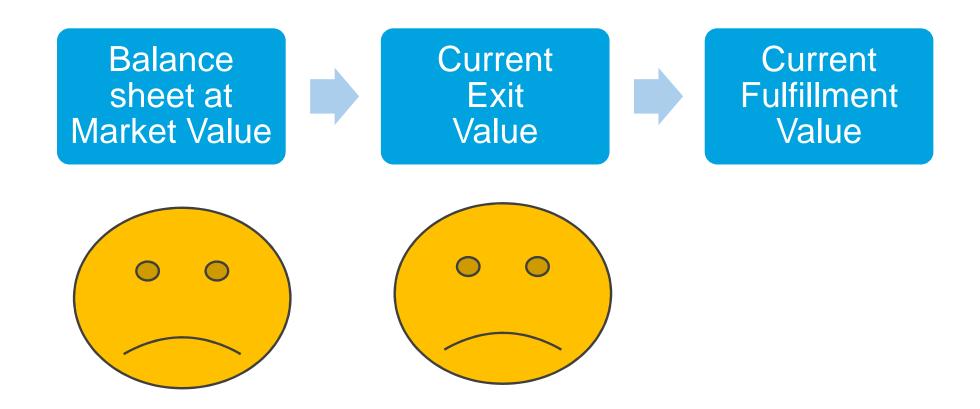
Balance sheet at Market Value

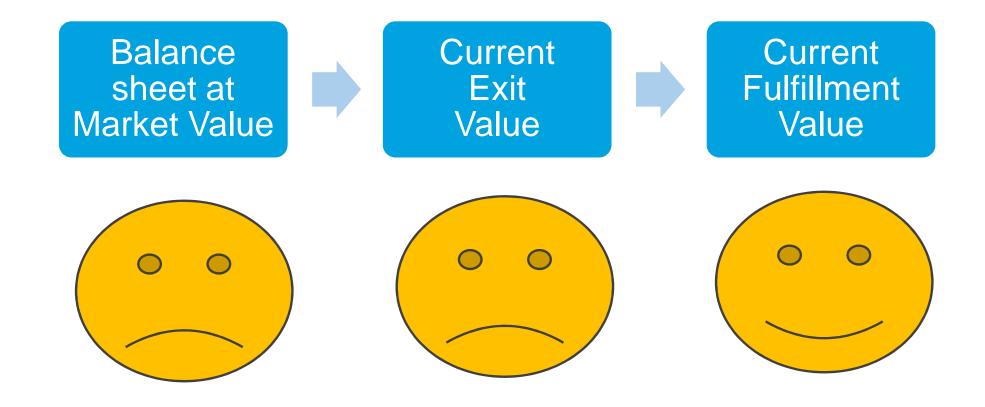

Balance sheet at Market Value

Balance sheet at Market Value








Current Exit Value

Central
Estimates of
Liabilities

Discount

Central
Estimates of
Liabilities

- 1. Overview
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

Three methods to estimate Risk Margins

- Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

Three methods to estimate Risk Margins

- Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

Cost of Capital method

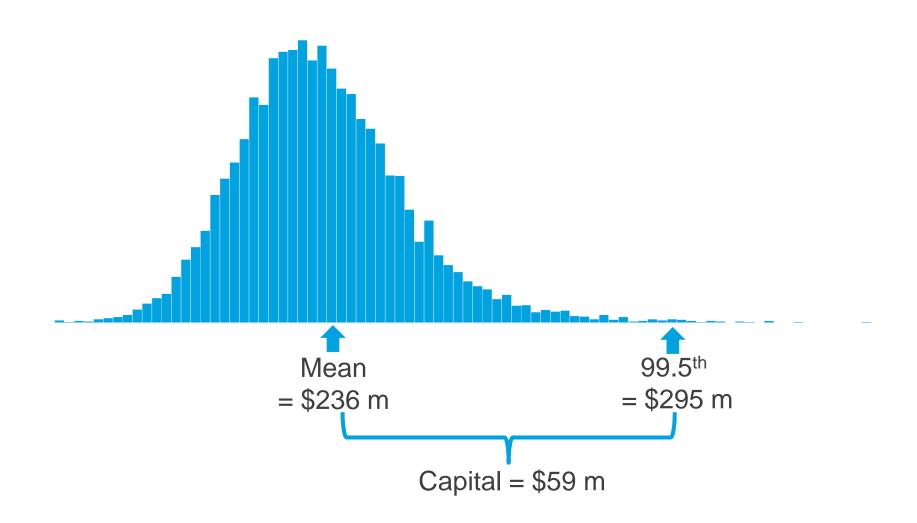
Market value of liabilities?

Cost of Capital method

- Market value of liabilities?
- Market value of an asset

Discounted reserves = \$236 million

1st offer: \$236 million


Discounted reserves = \$236 million

1st offer: \$236 million

TOO LOW

How much capital?

Discounted reserves = \$236 million

1st offer: \$236 m

TOO LOW

2nd offer: \$236 m + \$59 m

Discounted reserves = \$236 million

1st offer: \$236 m

2nd offer: \$236 m + \$59 m

TOO LOW

TOO HIGH

Discounted reserves = \$236 million

1st offer: \$236 m

2nd offer: \$236 m + \$59 m

TOO LOW

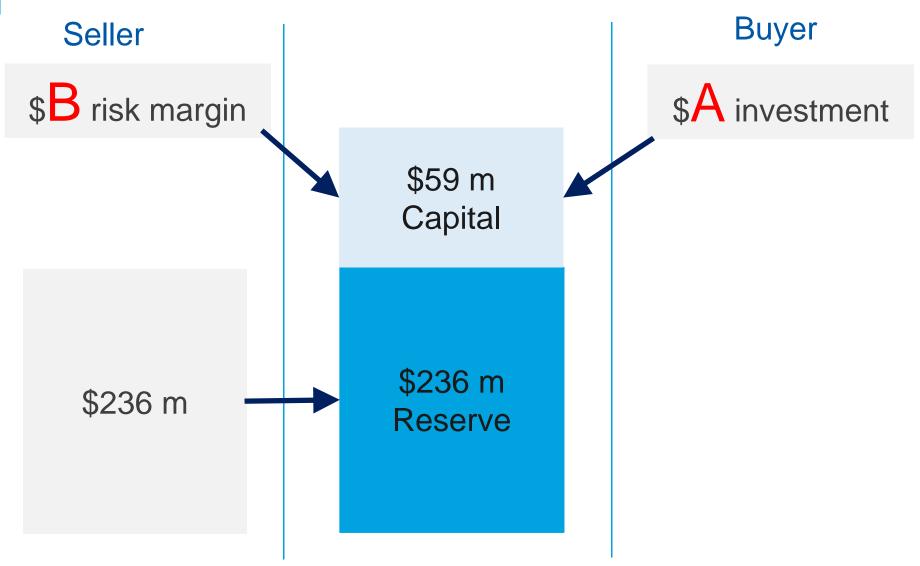
+

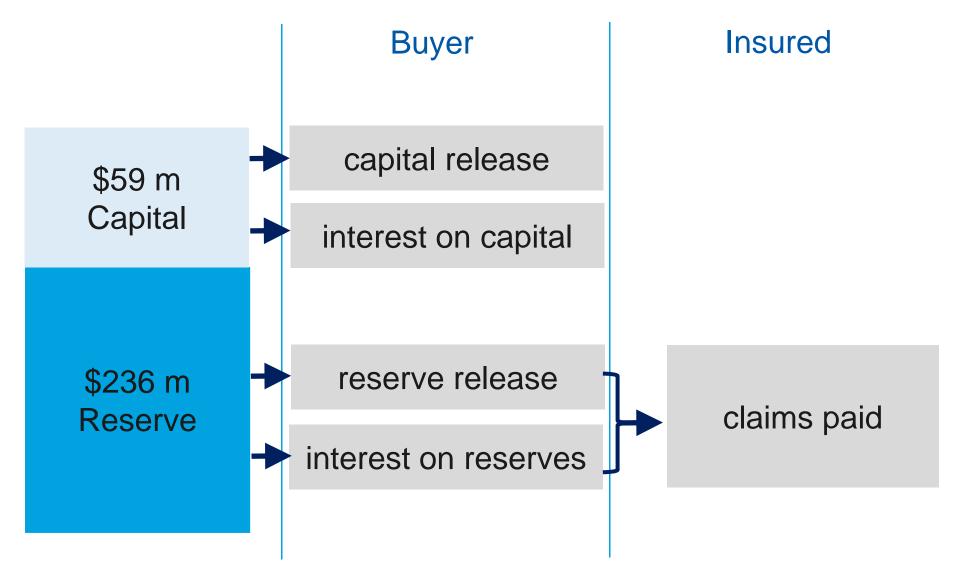
TOO HIGH

Market Value

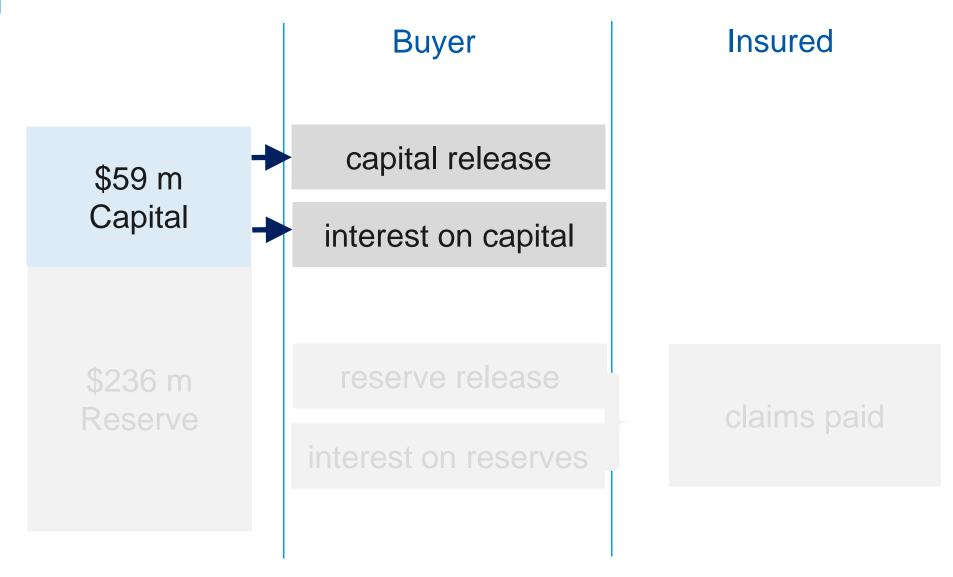
Discounted reserves = \$236 million

1st offer: \$236 m


2nd offer: \$236 m + \$59 m


TOO LOW

TOO HIGH


Transaction

Future Cash Flows

Future Cash Flows

Yr		Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1				
2				
34				
35				

Yr	Capital Release		Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	=Capital (0) – Capital ((1)	
2				
34				
35				

Yr	-	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	= \$59.0	- Capital ((1)	
2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	= \$59.0	- \$52.3		
_ 2				
34				
35				

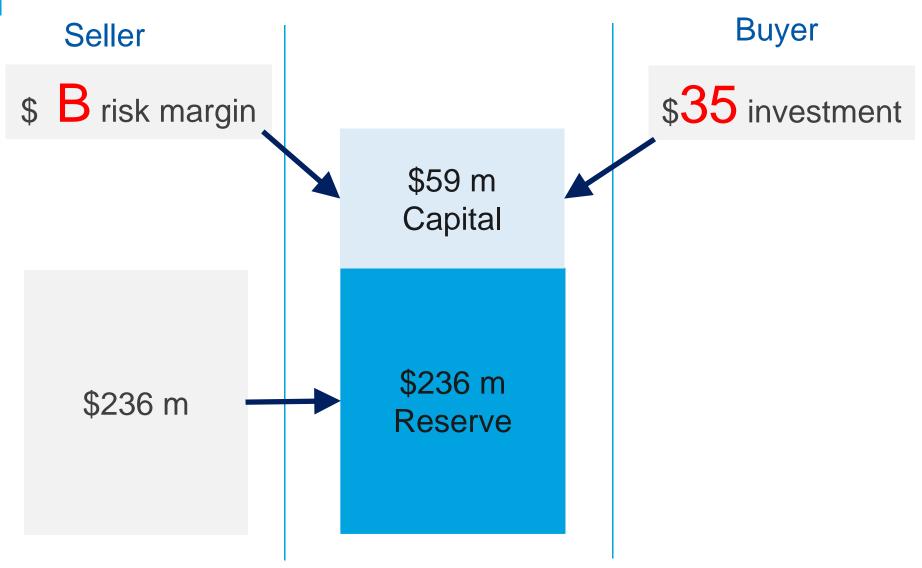
Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7			
2				
34				
35				

Yr		Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	=Capital (0)	* rf	
2				
34				
35				

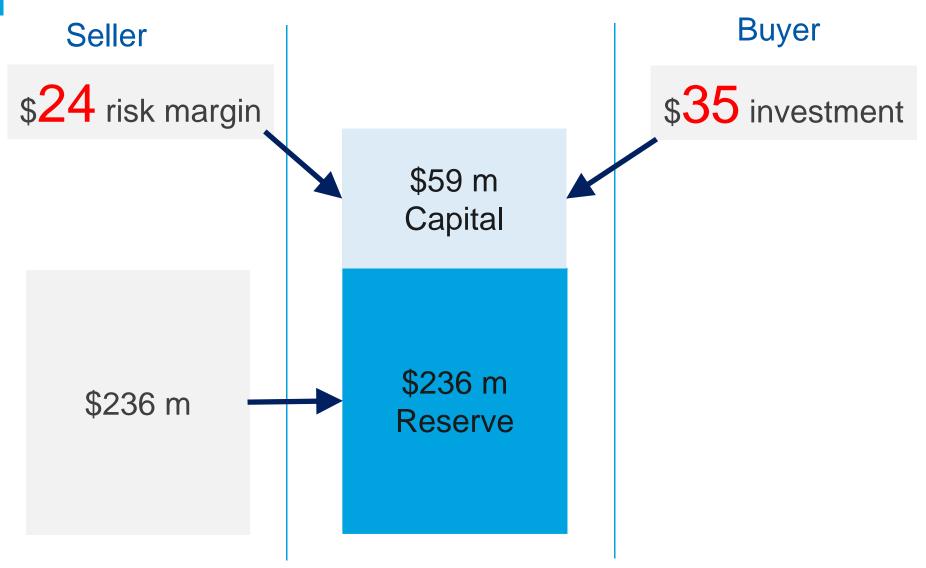
Yr		Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	= \$59 * 4%		
2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3		
2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3	\$9.0	
2				
34				
35				


Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3	\$9.0	
2	\$5.9	\$2.1	\$8.0	
34			\$0.3	
35			\$0.3	

Yr		Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3	\$9.0	
_ 2	\$5.9	\$2.1	\$8.0	
34			\$0.3	
35			\$0.3	


Yr		Interest on Capital	Net Cash Flow	Discounted Net Cash Flow
	(1)	(2)	(3) = (1) + (2)	(4)
1	\$6.7	\$2.3	\$9.0	=\$9.0 * 1.10^-1
2	\$5.9	\$2.1	\$8.0	=\$8.0 * 1.10^-2
34			\$0.3	=\$0.3 * 1.10^-34
35			\$0.3	=\$0.3 * 1.10^-35

Yr		Interest on Capital	Net Cash Flow	Discounted Net Cash Flow
	(1)	(2)	(3) = (1) + (2)	(4)
1	\$6.7	\$2.3	\$9.0	=\$9.0 * 1.10^-1
2	\$5.9	\$2.1	\$8.0	=\$8.0 * 1.10^-2
_34			\$0.3	=\$0.3 * 1.10^-34
35			\$0.3	=\$0.3 * 1.10^-35
				= \$35.0 m

Transaction

Transaction

Selling you my General Liability book

Discounted reserves = \$236 million

1st offer: \$236 m

2nd offer: \$236 m + \$59 m

3rd offer: \$236 m + \$24 m

TOO LOW

TOO HIGH

Selling you my General Liability book

Discounted reserves = \$236 million

1st offer: \$236 m

2nd offer: \$236 m + \$59 m

3rd offer: \$236 m + \$24 m

TOO LOW

TOO HIGH

JUST RIGHT

Equation

\$24 \$59

 $Risk Margin = Capital_0 - What you will invest$

Equation

 $Risk Margin = Capital_0 - What you will invest$

$$Risk \, Margin = Capital_0 - \sum \frac{What \, you \, get}{(1 + CoC)}$$

Equation

 $Risk Margin = Capital_0 - What you will invest$

$$Risk\,Margin = Capital_0 - \sum \frac{What\,you\,get}{(1 + CoC)}$$

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Cost of Capital:

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

$$Risk Margin = \$100 - \frac{\$104}{1.10}$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

$$Risk Margin = \$100 - \frac{\$104}{1.10}$$

$$Risk\ Margin = \$100 - \$94.54$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1+10\%)}$$

$$Risk Margin = \$100 - \frac{\$104}{1.10}$$

$$Risk\ Margin = \$100 - \$94.54$$

$$Risk Margin = $5.45$$

Another Cost of Capital Method

- 1. Calculate capital required at each year-end
- 2. Multiply by the cost of capital less the risk-free rate
- 3. Discount at the cost of capital and sum

Another Cost of Capital Method

- 1. Calculate capital required at each year-end
- 2. Multiply by the cost of capital less the risk-free rate
- 3. Discount at the cost of capital and sum

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

Risk Margin Methods:

Cost of Capital:

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Another Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

Simple Example – Another Cost of Capital Method

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

Simple Example – Another Cost of Capital Method

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

$$= \frac{\$100 \times (10\% - 4\%)}{1.10}$$

Simple Example – Another Cost of Capital Method

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

$$= $100 \times (10\% - 4\%)$$
1.10

Risk Margin Methods:

Cost of Capital:

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Another Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

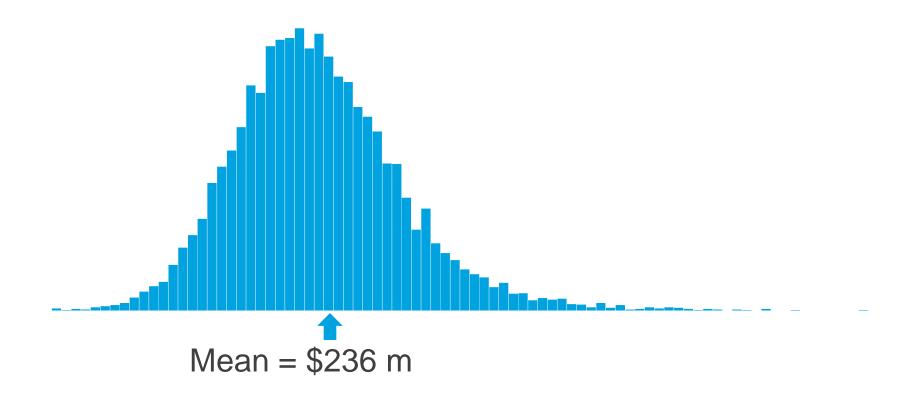
Risk Margin Methods:

Cost of Capital:

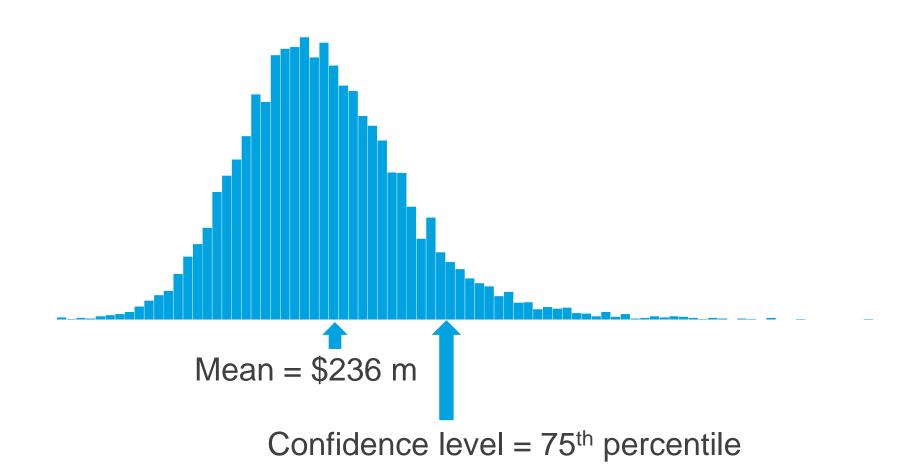
$$Risk \, Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Another Cost of Capital:

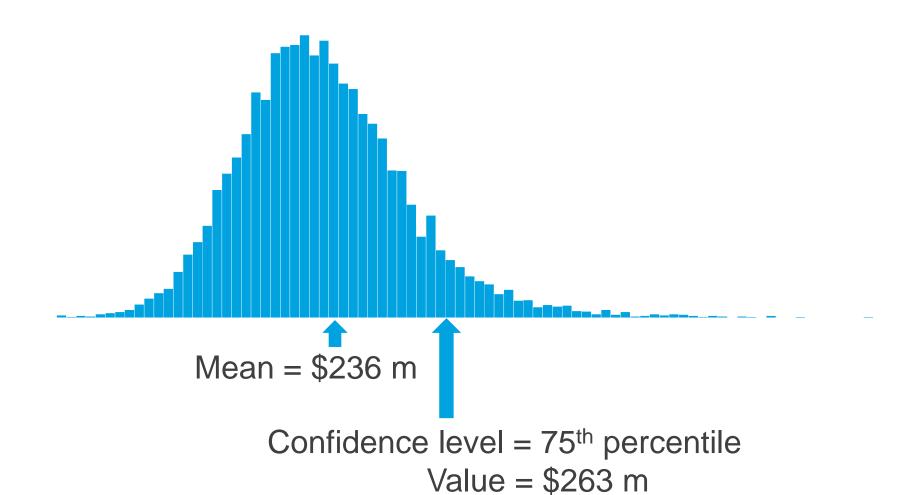
$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

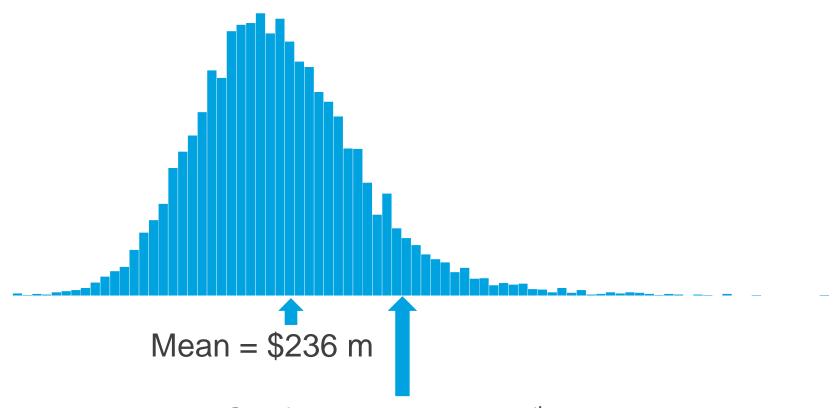

Three methods to estimate Risk Margins

- Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation


Three methods to estimate Risk Margins

- Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation


2. Confidence Level

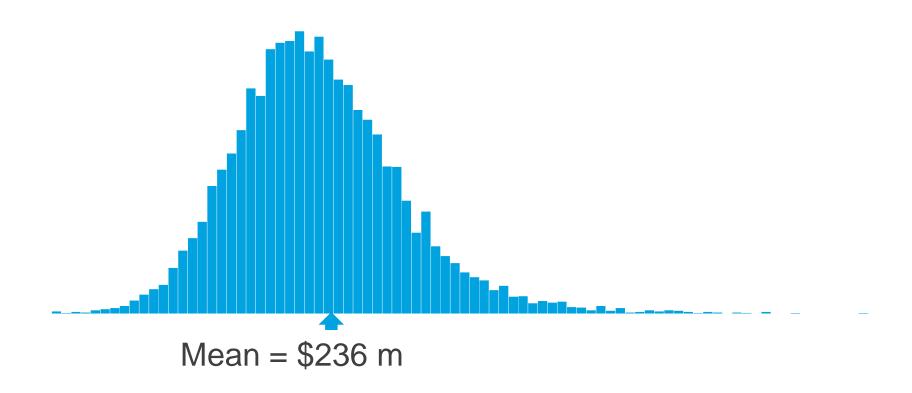

2. Confidence Level

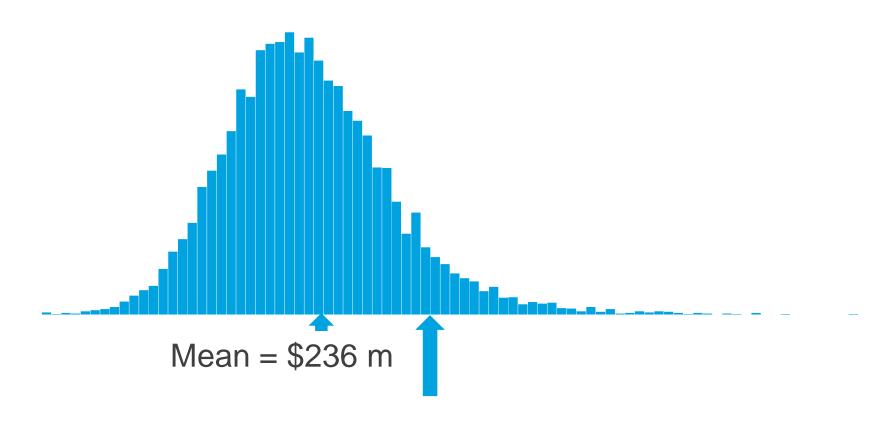
2. Confidence Level

2. Confidence Level

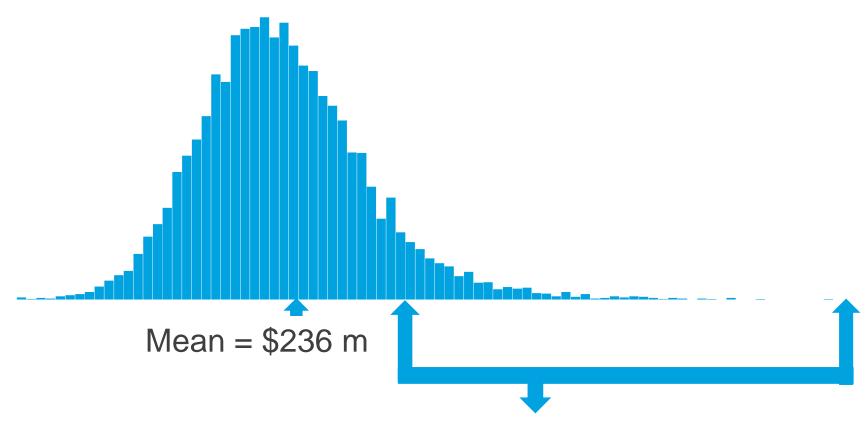
Confidence level = 75th percentile

Value = \$263 m

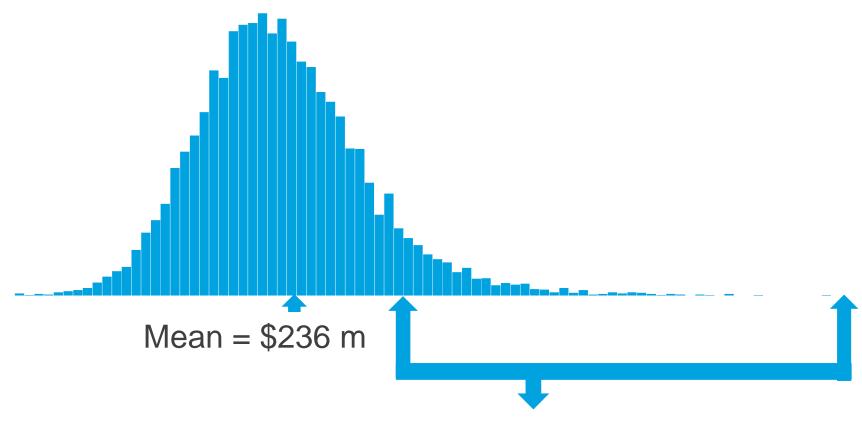

Risk Margin = \$27 m

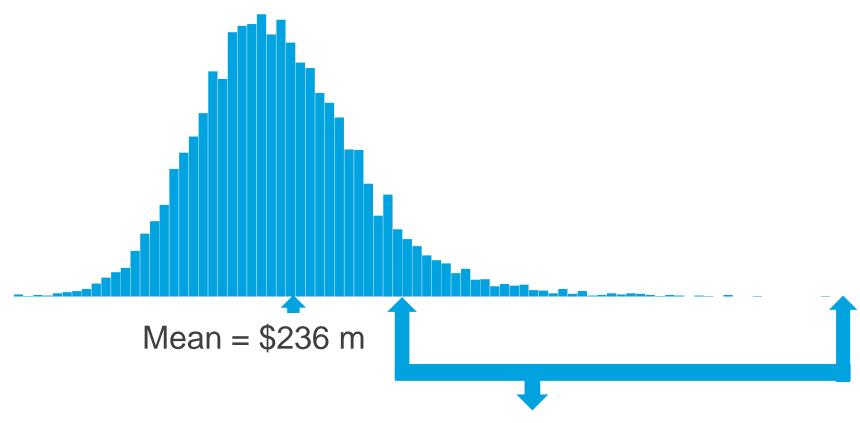

Three methods to estimate Risk Margins

- Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

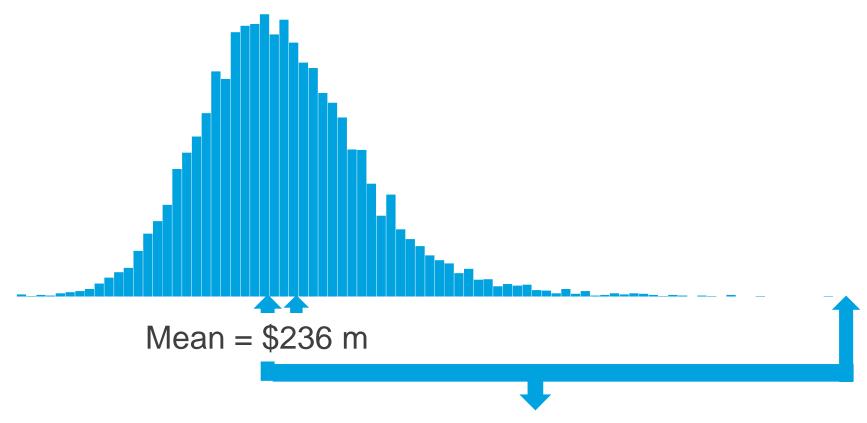

Three methods to estimate Risk Margins

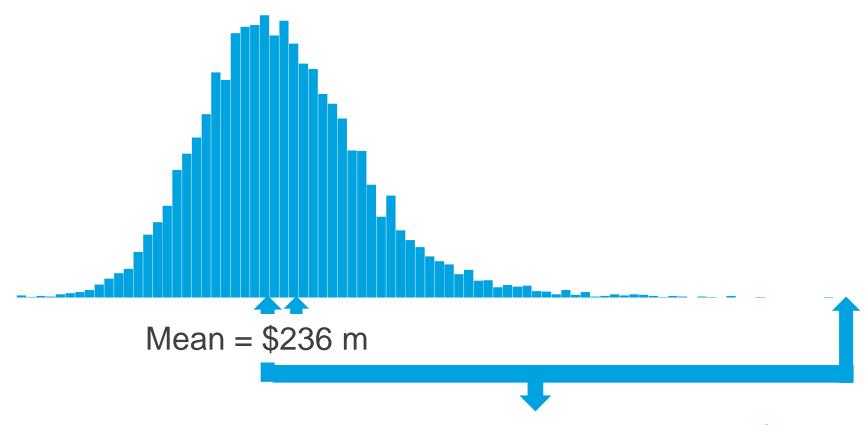
- Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation



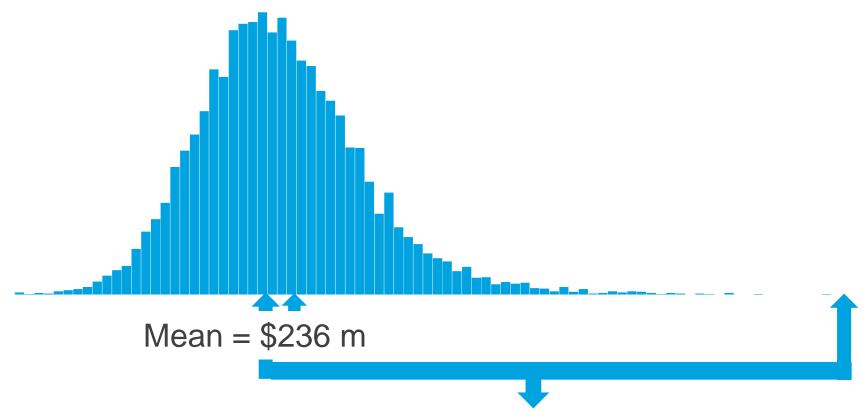

Confidence Level = 75th percentile

Conditional Tail Expectation = Average above the 75th percentile


Conditional Tail Expectation = Average above the 75th percentile Value = \$319 m


Conditional Tail Expectation = Average above the 75th percentile

Value = \$319 m


Risk Margin = \$83 m

Conditional Tail Expectation = Average above the **50**th percentile

Conditional Tail Expectation = Average above the **50**th percentile Value = \$285 m

Conditional Tail Expectation = Average above the 50th percentile

Value = \$285 m

Risk Margin = \$49 m

Methods			
Cost of Capital			
Confidence Level			
Conditional Tail Expectation			

Methods	Risk Margin			
Cost of Capital	\$24			
Confidence Level	\$27			
Conditional Tail Expectation	\$49			

Methods	Risk Margin	Market value?		
Cost of Capital	\$24	Yes		
Confidence Level	\$27	No		
Conditional Tail Expectation	\$49	No		

Methods	Risk Margin	Market value?	Skew?		
Cost of Capital	\$24	Yes	Yes		
Confidence Level	\$27	No	No		
Conditional Tail Expectation	\$49	No	Yes		

Methods	Risk Margin	Market value?	Skew?	Time?	
Cost of Capital	\$24	Yes	Yes	Yes	
Confidence Level	\$27	No	No	No	
Conditional Tail Expectation	\$49	No	Yes	No	

Methods	Risk Margin	Market value?	Skew?	Time?	Compare btwn?	
Cost of Capital	\$24	Yes	Yes	Yes	Hard	
Confidence Level	\$27	No	No	No	Hard	
Conditional Tail Expectation	\$49	No	Yes	No	Hard	

Methods	Risk Margin	Market value?	Skew?	Time?	Compare btwn?	Like SII?
Cost of Capital	\$24	Yes	Yes	Yes	Hard	Yes
Confidence Level	\$27	No	No	No	Hard	No
Conditional Tail Expectation	\$49	No	Yes	No	Hard	No

GUY CARPENTER

- 1. Overview
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II

GUY CARPENTER

- 1. Overview
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II

Solvency II:

- Calculate SCR at each year-end
- Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the risk-free rate and sum

Solvency II:

- Calculate SCR at each year-end
- Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the riskfree rate and sum

Solvency II:

- Calculate SCR at each year-end
- Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the riskfree rate and sum

Cost of Capital:

- Calculate capital at each year-end
- Multiply by the Cost of Capital less the riskfree rate
- Discount at the cost of capital and sum

Solvency II:

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{c})^{t}}$$

Cost of Capital:

$$Risk \, Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}} \qquad Risk \, Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}}$$

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}}$$

$$Risk Margin = \sum_{t=0}^{n} \frac{(Capital_t - Risk Margin_t)(CoC - r_f)}{(1 + r_f)^t}$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}}$$

$$Risk Margin = \sum_{t=0}^{n} \frac{(Capital_t - Risk Margin_t)(CoC - r_f)}{(1 + r_f)^t}$$

$$Risk Margin = \frac{(\$100 - Risk Margin)(10\% - 4\%)}{1.04}$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}}$$

$$Risk Margin = \sum_{t=0}^{n} \frac{(Capital_{t} - Risk Margin_{t})(CoC - r_{f})}{(1 + r_{f})^{t}}$$

$$Risk \, Margin = \frac{(\$100 - Risk \, Margin)(10\% - 4\%)}{1.04}$$

$$Risk Margin \times \frac{1.04}{0.06} + Risk Margin = $100$$

$$n = 1$$
, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}}$$

$$Risk Margin = \sum_{t=0}^{n} \frac{(Capital_t - Risk Margin_t)(CoC - r_f)}{(1 + r_f)^t}$$

$$Risk \, Margin = \frac{(\$100 - Risk \, Margin)(10\% - 4\%)}{1.04}$$

$$Risk \, Margin \times \frac{1.04}{0.06} + Risk \, Margin = \$100$$

$$Risk Margin = $5.45$$

Solvency II:

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{(1 + r_{f})^{t}}$$

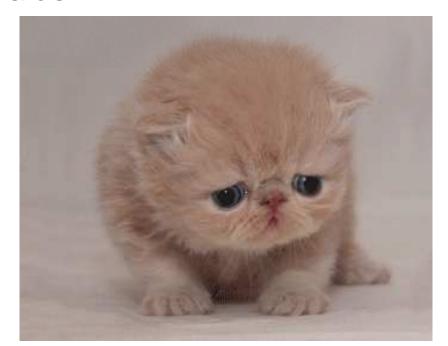
Cost of Capital:

$$Risk \, Margin = \sum_{t=0}^{n} \frac{SCR_{t}(CoC - r_{f})}{\left(1 + r_{f}\right)^{t}} \qquad Risk \, Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

Solvency II:

Cost of Capital:

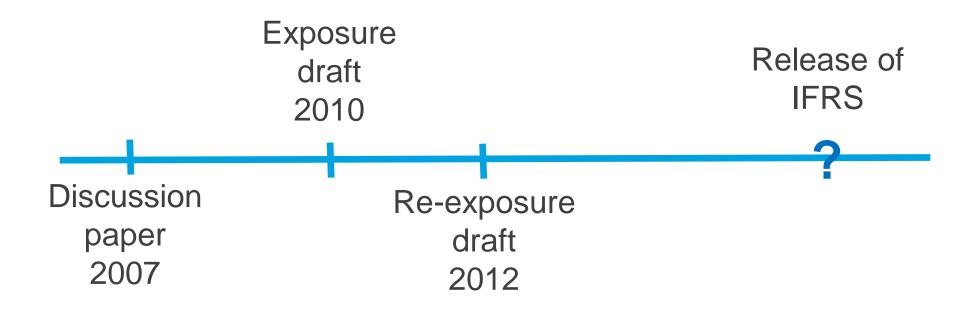
$$Risk \, Margin = \sum_{t=0}^{n} \frac{SCR_t \left(CoC - r_f\right)}{\left(1 + r_f\right)^t} \quad = \quad Risk \, Margin = \sum_{t=0}^{n} \frac{Capital_t \left(CoC - r_f\right)}{(1 + CoC)^t}$$


EXCEPT!!!!

- SCR measures risk over a one-year time horizon
- IFRS: ultimate time horizon may be more suitable

fulfillment value

EXCEPT!!!!


- SCR measures risk over a one-year time horizon
- IFRS: ultimate time horizon may be more suitable
 - fulfillment value

GUY CARPENTER

- 1. Overview
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II

Timeline

Timeline

 "Proposed convergence of FASB and IASB in Fair Value Accounting"

Top Ten Casualty Actuarial Stories in 2003

Re-exposure draft in 2012