

Progress Update for the Working Party: 'Uncertainty of the 99.5th Percentile and Other Tail Statistics' ("99.5th & OTS WP") Edward Toman

Agenda

- Scope & Workstreams
- Preliminary Results: Parameter Uncertainty
- Plans for 2018/19

Workstreams

- Workstream 0
 - Gather existing work so far into a single reference document
- Workstream 1
 - Investigate parameter and model uncertainty
 - Focus for 2017/18 has been parameter uncertainty
- Workstream 2
 - Create a survey to gauge practitioners thoughts around percentile and tail statistic estimation
- Workstream 3
 - Investigate industry data and build benchmarks if possible

Institute and Faculty of Actuaries

Workstream 1

Parameter Uncertainty

25 October 2018

Key assumptions, Caveat, Request

- Assumptions
 - No model error
 - No need to adjust data
 - Missing
 - Trends (inflation, exposure)
 - To ultimate
 - Copula forms and strengths are known
- Caveat: Results draft & subject to peer-review & replication
- Request: Any other questions you'd like us to investigate

Methodology: Proxy parameter-setting process to build up a distribution of estimates

For a single 'line of business':

- 1. Simulate true distribution (5k, stratified)
- 2. Sample *n* data points (5k)
- 3. Fit using MLE assuming true distribution known (i.e. no model error)
- 4. Simulate from the fitted distribution (5k, stratified, for each of the 5k fitted)
- 5. Calculate statistics of interest of the fitted distribution (i.e. 5k of simulated statistics)

For multiple lines of business:

- Do the same but for *m* lines. Assume all lines identical.
- Correlate assuming copula and copula strength is known
- Calculate statistics on the aggregate distribution

Parameter Combinations

- Distributions: Gamma, Lognormal, Pareto
- CoVs: 5%, 20%, 40%, 100%, 200%
- Data pts: 5, 10, 15, 20, 25, 100
- LoB Counts: 1, 5, 10, 20, 50, 100 (for selected combinations)
- Copulas & strengths:
 - Gaussian: 0, 0.25, 0.5, 0.95
 - Gumbel: 1, 1.2, 1.53, 5.5

Base Distribution: Lognormal, 20%CV, 10 data pts

Distribution	Mean	95 th P	99.5 th P
True	100.0	135.8	163.5
E[MLE]	100.0	133.1	158.6
Bias (%)	0.0%	-2.0%	-3.0%
SD[MLE]	6.3	12.8	20.9
CV[MLE]	6.3%	9.6%	13.2%
95% CI as %True	[-12%, 13%]	[-19%, 18%]	[-25%, 25%]

- MLE estimation of percentiles is biased for Lognormal (and under)
- Bias is small (but not insignificant) next to CV[MLE]
- Both bias and CV grow as percentile increases
- 95%CI means 95% of sims in [-x%,+y%] of True stat

Vary sample size: Examine Bias (Lognormal, 20%CV)

Distribution	Mean		95 ^{ti}	h P	99.5 th P	
True	100.0		135.8		163.5	
Sample Size	E[MLE]	Bias %	E[MLE]	Bias %	E[MLE]	Bias %
5	100.0	0.0%	130.2	-4.1%	153.4	-6.2%
10	100.0	0.0%	133.1	-2.0%	158.6	-3.0%
20	100.0	0.0%	134.5	-1.0%	161.1	-1.5%
100	100.0	0.0%	135.6	-0.1%	163.1	-0.2%

- Bias decreases proportionately up to n=20
 - (n=100 seems to do better than this)

Vary sample size: Examine CV[MLE] and 95% CI (Lognormal, 20%CV)

Distribution	Mean		ibution Mean 95 th P		99.5	5 th P
True		100.0		135.8		163.5
Sample Size	CV[MLE]	95% CI	CV[MLE]	95% CI	CV[MLE]	95% CI
5	8.8%	[-16%, 19%]	13.5%	[-26%, 24%]	18.5%	[-33%, 34%]
10	6.3%	[-12%, 13%]	9.6%	[-19%, 18%]	13.2%	[-25%, 25%]
20	4.5%	[-8%, 9%]	6.8%	[-13%, 13%]	9.2%	[-18%, 18%]
100	2.0%	[-4%, 4%]	3.0%	[-6%, 6%]	4.1%	[-8%, 8%]

- CV and Confidence Intervals decrease proportionately to \sqrt{n}
 - As predicted by MLE theory
- Adjust values accordingly in later slides if required
- Need about 65 data pts for +/-10% LN(20%CV)

Vary CV: Examine CV[MLE] and 95% CI (Lognormal, 10 data pts)

Distribution	Mean		ution Mean 95 th P		99.5 th P	
True		100.0		135.8		163.5
CV	CV[MLE]	95% CI	CV[MLE]	95% CI	CV[MLE]	95% CI
5%	1.6%	[-3%, 3%]	2.4%	[-5%, 4%]	3.3%	[-7%, 6%]
20%	6.3%	[-12%, 13%]	9.6%	[-19%, 18%]	13.2%	[-25%, 25%]
40%	12.6%	[-22%, 26%]	18.9%	[-34%, 38%]	26.2%	[-43%, 55%]
100%	31.6%	[-46%, 75%]	43.1%	[-59%, 101%]	62.6%	[-70%, 157%]
200%	64.3%	[-66%, 174%]	72.0%	[-74%, 189%]	112.4%	[-84%, 327%]

CV[MLE] seems to be approximately linear to CV of underlying distribution

Vary Distribution: Examine CV[MLE] and 95% CI (CV 20%, 10 data pts)

Distribution	Mean		95 th P		99.5 th P	
True	100.0		G=135.0; LN=135.8; P=136.7		G=159.3; LN=163.5; P=200.0	
CV	CV[MLE]	95% CI	CV[MLE]	95% CI	CV[MLE]	95% CI
Gamma	6.4%	[-12%, 13%]	8.8%	[-18%, 16%]	11.3%	[-23%, 20%]
Lognormal	6.3%	[-12%, 13%]	9.6%	[-19%, 18%]	13.2%	[-25%, 25%]
Pareto	6.3%	[-9%, 15%]	15.7%	[-24%, 35%]	29.2%	[-39%, 68%]

- CV[MLE] seems to increase with tail severity
- Note 95P close for all distributions, 99.5P different for Pareto

Increase 'Lines of Business': (Lognormal, 20% CV, 10 data pts, Gaussian Copula 0.25)

Distribution	Mean		95 th	95 th P		99.5 th P	
True Values by LoB Count		I,000 2,000 5,000 10,000		,197 2,390 5,932 11,816	1 1	1,331 2,604 6,439 12,888	
#LoBs	CV[MLE]	95% CI	CV[MLE]	95% CI	CV[MLE]	95% CI	
1	6.3%	[-12%, 13%]	9.6%	[-19%, 18%]	13.2%	[-25%, 25%]	
5	2.8%	[-5%, 5%]	3.6%	[-8%, 6%]	4.6%	[-10%, 7%]	
10	2.0%	[-4%, 4%]	2.5%	[-6%, 4%]	3.1%	[-7%, 5%]	
20	1.4%	[-3%, 3%]	1.7%	[-5%, 2%]	2.2%	[-5%, 4%]	
50	0.9%	[-2%, 2%]	1.1%	[-4%, 1%]	1.5%	[-3%, 2%]	
100	0.6%	[-1%, 1%]	0.8%	[-3%, 0%]	1.1%	[-3%, 1%]	

- Assumes Copula and strength is known
- Holding underlying CV constant: generally LoBs ↑, individual CVs ↑
- Gaussian copula tail-independence cause •

of 95th and 99.5th about the same for 50 and 100 LoB counts?

Note sim error greater here than for 1 LoB

CV[MLE] reduces like \sqrt{m}

Institute and Faculty of Actuaries

25 October 2018

Increase 'Lines of Business': (Lognormal, 20% CV, 10 data pts, Gumbel Copula 1.2)

Distribution	Mean		95 th	95 th P		99.5 th P	
True Values by LoB Count		100 500 1,000 2,000 5,000 10,000		,221 2,442 5,023 12,214	164 745 1,516 3,044 7,376 14,782		
#LoBs	CV[MLE]	95% CI	CV[MLE]	95% CI	CV[MLE]	95% CI	
1	6.3%	[-12%, 13%]	9.6%	[-19%, 18%]	13.2%	[-25%, 25%]	
5	2.8%	[-6%, 6%]	3.7%	[-8%, 6%]	5.2%	[-11%, 9%]	
10	2.0%	[-4%, 4%]	2.6%	[-6%, 4%]	3.9%	[-10%, 4%]	
20	1.4%	[-3%, 3%]	1.8%	[-5%, 2%]	2.8%	[-9%, 2%]	
50	0.9%	[-2%, 2%]	1.2%	[-3%, 2%]	2.0%	[-5%, 3%]	
100	0.6%	[-1%, 1%]	0.9%	[-4%, 0%]	1.6%	[-5%, 2%]	

- Gumbel 1.2 gives about 0.25 Rank
 Correlation
- Assumes Copula and strength is known
- Note True 95th percentiles reasonably

similar but up to 15% increase in 99.5th capital from changing copula for these params

• Greater CV[MLE] and range with Gumbel

Summary of preliminary results

- Reiterating the following assumptions:
 - Underlying distributions and copulas (and copula strengths) are known
 - No adjustments needed to data (inflation, to ultimate etc)
 - MLE used to estimate params
 - 95% CI is reasonable
 - Uncertainty is CV of the implied MLE dists

- Results
 - Uncertainty (of estimates) decreases per \sqrt{n} , number of data points
 - Uncertainty increases linearly in the CV of underlying distribution
 - For distributions 'like' LN(20%CV) need about 65 data points before 95% of 99.5P estimates +/-10% of True 99.5P
 - Uncertainty reduces like \sqrt{m} for LoBs*
 - Uncertainty (per CV) of 95P not massively less than 99.5P
- Out of interest: Two examples of model error being more significant at 99.5P vs 95P:
 - Gamma, LN and Pareto (20%CV) all close at 95P
 - Normal (0.25) and Gumbel (1.2) close at 95P

2018/9 work

- Workstream 1
 - Replicate using open-source (any R volunteers?)
 - Compound distributions
 - Copula strength and form estimation
 - Model error
 - How often does a different distribution give a better fit to sample data vs the true distribution?
 - How does this vary if data points (e.g. extremes) are removed?
- Workstream 2
 - Work towards creating a survey

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

