

Institute and Faculty of Actuaries

F1: Predictive Modelling and Big Data for PMI Pricing and Analytics

Stephen Bishop Daniel Cantzler

Agenda

- 1. From Big Data to Analytics
- 2. Methods and Techniques
- 3. Customer Relationship Managements (CRM)
- 4. Pricing
- 5. Product Development
- 6. Fraud and Abuse
- 7. Disease Management Programs (DMP)
- 8. Q & A

Today the exponentially increasing amount of data is staggering...

10 Terabytes

Sensor data produced by a jet every 30min of flight time

5 to 250 Gigabyte / hour Produced by up to 100 sensors in modern cars now

3.200 millions

...daily of likes and comments in Facebook.

250 millions .. of tweets per day

42% increase

of machine-generated data by 2020

81% growth Global mobile traffic 2013

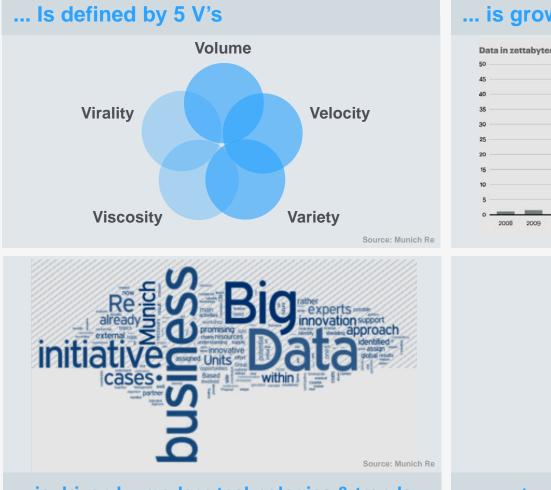
1 Terabyte

Structured trading data collected by the NYSE each day the market is open

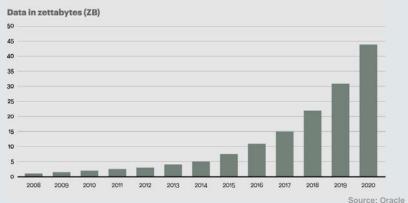
3 Jun 20 5

Big Data is a trend that will strongly influence the future

MUNICH HEALTH MUNICH



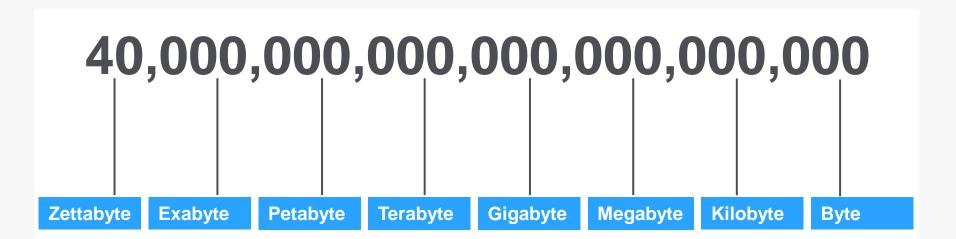
... is growing strongly



... is driven by modern technologies & trends

... creates a new market environment

Source: buttom right: Social Media Prism by ethority / http://facebook.com/SocialMediaPrism/https//:twitter.com/SoMePrism/ http://pinterest.com/someprism,/ Contactus for updates:prism@ethority.net



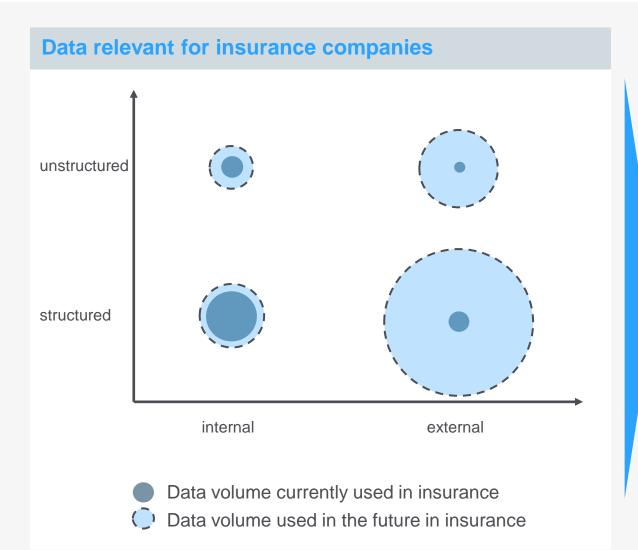
- 43 zettabytes of data will probably be generated by 2020
- 300 times the volume in 2005

Munich RE 葦

Several developments and trends will drive the need of Big Data analytics in insurance

Increasing legal & regulatory requirements	Increase in Big Data	Increasing quality of data capturing
High pressure on costs in developed markets	Increasing importance of data driven decisions in the future	Decreasing prices for data storage
High top-line competition in emerging markets		Increasing computing power

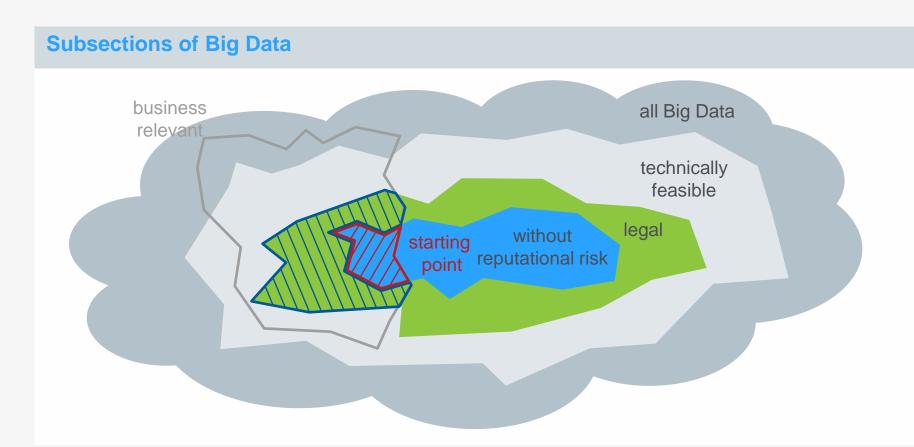
We expect to observe a strong increase in the availability of external and structured data



 Current focus are structured internal data.

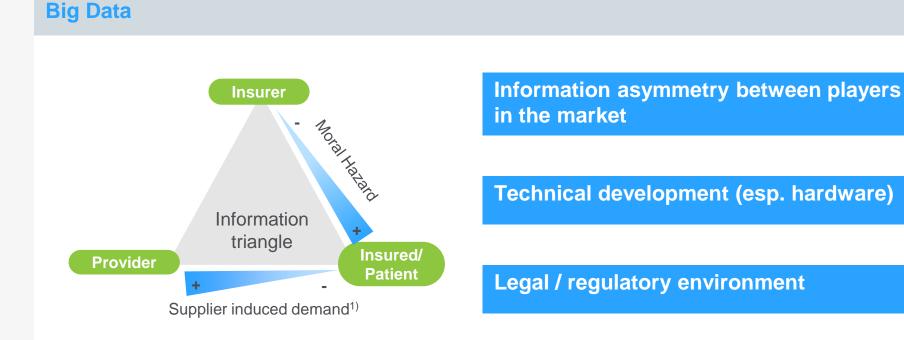
- The volume of external data will increase strongly.
- The combination of int. and ext. data will gain more and more importance.

Starting point for Big Data is business relevant and usable information



First step on the way to make use of Big Data is the identification of business relevant information which does not present the risk of reputational damage

Beside Big Data, known and new developments require data Analytics in health insurance



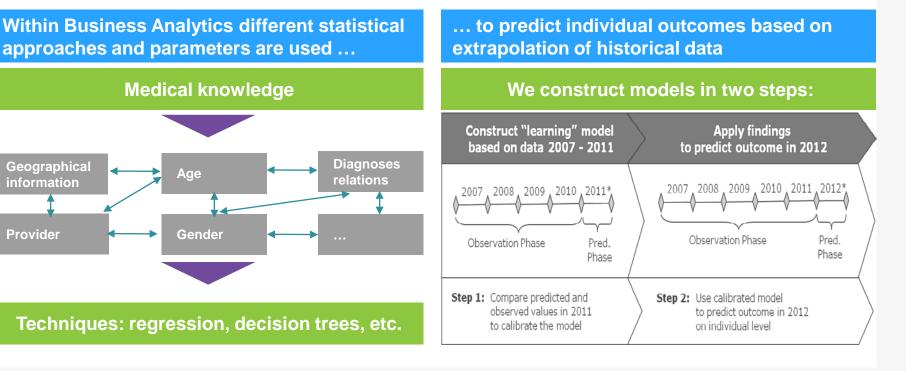
¹⁾ Supplier induced demand: physicians choose methods and intensity of treatments which patients would not choose if they had the same information as the physician

Superior data Analytics is key to generate effective measures to successfully steer health care business

Source: Munich Re

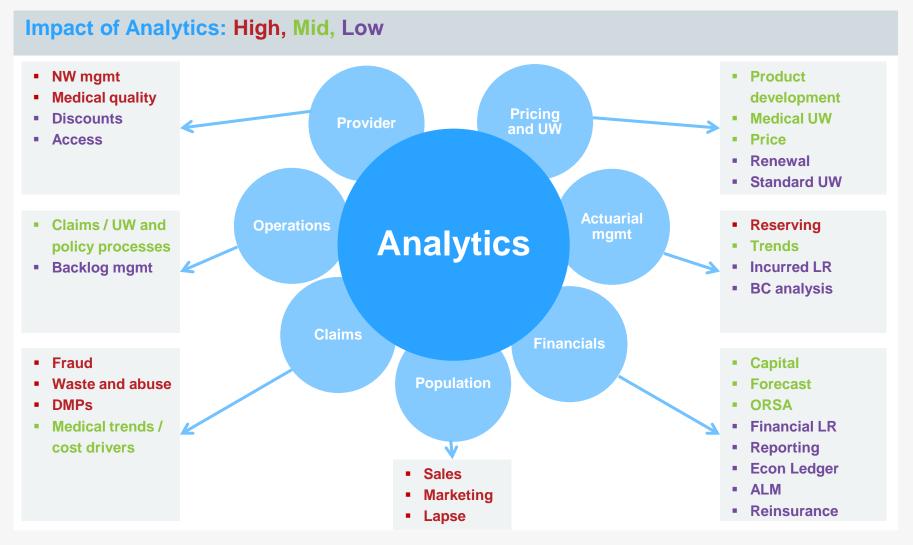
Munich RE 🚍

Business Analytics is based on different statistical approaches predicting individual outcomes



Predictive models for adverse outcomes on an individual basis

Analytics enables data-driven business steering in various areas



Methods and techniques

Advanced Analytics is based on other methods and data than traditional reporting

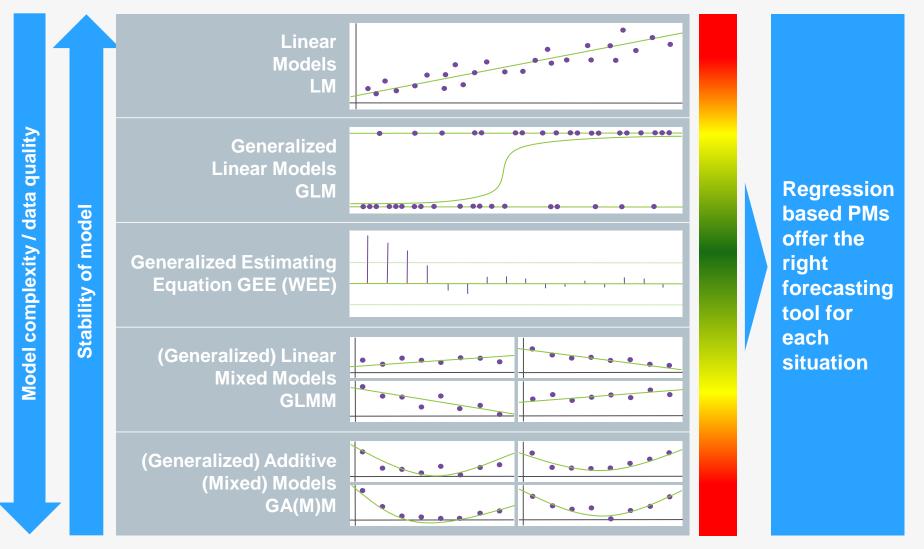
		C	OMPLEXITY &	INFORMATIO	N	
	E	Explain the pas	st	Predict the future		
	Standard reporting	Ad Hoc OLAP	Statistics	Fore- casting	Classical predictive models	Machine learning
Question	What happened?		Why did it happen?	What will happen?	To whom will it happen?	To whom will it happen?
Example	BC development, member counts,	Members per plan and region,	Large loss analysis, member groups,	LR- projection, seasonality analysis	Churn scores, fraud scores,	Medical paths, complex pattern,
Methods	Sum, max, min, a …	iverage, count,	Distribution theory, correlation analysis,	Time series theory, stochastic processes,	Regression models, decision trees, 	NeuralNetwork, random forests, SVM,
Data	Already powerful with small sample size and little information		Medium sample information	e size & little	Larger sample size & more information	Very large sample size and a lot of information
	Business Intelligence Business Analytics					
	Rep	orting	Statistica	al Analysis	Advanced	Analytics

Pros/Cons of different regression techniques for (health) insurance data

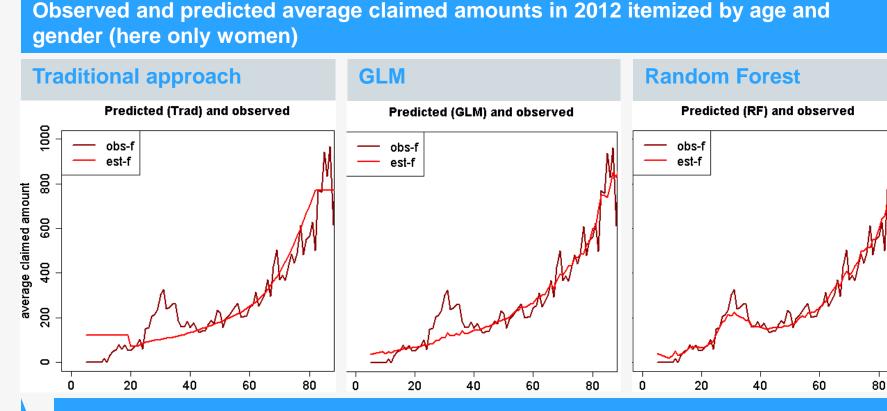
MUNICH HEALTH	Munic

	Advantage	Disadvantage
Advanced Regression Analysis	 stable results even for small datasets and bad data quality overfitting can be controlled analyzes the significance of effects, quantifies the influence of all factors and excludes non- relevant factors by variable selection procedures non-linear effects can be respected (e.g. GAM) and controlled (e.g. degree of non- linearity by penalization techniques) works also for not independent response (e.g. GEE) 	 especially these 3 advantages make regression models a valuable tool for (health) insurance data requires pre-selection of reasonable interaction terms before variable selection can be used model convergence is not guaranteed, if complex structures are specified
Decision Trees / Random Forest	 + detects complex relationships in large datasets + returns the "variable importance" of all factors + very stable algorithm produces always results 	 tends to overfit training data in case of small datasets and bad data quality remains a black box to the user and results can hardly be interpreted does not check the significance of effects or spurious relationships
Neural Networks	 + detect complex non-linear relationships and correlation structures in large datasets + very stable algorithm + Very powerful with extremely large datasets and technical environment 	 tend to overfit training data in case of small datasets and bad data quality remain a black box to the user and results can hardly be interpreted quality can only be evaluated by predictive results

It is crucial to find the right trade-off between stability and complexity to optimize prediction power



Predicted vs. observed claimed amounts for particular subgroups allows optimal model choice



The traditional approach takes age and gender into account and therefore mostly performs quite good on average. Only the random forest detects the peak for women in their thirties (pregnancy treatments)

Munich RE

The most important variables to predict the claimed amount vary over the statistical methods

Zero-inflated gamma (GLM)

Logit model:

- number of hospital services
- number of diagnosis in ICD-chapter 13,

5 (mental behavioural disorders) and 10 (respiratory system)

unemployment rate

Gamma model:

- length of stay
- age
- unemployment rate
- education rate
- residence area

Random forest

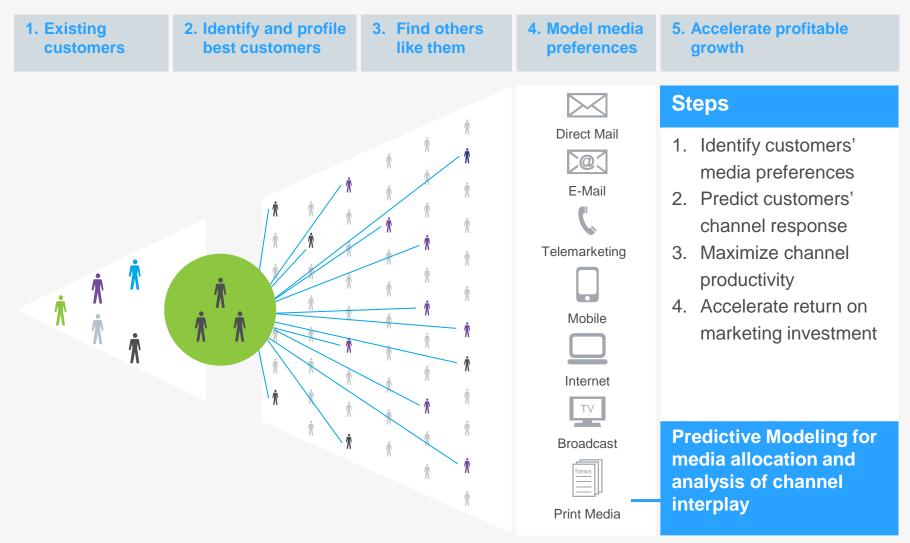
- previous claimed amount
- average payment delay
- number of hospital services
- age
- number of diagnosis in ICD-chapter 13 (musculoskeletal system / connective tissue)
- number of chronic diseases

CRM

Business analytics improves the effectiveness of CRM throughout a customer's life cycle

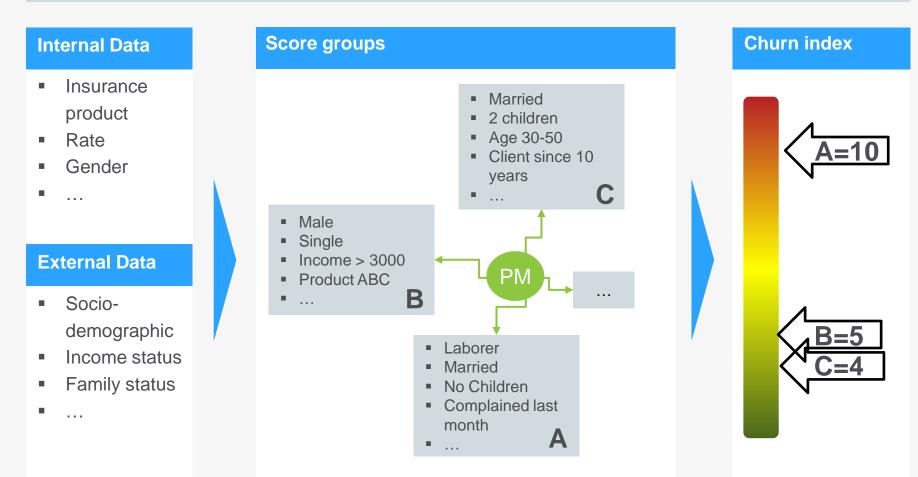
	Acquisition	Up-selling	Cross- selling	Churn prevention	Win-back
Target	Identification of relevant target groups ("good risks") Optimized acquisition of new customers	Identification of customers with highest probability to extend their existing contract Higher penetration of health products	Identification of customers with highest probability to buy additional products Higher penetration of other products	Identification of customers with low product retention Avoidance of cancellation of "good risks" Increase of customer loyalty	Identification of former customers with high capital value and high win-back- probability Enhancement of the portfolio's profitability
CRM solution	 Customer profiling and clustering based on external and internal data Sales channel preference analysis 	 Scores to identify potential up- selling candidates Sales channel preference score Costumer value analysis 	 Scores to identify potential cross-selling candidates Sales channel preference score Costumer value analysis 	 Churn scores to identify "disloyal" customers Next best action analytics 	 Win-back scores to identify customers most likely to return

Client segmentation combined with Predictive Models for media preference accelerate profitable growth

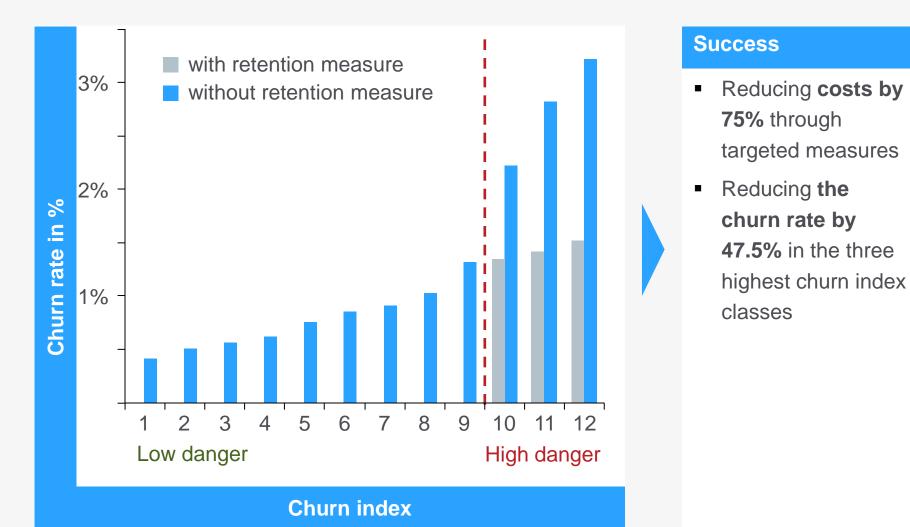


Churn prevention is optimized by constructing score groups based on internal and external data information

Churn-index is derived from score groups ...



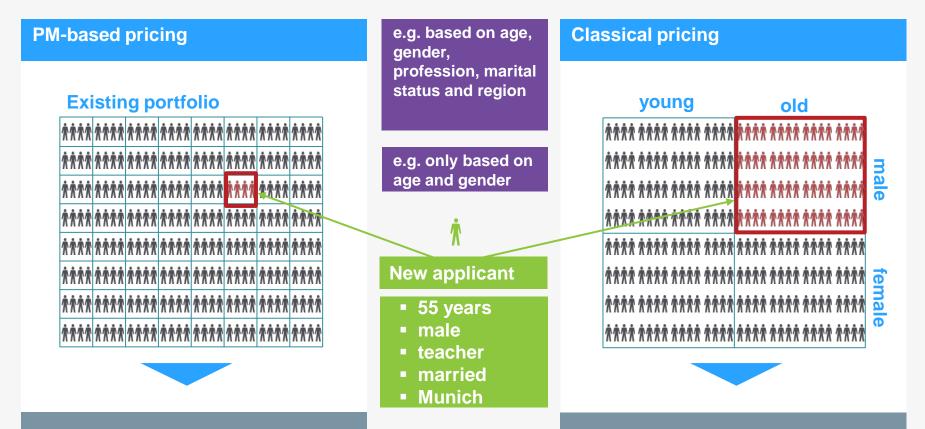
Customer retention measures based on external churn prevention models have proven their effectiveness



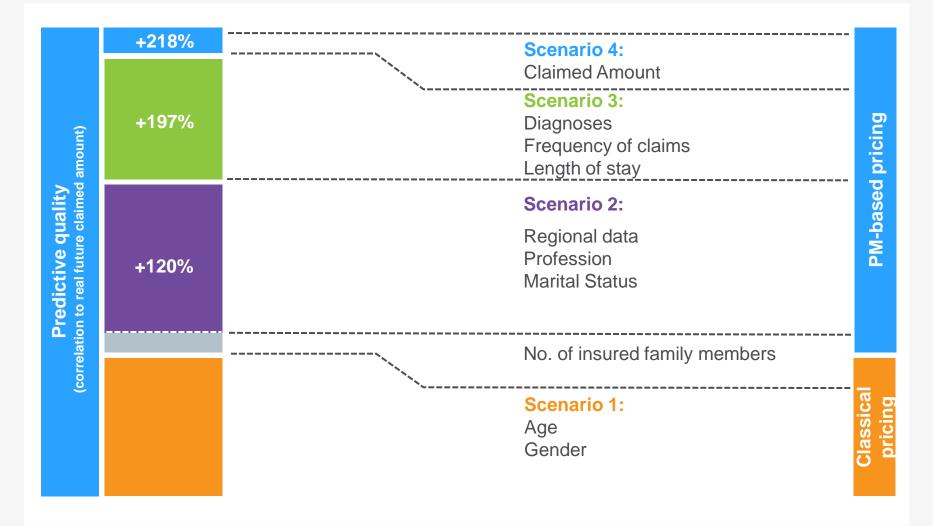
MUNICH HEALTH Munich RE

Pricing

PM-based pricing yields a stronger differentiation of the risk structure to optimize premium calculation



High degree of individual risk adjustment attracts good risk and increases lapse of bad risk. Low degree of individual risk adjustment attracts bad risk and increases lapse of good risk.

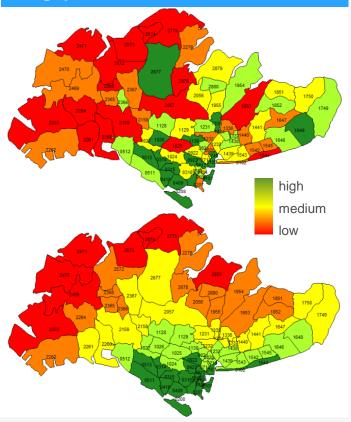


MUNICH HEALTH Munich RE

Usage of clients' address data combined with ext. regional data further improves predictive quality

In order to balance random variations of external regional data, spatial smoothing techniques are applied:

Example:Income per capita in Singapore



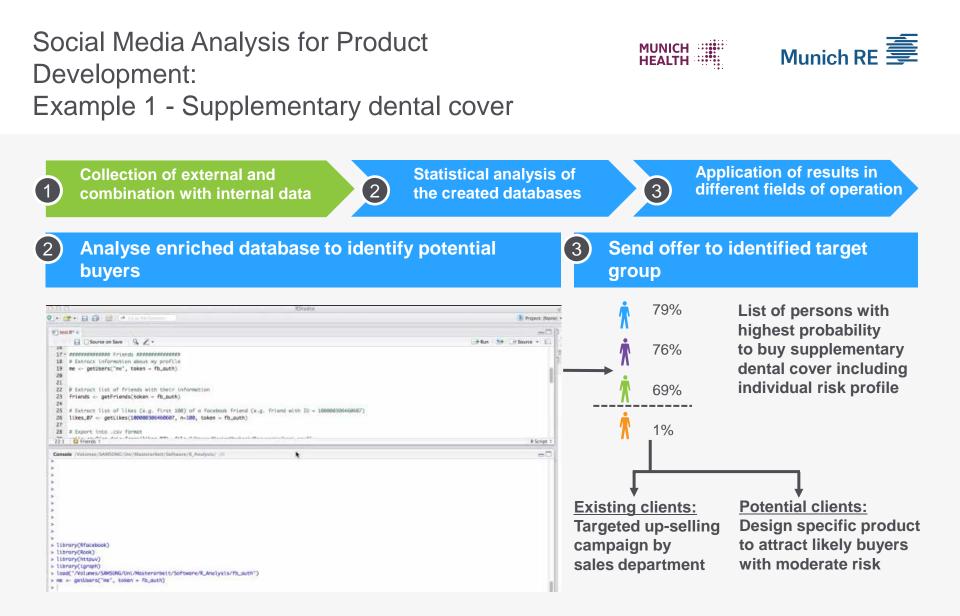
Scenario a Scenario b Scenario c

External socio-demographic and -economic regional data strongly contribute to a more precise prediction of future costs, especially if preceding costs and the claims history are not taken into account.

BUT: External regional data can only be allocated if clients' address data are available!!

Product development

Social Media Analysis for Product Munich RE MUNICH HEALTH Development: Example 1 - Supplementary dental cover Application of results in Statistical analysis of **Collection of external and** 3 (2) different fields of operation the created databases combination with internal data Identify risk groups through relevant activities & match with internal data, e.g. via facebook Exact matching or Likes and posts Membership in facebook groups similarity matching Internal data mage: used under license from Shutterstock.com Smoker Association Members **Usage of Image Mining! Profile pictures** Like - Comment - Share 1 Share 368 people n the evening. enly 62 Yest rom Shutterstock.com Shutterstock con



Source: Munich Re

Social Media Analysis for Product Development:

Example 2 - Supplementary inpatient cover

Collection of external and combination with internal data

2

Statistical analysis of the created databases

MUNICH HEALTH

> Application of results in different fields of operation

Usage of Video Mining!

Identify risk groups through relevant activities & match with internal data, e.g. via YouTube

List of 10 most dangerous sports* Rank **Sports Base Jumping** Heli-Skiing -2 3 Diving **Cave Diving** 4 **Bull Riding** 5 **Big Wave Surfing** 6 7 Street Luging Mountain Climbing 8 9 BMX-White-Water Rafting 10

YouTube uploads

Exact matching or similarity matching

Internal Data

Heli-skiing in Wasatch Backcountry

Source: Forbes Magazine (http://www.forbes.com/2002/08/07/0807sport.html) / http://www.youtube.com/

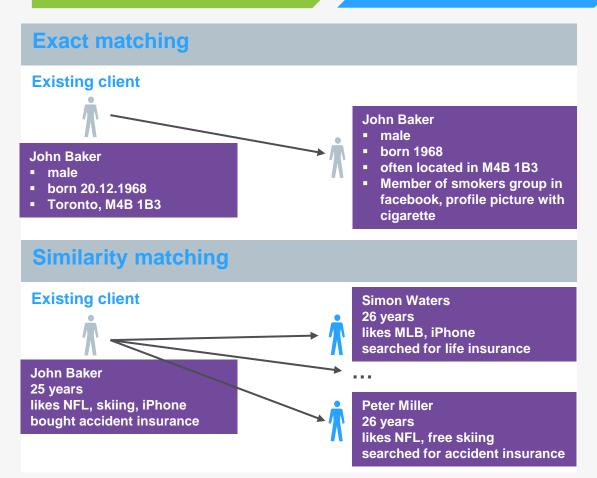
Analytical approaches can be applied after combining internal and external information

Collection of external and combination with internal data

Statistical analysis of the created databases

MUNICH HEALTH

Application of results in different fields of operation



 Clustering and profiling based on behavior and needs (and customer value/ claims experience)

- Life-Style segmentation
- Economic segmentation based on commercial data

Collection of external data – Compilation of filtered information into a structured tabular form

Name Date of birth	Place of Interest	Hobbies/ Interests /	Groups / Likes in connection with		Posts / comments etc. containing information in connection with		Images / Videos		
			Events	Dental	Hospita- lization	Dental	Hospita- lization	Dental	Hospita- lization
John Baker	20.12.196 8	Toronto ON (Canada)	Watching movies	Marlboro	Bungee Jumping, Skydiving	-	+ Freefall	2 x cigarette	-
Sophie Williams	13.04.197 2	Princeton NJ (USA)	Attended: survival tour	Snickers, Bounty	-	-	+ Survival Tour	-	3 x Chocolate Bar
Michael Smith	04.08.196 6	Miami FL (USA)	Paintball, Attended: UFC	Street	Fights	+ Bo	oxing	-	-
Michael Smith	04.08.196 6	San Diego CA (USA)	Attended: Wine tasting	-	-	+ Red wine	-	-	-

Extracted structured data

Extracted and processed unstructured data

MUNICH Munich RE

Social media data is easily to extract, based on freeware

Data cleansing and structuring is a manual process

Merging internal and external data requires analytical capacities

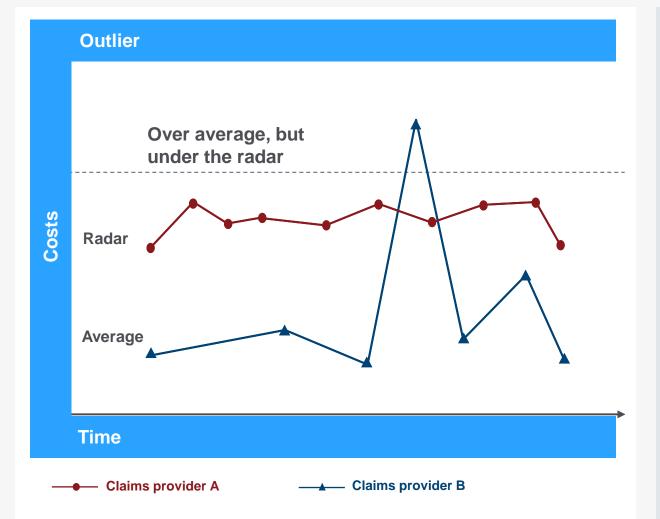
Analysis of merged database requires analytical and other experts

Building up internal knowledge about social media data analysis is a key issue!

Fraud and abuse

Source: Munich Re

Challenge: identification of professional fraud and abuse



Outlier will be controlled Using simple analysis leads to:

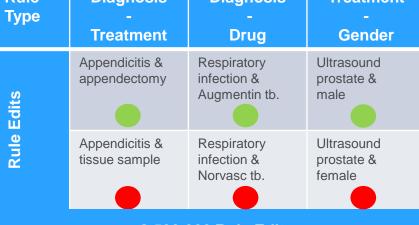
Munich RE

- outlier claim of
 Provider B will be investigated
- abusive behavior of
 Provider A will not be identified

Different methods and techniques are needed to control fraud and abuse

Further development: deterministic and probabilistic rules make real-time decisions possible even today

Deterministic rules (n Rule Types)

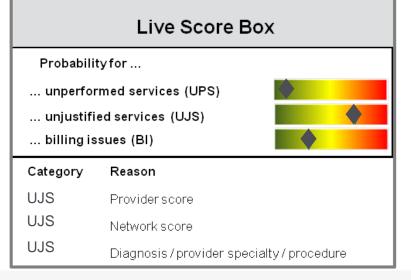


≈ 2,500,000 Rule Edits

- Fully-automated check of medical services
- Recognition of medical invoices for false or unnecessary treatments / prescriptions (international experience value: 12% of the invoice amount)
- Integration of the insured person's claims history into the decision-making process

Probabilistic scores

- Real-time decisions on submitted invoices н.
- Calculation of the scores in three categories:
- Unperformed services
- Unjustified services
- **Billing issues**
- Basis for decision: Invoice data and results of the retrospective report



Example from Indonesia: Infectious diseases

MUNICH		
HEALTH	· · · · · · · · · · · · · · · · · · ·	Mun

Scoring

Live Score Box			
Probability Unperformed Unjustified s Other billing	d services (UF ervices (UJ)	D)	
Category Provider Provider	Pattern UP, UJ UJ	Report Risk adjusted LoS # certain diagnoses	
F&A stat.	UP	# reportable diseases	

Finding of investigation

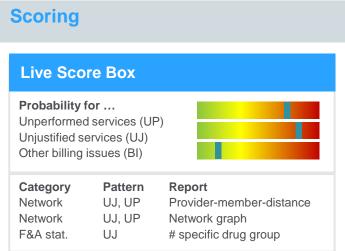
- The hospital often billed treatments of infectious diseases, because optimal treatment period is not clearly defined.
- In many cases, mild diarrhea was coded as Cholera in order to charge additional room costs.
- In some cases, patients left the hospital earlier than reported.

Specific evaluation

Rank	Hospital	No. of claims	Sum real LoS	Sum exp. LoS	Ratio
1	Hospital 246	920	6,433	3,078	209%
2	Hospital 811	571	3,740	1,833	204%
3	Hospital 611	1,814	11,744	6,711	175%
4	Hospital 309	650	3,569	2,124	168%
5	Hospital 081	1243	7,208	4,742	152%
6	Hospital 743	576	3,492	2,376	147%

- Under consideration of the patients' risk profiles, the average LoS is too long in hospital 246.
- The number of infectious diseases (esp. Cholera and Dengue fever) treated by the hospital is very high compared to other general hospitals.
- The number of Cholera cases billed by the hospital is not realistic compared to the number of reported Cholera cases in Indonesia (WHO figures) and the hospitals market share.

Example from Germany: Referral system



Finding of investigation

- The providers built up a referral system.
- The GP recommended his patients to visit the alternative practitioner pro-mising cheap homeopathic treatment.
- Patients received non-covered homeopathic products instead of billed cold remedies in the pharmacy.

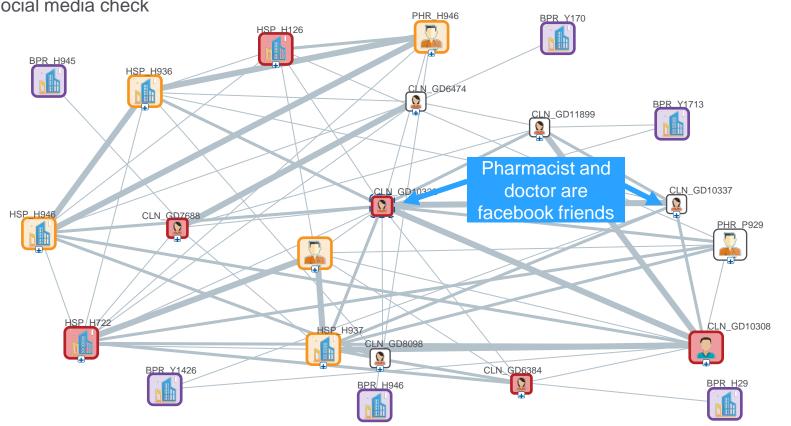
Specific evaluation

- After visiting general practitioner 610, many of his patients, drive 150km (from Stuttgart to the Black Forest) to visit alternative practitioner 433.
- The alternative practitioner prescribes a lot of cold remedies.
- The prescriptions are nearly always filled in a nearby pharmacy (753).
- Compared to the average pharmacy, pharmacy 753 bills clearly more cold remedies.
- The three providers are facebook friends.

Network reports – Social media analysis checks links between players in the market

Two Steps

- 1. Internal network analysis
- Social media check 2.



Analytical techniques facilitate an efficient identification of fraud and abuse

The identification of fraud and abuse can be compared with searching a needle in the haystack.

Image: used under license from Shutterstock.com

Analytical methods will not be able to find the needle ...

MUNICH HEALTH

Image: used under license from Shutterstock.com

... however they can make the haystack considerably smaller!

DMP (Disease management programs)

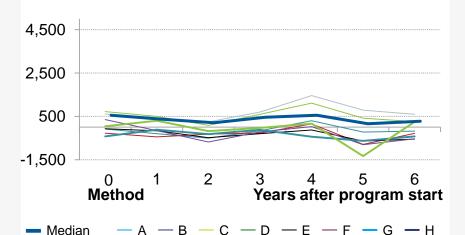
Simplified process of every health program and application of statistical methods

Target definition and program development	 Definition of program target and program development First definition of target groups: determination of indication
Identification	 Identification of participants is key success factor: medical and social criteria are crucial Standard methods usually ignore the expected cost development of potential participants, whereas statistical methods usually improve the identification significantly
Execution	 Conflict of interests and privacy protection require the retrieval of participants via the sponsor Support of participants, compliance monitoring and if needed application of telemedicine by a specialized service provider
Measurement of econ. effects	 The economic effect of DMPs is discussed controversially in literature because the effects also depend on the measurement technique With complex statistical methods uncertainties in the analysis can be reduced Validation of further aspects: e.g. client satisfaction, medical outcomes,

MUNICH Munich RE

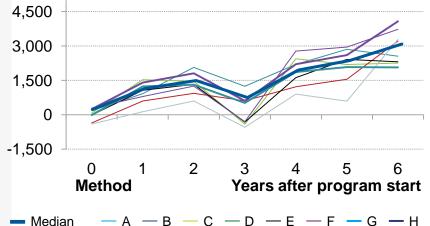
Realizable savings based on different measurement methods

Diabetes (savings in EUR)



The results strongly depend on the measurement method. Most methods do not indicate a longterm saving potential.

Chronic heart failure (savings in EUR)



Even though there is also a strong variation between different methods, a saving trend starting from the first program year can be detected.

For a reliable measurement, different methods need to be applied.

Source Munich Re:

Closing

Munich RE 萋

Disclaimer

Münchener Rückversicherungs-Gesellschaft (Munich Reinsurance Company) is a reinsurance company organised under the laws of Germany. In some countries, including in the United States, Munich Reinsurance Company holds the status of an unauthorised reinsurer. Policies are underwritten by Munich Reinsurance Company or its affiliated insurance and reinsurance subsidiaries. Certain coverages are not available in all jurisdictions.

Any description in this document is for general information purposes only and does not constitute an offer to sell or a solicitation of an offer to buy any product.

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

