

Self-assembling insurance claim models using regularized regression and machine learning

Gráinne McGuire Taylor Fry

Greg Taylor University of New South Wales • Joint work with

Hugh Miller, Taylor Fry

Josephine Ngan, University of New South Wales

- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

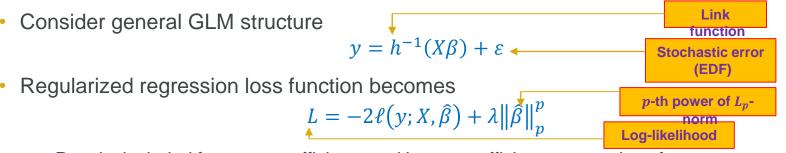
- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

Motivation

- We consider the modelling of claim data sets containing complex features
 - Where chain ladder and the like are inadequate (examples later)
- When such features are present, they may be modelled by means of a Generalized Linear Model (GLM)
- But construction of this type of model requires many hours (perhaps a week) of a highly skilled analyst
 - Time-consuming
 - Expensive
- Objective is to consider more automated modelling that produces a similar GLM but at much less time and expense

- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

Regularized regression and the LASSO



- Penalty included for more coefficients and larger coefficients, so tends to force parameters toward zero
 - $\lambda \rightarrow 0$: model approaches conventional GLM
 - $\lambda \rightarrow \infty$: all parameter estimates approach zero
 - Intermediate values of λ control the complexity of the model (number of non-zero parameters)
- Special case: p = 1, Least Absolute Square Shrinkage Operator (LASSO)

$$L = -2\ell(y; X, \hat{\beta}) + \lambda \sum_{j} |\beta_j|$$

- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

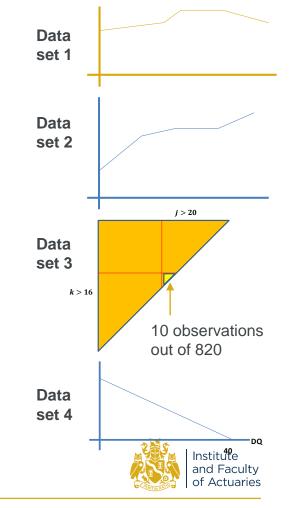
Synthetic data sets: construction

- Purpose of synthetic data sets is to introduce known trends and features, and then check the accuracy with which the lasso is able to detect them
- 4 data sets with different underlying model structures considered
 - In increasing order of stress to the model
- Notation
 - k = accident quarter (= 1, 2, ..., 40)
 - j = development quarter (= 1, 2, ..., 40)
 - t = k + j 1 = payment quarter
 - Y_{kj} = incremental paid losses in (k, j) cell
 - $\mu_{kj} = E[Y_{kj}], \sigma_{kj}^2 = Var[Y_{kj}]$
 - Assumed that $ln \mu_{kj} = \alpha_k + \beta_j + \gamma_t$ (generalized chain ladder)

Synthetic data sets: features

 $ln\,\mu_{kj} = \alpha_k + \beta_j + \gamma_t$

- **Data set 1:** β_j follows Hoerl curve as function of *j*, $\gamma_t=0$ (no payment year effect), α_k as in diagram
- **Data set 2:** α_k , β_j as for data set 1, γ_t as in diagram
- Data set 3: α_k, β_j as for data sets 1&2, γ_t as for data set 2, AQ-DQ interaction (35% increase) as in diagram
- **Data set 4:** $ln \mu_{kj} = \alpha_k + \beta_j + \theta_j \gamma_t$, α_k , β_j as for data sets 1-3, γ_t as for data sets 2&3, θ_j as in diagram

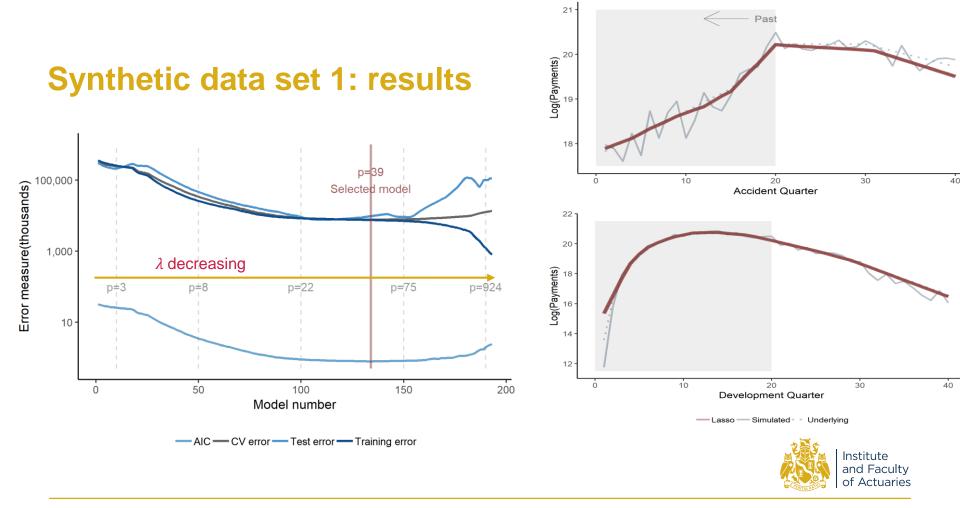


Model formulation, selection and performance measurement

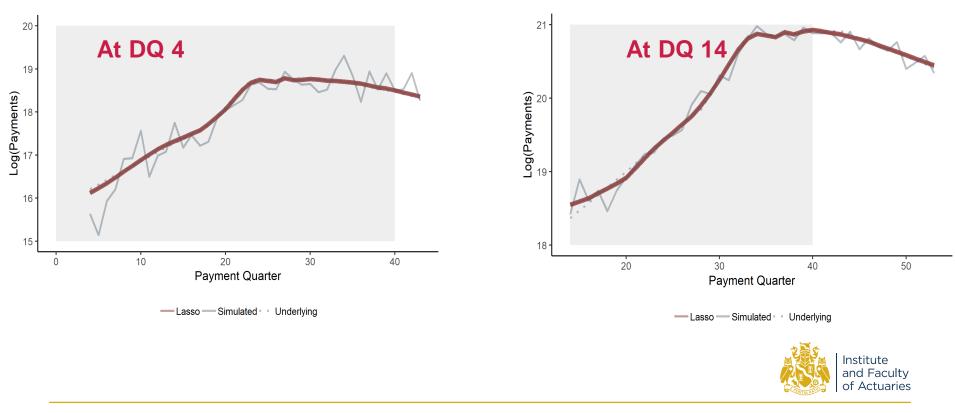
- Model formulation
 - Regressors consist of set of basis functions that form a vector space:
 - All single-knot linear spline functions of k, j, t
 - All 2-way interactions of Heaviside functions of k, j, t
- Model selection
 - For each λ , calculate 8-fold cross-validation error
 - Select model with minimum CV
 - Forecast with extrapolation of any PQ trend (to be discussed later)
- Model performance
 - AIC
 - Training error [sum of (actual-fitted)2/fitted values for training data set]
 - Test error [sum of (actual-fitted)2/fitted values for test data set] (N.B. unobservable for real data)

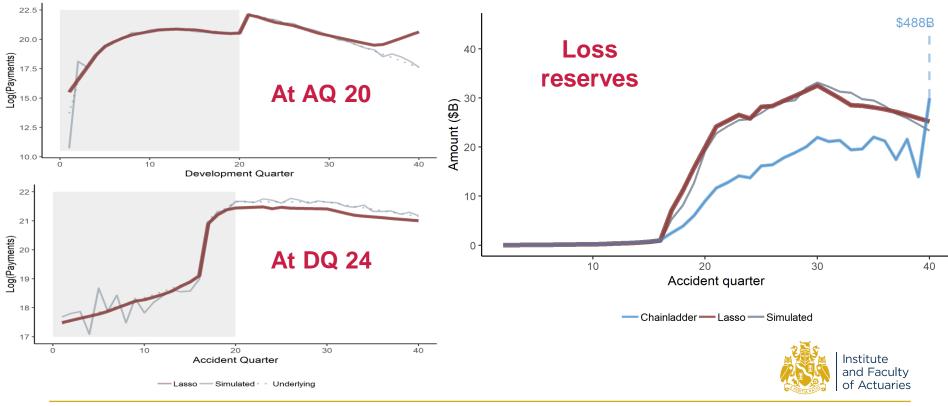
Spline

Heaviside function



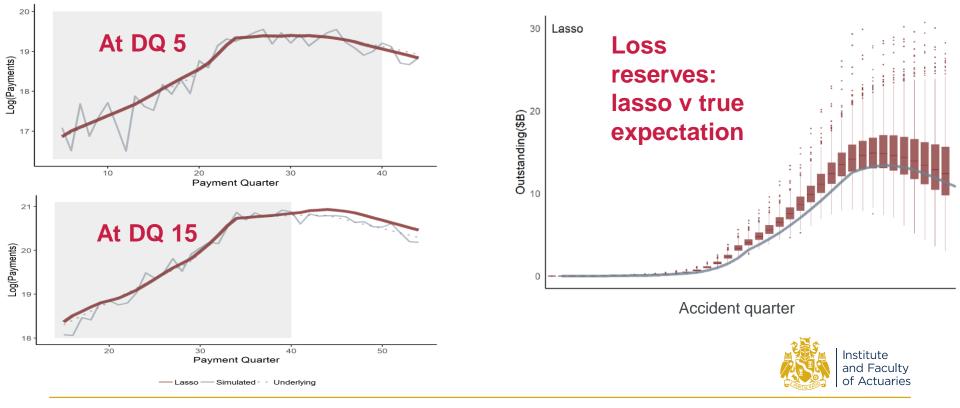
Synthetic data set 2: results





06 September 2018

Synthetic data set 4: results



06 September 2018

- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

Real data: nature of data set

- Motor Bodily injury (moderately long tail)
- (Almost) all claims from one Australian state
 - AQ 1994M9 to 2014M12
 - About 139,000 claims
 - Cost of individual claim finalizations, adjusted to 31 December 2014 \$
 - Each claim tagged with:
 - Injury severity score ("maislegal") 1 to 6 and 9
 - Legal representation: maislegal set to 0 for unrepresented severity 1 claims
 - Its operational time (OT), proportion of AQ's ultimate number of claims finalized up to and including it

Real data: known data features

- Collectively, presenters have worked continually with data set for about 17 years
- The Civil Liability Act affected AYs ≥ 2003
 - Eliminated many small claims
 - Reduced the size of some other small to medium claims
- There have been periods of material change in the rate of claim settlement
- There is clear evidence of superimposed inflation (SI)
 - This has been irregular, sometimes heavy, sometime non-existent
 - SI has tended to be heavy for smallest claims, and non-existent for largest claims

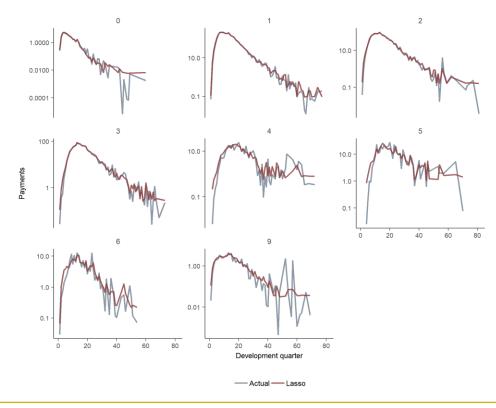
Real data: lasso model

- Lasso applied to the data set summarized into quarterly cells
 - This summary is not theoretically essential but reduces computing time
- Basis functions:
 - Indicator function for severity score (maislegal)
 - All single knot linear splines for OT, PQ
 - All 2-way interactions of maislegal*(OT or PQ spline)
 - All 3-way interactions maislegal*(AQ*OT or PQ*OT Heaviside)

Forecasts do NOT extrapolate any PQ trend

- Model contains 94 terms
 - Average of about 12 per injury severity
- By comparison, the custom-built consultant's GLM included 70 terms

Real data: model fit by DQ



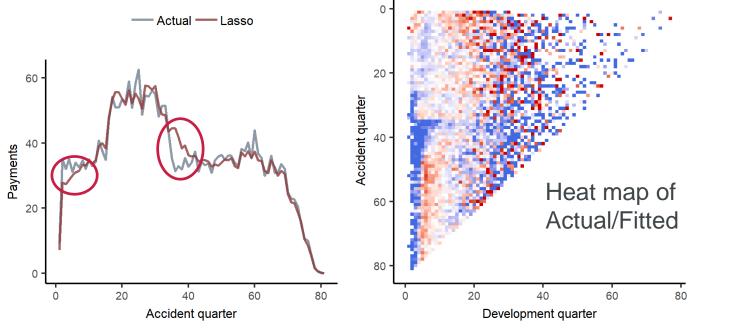
Payments have been scaled.

Real data: model fit by PQ



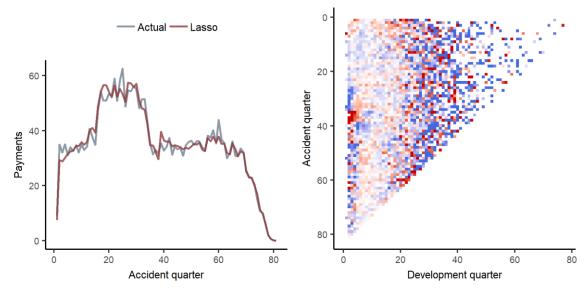
----- Actual ------ Lasso

Real data: model fit by AQ (injury severity 1)



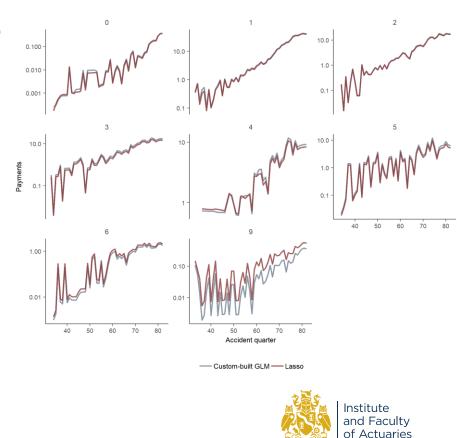
Real data: known data features

- Failure of fit results from data features that were known in advance
 - Legislative change affecting AQ ≥ 35
- Perverse to ignore it in model formulation
- Introduce a few simple interactions between injury severity, AQ, OT without penalty
 - Brief side investigation required to formulate these
- Model fit considerably improved



Real data: Human vs Machine

- Same data set modelled with GLMs for many years as part of consulting assignment
 - Separate GLM for each injury severity
 - Many hours of skilled consultant's time
- Loss reserves from two sources very similar
 - Note that severity 9 is a small and cheap category
- BUT consultant's analysis
 - More targeted
 - Less abstract
 - Conveys greater understanding of claim process



- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

Discussion: feature selection

- How many covariates out of AQ, DQ, PQ should be included?
 - Usually at least 2
 - But 3 will generate collinearity
 - Enlarges model dimension
 - May cause mis-allocation of model features between among dimensions
 - So caution before introducing 3
- Make use of feature selection where features are known/strongly suspected

- Implications for forecasting
- Forecasts depend on future PQ effects
 - Should these be extrapolated?
 - How will forecasts be affected by mis-allocation?
- Proposition. Consider data set containing DQ and PQ effects but no AQ effect. Let *M*1 denote model containing explicit DQ, PQ effects but no AQ effect. Let *M*2 denote identical model except that also contains explicit AQ effects. Then, in broad terms, *M*1 and *M*2 will generate similar forecasts of future claim experience if each extrapolates future PQ effects at a rate representative of that estimated for the past by the relevant model.

Discussion: interpretability

- Most machine learning models subject to the interpretability problem
 - Model is an abstract representation of the data
 - May not carry an obvious interpretation of model's physical features
 - Physical interpretation usually possible, but requires some analysis for visualization

Discussion: miscellaneous matters

- Prediction error
 - Bootstrap can be bolted onto lasso
 - Preference for non-parametric bootstrap
 - Computer-intensive if min CV chosen separately for each replication
 - Lasso for real data
 - 20 minutes without CV
 - 41/2 hours with CV
 - Bootstrap will include at least part of internal model error, but not external model error

- Model thinning
 - Most appropriate distribution provided by lasso software *glmnet* is Poisson
 - Low significance hurdle
 - Reduce number of parameters by applying GLM with gamma error and same covariates as lasso
 - Model performance sometimes degraded, sometimes not
- Bayesian lasso
 - Lasso can be given a Bayesian interpretation
 - Laplacian prior with λ as dispersion parameter
 - Software (Stan) then selects λ according to defined performance criterion

- Motivation
- Regularized regression and the LASSO
- Case studies
 - Synthetic data
 - Real data
- Discussion
- Conclusions

Conclusions (1)

- Objective was to develop an automated scheme of claim experience modelling
- Routine procedure developed
 - Specify basis functions and performance criteria
 - Then model self-assembles without supervision
- Tested against both synthetic and real data, with reasonable success
 - Lasso succeeds in modelling simultaneous row, column and diagonal features that are awkward for traditional claim modelling approaches
- Procedure is applicable to data of any level of granularity

Conclusions (2)

- Some changes of unusual types may be difficult for an unsupervised model to recognize
 - If these are foreseeable, a small amount of supervision might be added with minimal loss of automation
- Standard bootstrapping can be bolted on for the measurement of prediction error
 - Uniquely, this can be formulated so as to incorporate part of model error (internal systemic error) within estimated prediction error
- As with any form of unsupervised learning, strong back-end supervision is recommended

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [*or authors, in the case of non-IFoA research*].

