

The IFoA Conference 2022

22-23 June - etc.venues, 133 Houndsditch, London

Advancing Analytics with COVID-19

Louis Rossouw Rob Kaner

COVID-19 Activities

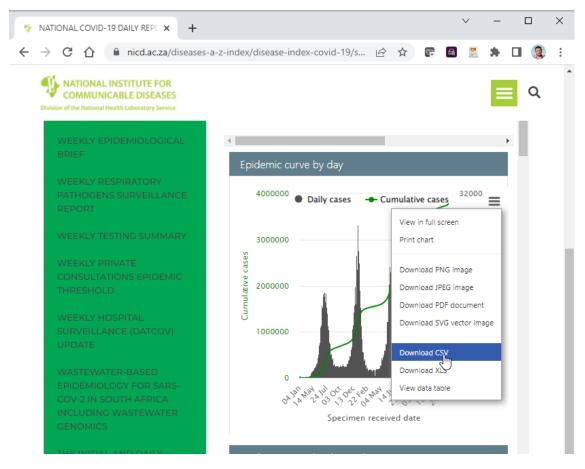
During COVID-19

- R estimates
- COVID-19 models
- Understanding experience
- Uncertainty!

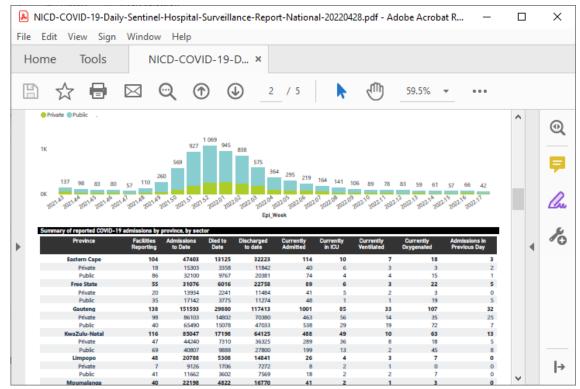
Learnings?

- Continuous
 - Sourcing data
 - Managing
 - Regular analysis
- Keeping track of it all
- Efficiency
- Handling uncertainty

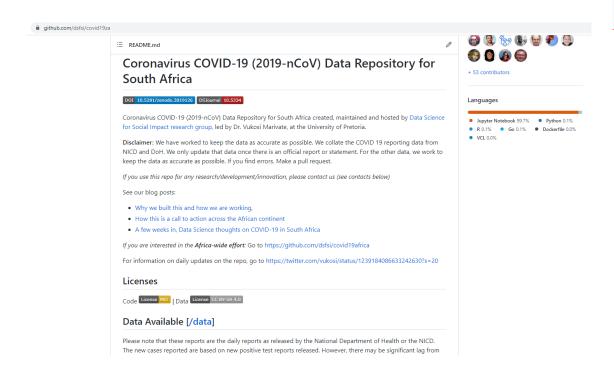
Estimating R

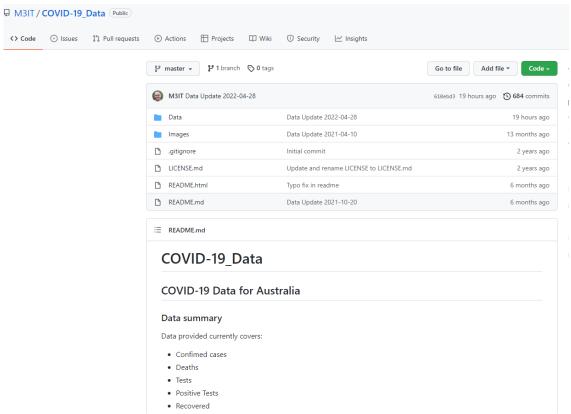

$$E(I_t) = R_t \sum_{s=1}^t I_{t-s} w_s$$

- I_t is infections on a day
- R_t is instantaneous reproduction number
- w_s is the generation interval (how infectious one is over time)
- Can use cases, admissions, deaths...

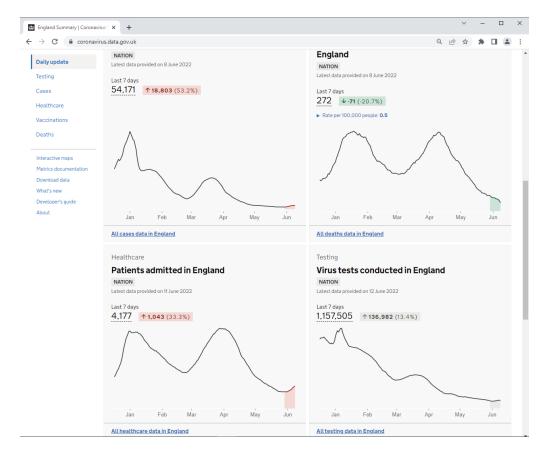

Cori, A. *et al.* (2013) 'A new framework and software to estimate time-varying reproduction numbers during epidemics', *American Journal of Epidemiology*, 178(9), pp. 1505–1512. doi:10.1093/aje/kwt133.

Data sources - Dashboard and PDFs


National Institute for Communicable Diseases (2021) *National COVID-19 Daily Report*. Available at: https://www.nicd.ac.za/diseases-a-z-index/covid-19/surveillance-reports/national-covid-19-daily-report/.


National Institute for Communicable Diseases (2021) *Daily Hospital Surveillance (DATCOV) Report.* Available at: https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/daily-hospital-surveillance-datcov-report/.

Open Data Sources


Marivate, V. et al. (2020) 'Coronavirus disease (COVID-19) case data - South Africa'. Zenodo. doi:10.5281/ZENODO.3888499.

O'Brien, J. et al. (2021) Coronavirus (COVID-19) in Australia, COVID-19-data-aus. Available at: https://www.covid19data.com.au (Accessed: 29 December 2021).

Institute

Data sources – Dashboard and APIs

UK Government summary dashboard for COVID-19 in England. Available at: https://coronavirus.data.gov.uk/

Open Data API - v.1

Table of contents

```
Version
Software Development Kits (SDK)
Schema
Request headers
Timestamps
Methods
HEAD
OPTIONS
Responses
GET
Responses
Guery parameters
filters
Multiple parameters
```

 $\underline{\text{https://coronavirus.data.gov.uk/details/developers-guide/main-api}}$

Open & Machine-Readable Data

Old Way

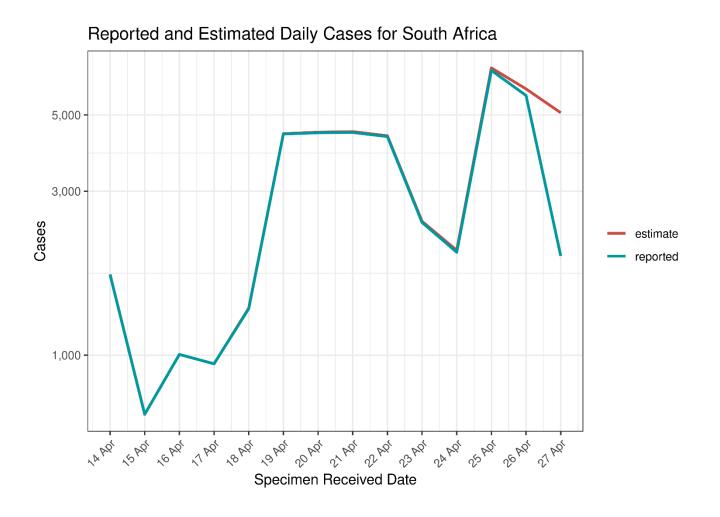
- Capture data
- Download
 - Spreadsheet
 - Report
 - PDF
 - Use export to Excel
- Fix data in Excel

New Way

- Already captured
- Read data
 - from API
 - Website
 - Database
- Use scripts to transform data

Chain Ladders

Rick McCharles


$$\ln(\theta^{t,d}) \approx \sum_{i} x'_{i} \beta'_{i} + \sum_{j} x''_{j} \beta''_{j}$$

$$x'_{i} = \begin{cases} 1, i = t \\ 0, i \neq t \end{cases} \qquad x''_{j} = \begin{cases} 1, j = d \\ 0, j \neq d \end{cases}$$

- That is a GLM!
- Allows automation
- Generalised by adding more fields
- Apply other ML techniques...

Allowance for late reported cases

Institute

and Faculty of Actuaries

Estimating R with R

- R contains many packages
- All open source
- ukcovid19
 - Access UK COVID-19 data
- EpiEstim
 - Model R_t
 - Allowing for uncertainty

R Core Team (2019) *R: A language and environment for statistical computing.* manual. Vienna, Austria. Available at: https://www.R-project.org/.

Cori, A. (2013) *EpiEstim: A package to estimate time varying reproduction numbers from epidemic curves.* manual. Available at: https://CRAN.R-project.org/package=EpiEstim.

Code Versioning (using git)

Code Changes

memore zeroising negative zo			
Remove negative excess deaths.	Louis Rossouw	<lr>souw@genre. 3/30/22</lr>	e68e56e6
Extend run-off use_days.	Louis Rossouw	<lr>souw@genre. 3/14/22</lr>	7b849326
Accept being out by ${\bf 1}$ on counts deaths in CA (spreading deaths repo	Louis Rossouw	<lr>souw@genre. 3/9/22</lr>	b2c2a3a4
Fix ZA excess deaths range for weekly excess.	Louis Rossouw	<pre><lrossouw@genre. 17="" 2="" 22<="" pre=""></lrossouw@genre.></pre>	4e0c9c33
Update packages.	Louis Rossouw	<lr><lrossouw@genre. 17="" 2="" 22<="" li=""></lrossouw@genre.></lr>	7df35861
Remove maxima on plots.	Louis Rossouw	<lr><lrossouw@genre. 1="" 22<="" 24="" li=""></lrossouw@genre.></lr>	60897450
Remove filtering of wide CIs	Louis Rossouw	<lr><lrossouw@genre. 1="" 22<="" 24="" li=""></lrossouw@genre.></lr>	a074a905
Update UK IBNR	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	23afed4d
Save UK raw data.	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	15716e38
Change the way r data files are saved for all countries.	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	457743a0
Change gap for world to 24h	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	8a40539e
Clear extra line	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	7671a4d8
Fix bug in update.R	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	123e3eae
Add logging of running_update	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	2f8c6649
Revamp update script to be clever.	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 9="" pre=""></lrossouw@genre.></pre>	a9f71153
Fix date on initial code for AU	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 6="" pre=""></lrossouw@genre.></pre>	98a3edb7
Allow for trends in ZA IBNR	Louis Rossouw	<pre><lrossouw@genre. 1="" 22<="" 6="" pre=""></lrossouw@genre.></pre>	d9b5dac9
Rename _sa_ to _za_ and _au_	Louis Rossouw	<pre><lrossouw@genre. 12="" 21<="" 29="" pre=""></lrossouw@genre.></pre>	f2b05039
Fix AU fig.cap labels	Louis Rossouw	<pre><lrossouw@genre. 12="" 21<="" 29="" pre=""></lrossouw@genre.></pre>	25ddb293
Fix AU state fig cap	Louis Rossouw	<pre><lrossouw@genre. 12="" 21<="" 29="" pre=""></lrossouw@genre.></pre>	e22ae7db
Add lib scales to scratch data history	Louis Rossouw	<pre><lrossouw@genre. 12="" 21<="" 29="" pre=""></lrossouw@genre.></pre>	93dd5b1b
Drop rna library (what was it?)	Louis Rossouw	<lrossouw@aenre. 12="" 21<="" 29="" td=""><td>2bc62c4f</td></lrossouw@aenre.>	2bc62c4f

Details of a specific change

```
estimating_r_au.Rmd
         @@ -352,11 +352,10 @@ Rt data <
              data %>% inner_join(
353 353
                unique_area_types_rcalc[i, ],
354 354
                by = c(
                   "report_date",
356 355
                   "area type",
357 356
                  "country",
358 357
                  "state",
                  "district",
359
                   "population"
360 359
361 360
362 361
         @@ -411,7 +410,7 @@ Rt_data <
411 410
412 411
413 412
414
                 c data <- a data %>% select(area type, country, state, district, type, date, count)
413
                c data <- a data %>% select(area type, country, state, population, type, date, count)
415 414
416 415
                c_Rt <- right_join(c_Rt, c_data, by = "date")</pre>
417 416
         @@ -445,7 +444,7 @@ colnames(Rt data) <- c(
445 444
          "area_type",
446 445
          "country",
447 446 "state",
448
  447
           "population
449 448
450 449
           "count"
451 450
         @@ -458,7 +457,7 @@ for (ci in c("50", "90", "95"))
458 457
            area_type = Rt_data$area_type,
459 458
            country = Rt data$country,
460 459
            state = Rt_data$state,
461
             district = Rt_data$district,
            population = Rt_data$population,
462 461
            type = Rt_data$type,
            ci = rep(paste0(ci, "%"), nrow(Rt data)),
            Rt_mean = Rt_data$Rt_mean,
```


Code = Document

R Markdown (code + document)

```
2815 - ### Reproduction Number
2817 Below current (last weekly) effective reproduction number estimates are tabulated for South Africa and by
      province.
2818
2819 - ```{r prep_table}
2820 # find the last estimates
2821 last_dates <- Rt_data %>%
2822 filter(!is.na(Rt_mean)) %>%
       group by(area_type, country, province, district, type) %>%
       summarise(date = max(date), .groups = "drop")
2825
     # construct a table with nice fields names
2826
2827 table <-
2828
       inner_join(last_dates,
2829
2830
                  by = c("area type", "country", "province", "district", "type", "date")) %>%
2831
        select(-count) %>%
2832
       inner_join(
2833
         inner_join(
2834
           inner_join(
2835
             last dates,
2836
             Rt_data,
2837
             by = c("area_type", "country", "province", "district", "type", "date")
2838
2839
             select(area_type, country, province, district, type, date_start, date_end),
2840
            Rt data %>% select(area type, country, province, district, type, date, count),
            hy - c("area tyne" "country" "nrovince" "district" "tyne
```

Output

5.1.11 Reproduction Number

Below current (last weekly) effective reproduction number estimates are tabulated for South Africa and by province.

Estimated Effective Reproduction Number for South Africa

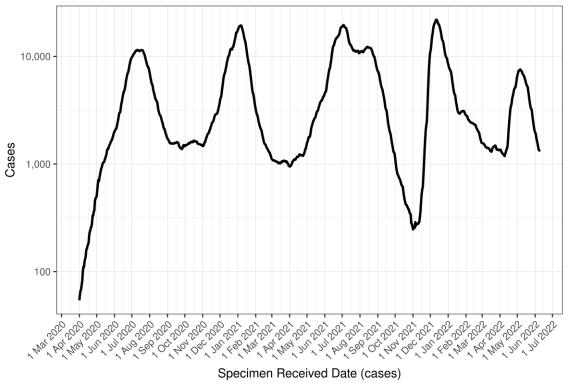
			Week	
	Туре	Count (Per Day)	Ending	Reproduction Number [95% Confidence Interval]
South Africa	cases	4,789	2022-04-27	1.54 [1.42 - 1.69]
South Africa	hospital_admissions	216	2022-04-28	0.97 [0.86 - 1.09]

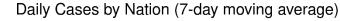
Estimated Effective Reproduction Number by Province

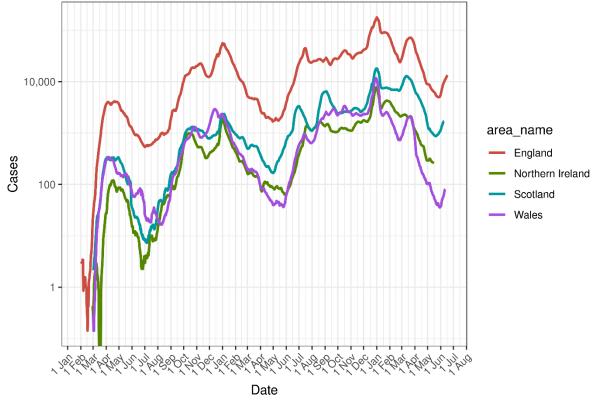
			Week	
Province	Туре	Count (Per Day)	Ending	Reproduction Number [95% Confidence Interval]
Eastern Cape	cases	167	2022-04-27	1.27 [1.17 - 1.39]
Eastern Cape	hospital_admissions	6	2022-04-28	1.09 [0.79 - 1.44]
Free State	cases	173	2022-04-27	1.93 [1.72 - 2.14]
Free State	hospital_admissions	9	2022-04-28	1.18 [0.90 - 1.50]
Gauteng	cases	2,346	2022-04-27	1.52 [1.41 - 1.64]
Gauteng	hospital_admissions	85	2022-04-28	0.74 [0.59 - 0.92]
KwaZulu-Natal	cases	1,102	2022-04-27	1.63 [1.47 - 1.81]
KwaZulu-Natal	hospital_admissions	58	2022-04-28	1.41 [1.24 - 1.61]
Limpopo	cases	55	2022-04-27	2.00 [1.70 - 2.32]
Limpopo	hospital_admissions	4	2022-04-28	1.32 [0.86 - 1.89]
Mpumalanga	cases	120	2022-04-27	1.63 [1.47 - 1.81]
Mpumalanga	hospital_admissions	7	2022-04-28	1.40 [1.03 - 1.84]
North West	cases	111	2022-04-27	1.74 [1.57 - 1.92]
North West	hospital admissions	9	2022-04-28	0 70 f0 43 - 1 091

The IFoA Conference 2022

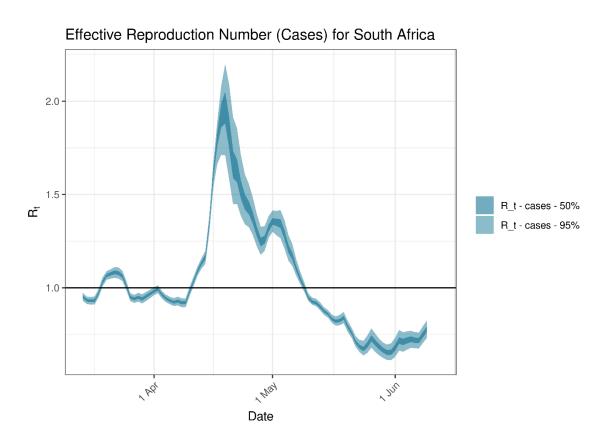
Other automation enablers


- Reproducible
 - Environment
 - Same data, same result
- Code contains all steps
 - No manual steps



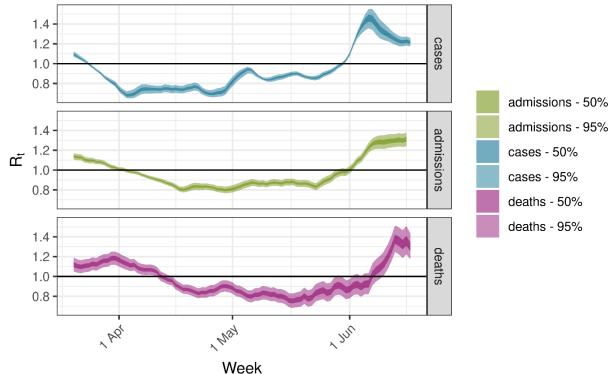


Results - Cases



https://unsupervised.online/static/covid-19/estimating r za.html

https://unsupervised.online/static/covid-19/estimating_r_uk.html



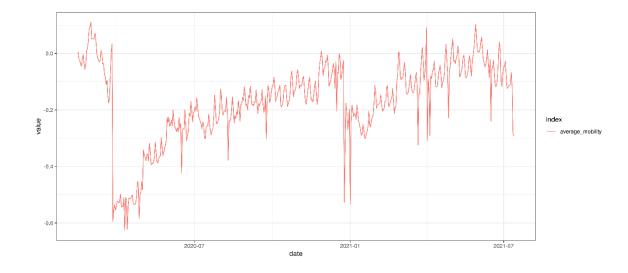
Reproduction number

https://unsupervised.online/static/covid-19/estimating r za.html

Effective Reproduction Number for England

https://unsupervised.online/static/covid-19/estimating_r_uk.html

South African Crude Ratios Per Wave

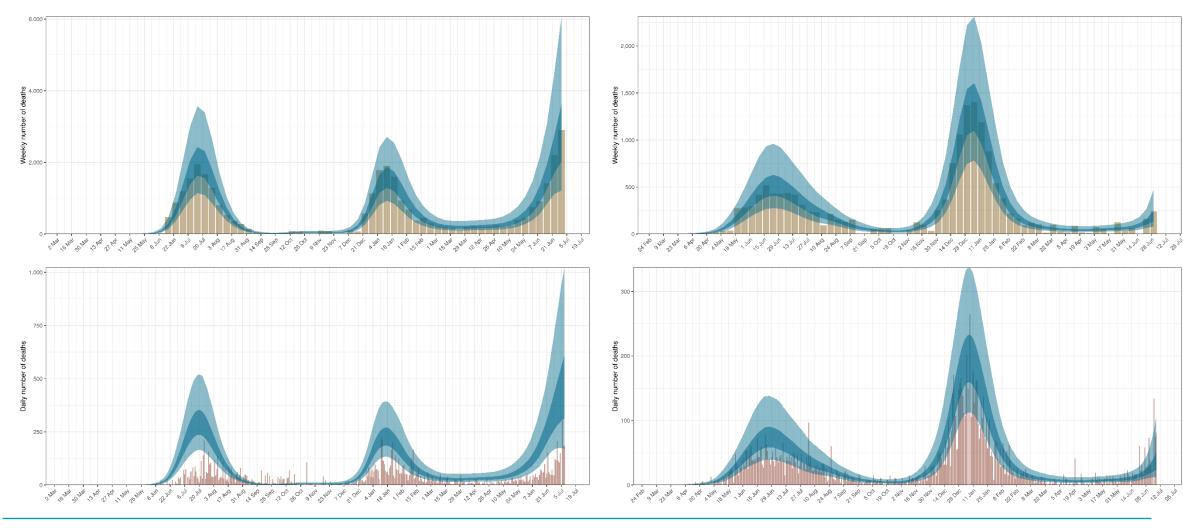

Wave	Case Admission Ratio	Case Fatality Ratio	Case Excess Deaths Ratio	Hospital Fatality Ratio	Death Reporting Ratio
Wave 1	10.2%	1.87%	7.01%	18.3%	26.7%
Wave 2 (Beta)	20.3%	4.40%	12.36%	21.7%	35.6%
Wave 3 (Delta)	13.4%	3.10%	8.36%	23.1%	37.0%
Wave 4 (Omicron)	9.8%	0.95%	4.45%	9.7%	21.4%
Wave 5 (BA.4/BA.5)	9.3%	0.72%	5.05%	7.7%	14.2%

 $\underline{\text{https://unsupervised.online/static/covid-19/estimating} \ r \ za.html}$

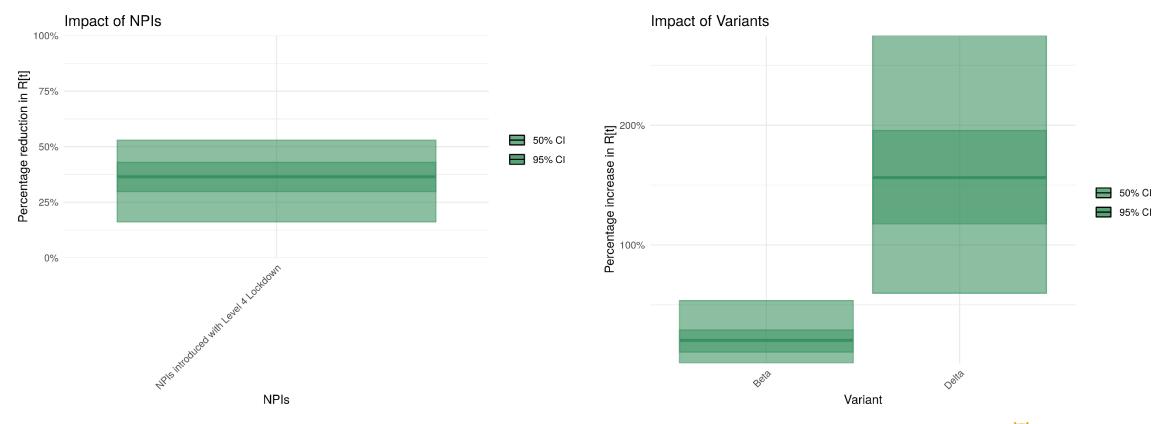
Modelling

- Bayesian Hierarchical Model to calibrate model parameters based on observed death data and prior assumptions
- Reproductive number is linked to mobility data as well as mask wearing laws
- Reproductive number generates infections
- Population weighted IFRs to model deaths from infections
- Single combined model for all provinces
- Allows for uncertainty
 - Prior assumptions
 - Updated posteriour distributions
 - Projections allow for parameter uncertainty
- No allowance for vaccines.

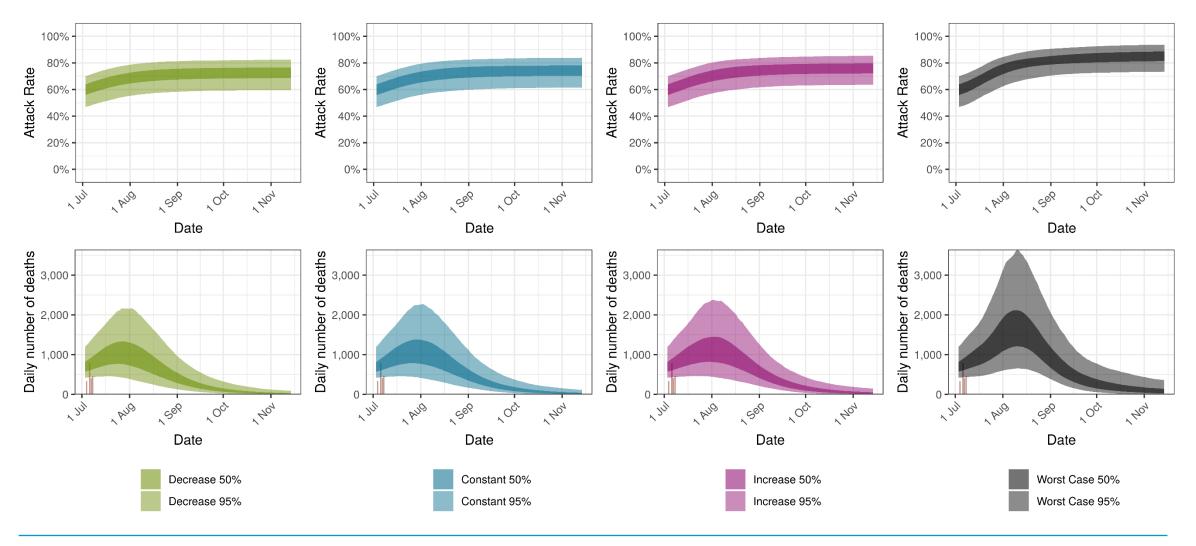
Online model:


South Africa by Province

Calibration to Excess Deaths


Reported deaths shown for reference

Gauteng



Western Cape

Parameters and uncertainty

Projections – South Africa

Predictions

"Nowcast" estimates as of 8 July 2021

Province	Attack Rate	Cumulative Deaths	
South Africa	61.6% [48.6%-72.0%]	173 450 [155 890 – 192 740]	

"Worst-case" predictions to December 2021

Scenario	Attack Rate	Cumulative Deaths
Worst Case	85.0% [73.6%-93.7%]	273 152 [221 026 – 355 246]
No Change	74.0% [61.6%-83.9%]	237 368 [198 504 – 293 123]

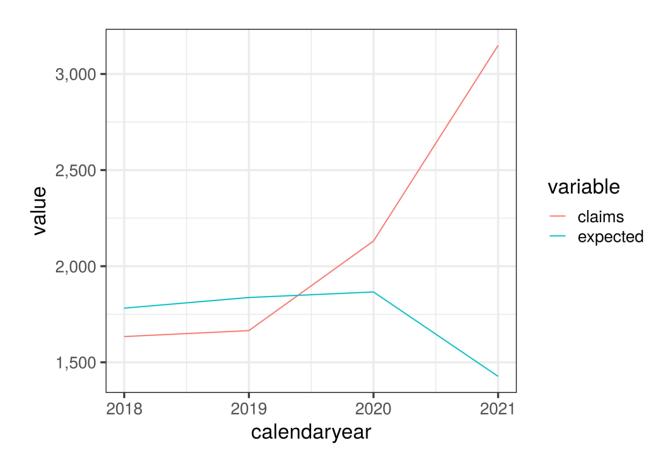
Thinking past COVID-19?

Actuaries need to handle uncertainty in many contexts

Prior Views

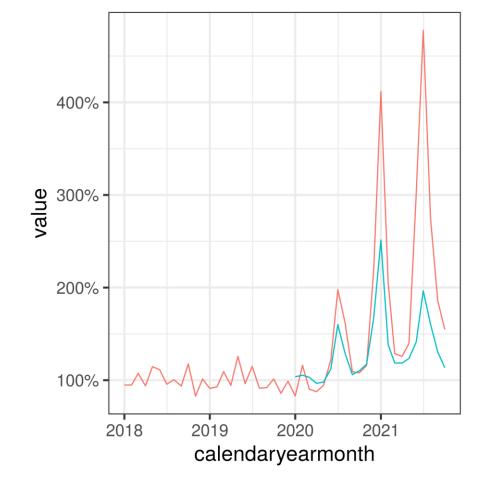
- Prior studies
- Judgement
- Population data
- Emerging risks

Data


Posterior

- Updated distributions
 - New mean
 - Updated uncertainty
- Reflecting combination
- Very complex models

Insured Experience 2020-2021


- Claims well over expected
- Understand patterns in experience
- Underlying experience?

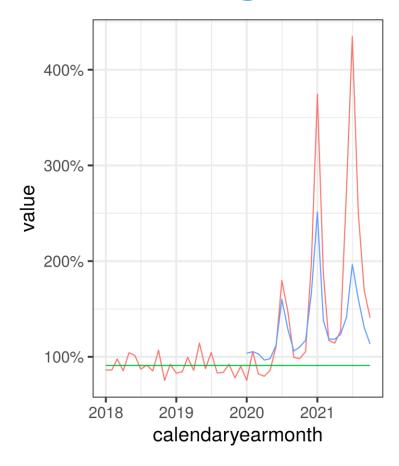
Step 1: Break-down exposure

- Monthly exposure and claims
- Insured experience worse?
- Median age in population <25
- Insured much older.

variable

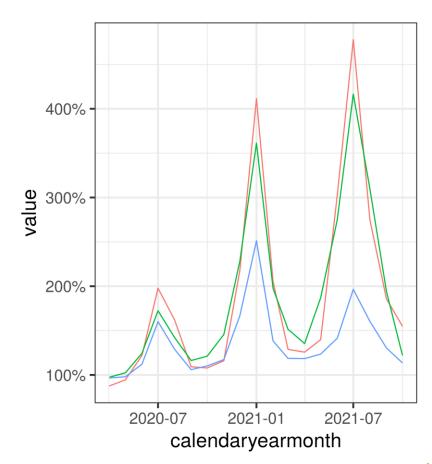
- actual_factor
- pop_actual_factor

Step 2: Model


Model structure

$$\log\left(\frac{actual}{expected}\right) \sim \sum_{i} x_{i} \beta_{i} + x^{covid} \sum_{i} x'_{i} \beta'_{i}$$

- x^{covid} is an indicator variable (0 before April 2020, otherwise 1)
- Additionally, the second term contains shape adjustments on a monthly basis
 - Allows approximate matching of experience by month
 - Allows contains terms for age, gender, face bands etc
- In theory we can separate out the underlying experience $\sum_i x_i \beta_i$ from the COVID-19 experience $x^{covid} \sum_i x'_i \beta'_i$
- Penalised regression to select variables.



Modelling Results Overview

variable

- actual_v_expected
- base_v_expected
- pop_actual_v_expected

variable

- actual factor
- covid_model_factor
- pop_actual_factor

Results – Two ways to measure excess

Relative (%)

Additional Excess

Actual

$$\frac{actual}{expected \cdot e^{\sum_i x_i \beta_i}}$$

Modelled

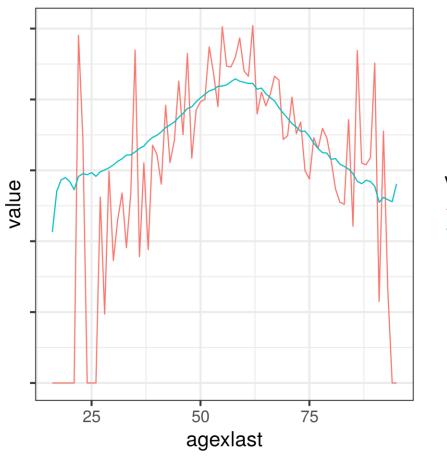
$$\frac{expected \cdot e^{\sum_{i} x_{i} \beta_{i} + x^{covid} \sum_{i} x_{i} \beta_{i}}}{expected \cdot e^{\sum_{i} x_{i} \beta_{i}}}$$

Excess mortality as percentage of the underlying

Actual

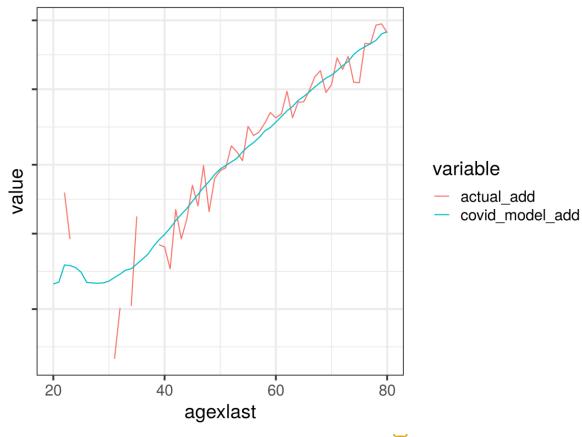
$$\frac{actual - expected \cdot e^{\sum_{i} x_{i}\beta_{i}}}{exposure}$$

Modelled

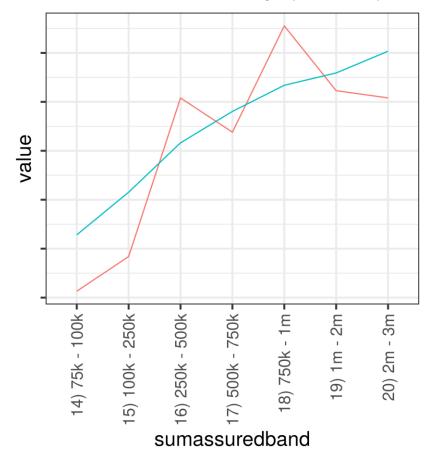

$$\frac{expected \cdot e^{\sum_{i} x_{i}\beta_{i} + x^{covid} \sum_{i} x_{i}\beta_{i}} - expected \cdot e^{\sum_{i} x_{i}\beta_{i}}}{exposure}$$

Additional central mortality rate per annum.

By Ages

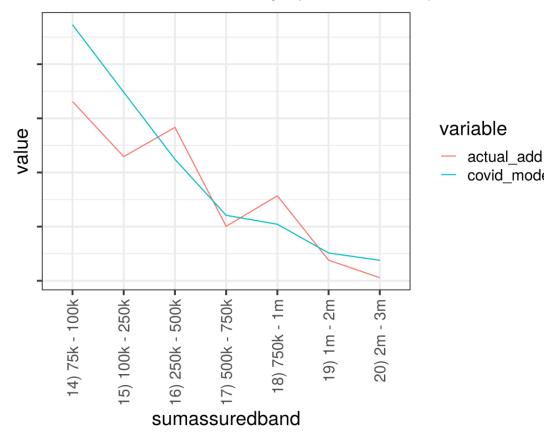

Excess Mortality (Factor)

variable


- actual_factor
- covid_model_factor

Excess Mortality (Additional)

Sum Assured Bands

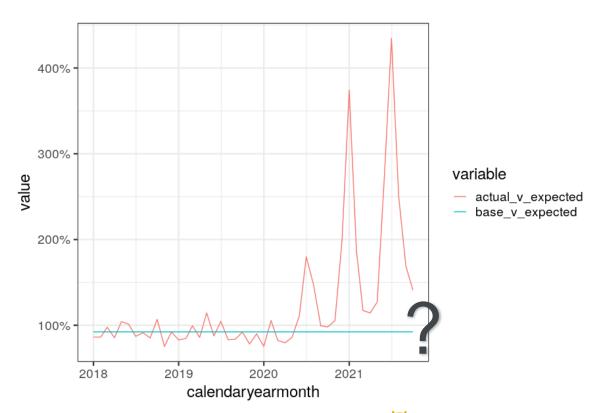

Excess Mortality (Factor)

variable

- actual_factor
- covid model factor

Excess Mortality (Additional)

covid model add


Other insights from experience

- Later waves had relatively worse experience at higher sums assured
- Later waves experience was relatively worse at younger age bands
- Standard vs. non-standard experience similar in relative terms

Problem Solved?

- A bridge too far?
- Some "post-COVID" experience would be useful
- Extreme example
- Helps understand underlying patterns
- Informed decision making
 - Requiring judgement
 - Allowance for outlook
- Monitoring.

Advancing Analytics with COVID-19

- "Standing on the shoulders of giants"
 - Open data
 - Open packages
 - Collaboration gets things done
- Code tracking

- Automation is key
- Uncertainty
 - Parameter
 - Systemic
- Parameter uncertainty
- Judgement required

Questions

Comments

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

Thank You

Louis Rossouw

LRossouw@GenRe.com

Rob Kaner

Robert.Kaner@GenRe.com

