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Motivation 

• We consider the modelling of claim data sets containing complex features

– Where chain ladder and the like are inadequate (examples later)

• When such features are present, they may be modelled by means of a Generalized 

Linear Model (GLM)

• But construction of this type of model requires many hours (perhaps a week) of a highly 

skilled analyst

– Time-consuming

– Expensive

• Objective is to consider more automated modelling that produces a similar GLM but at 

much less time and expense
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Regularized regression and the LASSO

• Consider general GLM structure

𝑦 = ℎ−1 𝑋𝛽 + 𝜀

• Regularized regression loss function becomes

𝐿 = −2ℓ 𝑦; 𝑋,  𝛽 + 𝜆  𝛽
𝑝

𝑝

– Penalty included for more coefficients and larger coefficients, so tends to force parameters 

toward zero

• 𝜆→0: model approaches conventional GLM

• 𝜆→∞: all parameter estimates approach zero

• Intermediate values of 𝜆 control the complexity of the model (number of non-zero parameters)

– Special case: 𝑝 = 1, Least Absolute Square Shrinkage Operator (LASSO)

𝐿 = −2ℓ 𝑦; 𝑋,  𝛽 + 𝜆  

𝑗

𝛽𝑗
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Synthetic data sets: construction

• Purpose of synthetic data sets is to introduce known trends and features, and then 

check the accuracy with which the lasso is able to detect them

• 4 data sets with different underlying model structures considered

– In increasing order of stress to the model

• Notation

 𝑘 = accident quarter (= 1,2, . . , 40)

 𝑗 = development quarter (= 1,2, . . , 40)

 𝑡 = 𝑘 + 𝑗 − 1 = payment quarter

 𝑌𝑘𝑗 = incremental paid losses in (𝑘, 𝑗) cell

 𝜇𝑘𝑗 = 𝐸 𝑌𝑘𝑗 , 𝜎𝑘𝑗
2 = 𝑉𝑎𝑟 𝑌𝑘𝑗

 Assumed that 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝛾𝑡 (generalized chain ladder)
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Synthetic data sets: features

𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝛾𝑡

• Data set 1: 𝛽𝑗 follows Hoerl curve as function of 𝑗,  

𝛾𝑡=0 (no payment year effect),  𝛼𝑘 as in diagram

• Data set 2: 𝛼𝑘 , 𝛽𝑗 as for data set 1, 𝛾𝑡 as in diagram

• Data set 3: 𝛼𝑘 , 𝛽𝑗 as for data sets 1&2, 𝛾𝑡 as for data 

set 2, AQ-DQ interaction (35% increase) as in 

diagram

• Data set 4: 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝜽𝒋𝛾𝑡, 𝛼𝑘 , 𝛽𝑗 as for data 

sets 1-3, 𝛾𝑡 as for data sets 2&3, 𝜃𝑗 as in diagram
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Model formulation, selection and performance 

measurement
• Model formulation

– Regressors consist of set of basis functions that form a vector space:

• All single-knot linear spline functions of 𝑘, 𝑗, 𝑡

• All 2-way interactions of Heaviside functions of 𝑘, 𝑗, 𝑡

• Model selection

– For each 𝜆, calculate 8-fold cross-validation error

– Select model with minimum CV

– Forecast with extrapolation of any PQ trend (to be discussed later)

• Model performance

– AIC

– Training error [sum of (actual-fitted)2/fitted values for training data set]

– Test error [sum of (actual-fitted)2/fitted values for test data set] (N.B. unobservable for real data)
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Synthetic data set 1: results
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𝜆 decreasing



Synthetic data set 2: results
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Synthetic data set 3: results
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Synthetic data set 4: results
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Real data: nature of data set

• Motor Bodily injury (moderately long tail)

• (Almost) all claims from one Australian state

– AQ 1994M9 to 2014M12

– About 139,000 claims

– Cost of individual claim finalizations, adjusted to 31 December 2014 $

• Each claim tagged with:

– Injury severity score (“maislegal”) 1 to 6 and 9

– Legal representation: maislegal set to 0 for unrepresented severity 1 claims

– Its operational time (OT), proportion of AQ’s ultimate number of claims finalized up to and including it
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Real data: known data features

• Collectively, presenters have worked continually with data set for about 17 

years

• The Civil Liability Act affected AYs ≥ 2003

– Eliminated many small claims

– Reduced the size of some other small to medium claims

• There have been periods of material change in the rate of claim settlement

• There is clear evidence of superimposed inflation (SI)

– This has been irregular, sometimes heavy, sometime non-existent

– SI has tended to be heavy for smallest claims, and non-existent for largest claims
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Real data: lasso model
• Lasso applied to the data set summarized into quarterly cells

– This summary is not theoretically essential but reduces computing time

• Basis functions:

– Indicator function for severity score (maislegal)

– All single knot linear splines for OT, PQ

– All 2-way interactions of maislegal*(OT or PQ spline)

– All 3-way interactions maislegal*(AQ*OT or PQ*OT Heaviside)

• Forecasts do NOT extrapolate any PQ trend

• Model contains 94 terms

– Average of about 12 per injury severity

• By comparison, the custom-built consultant’s GLM included 70 terms
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Real data: model fit by DQ
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Payments have been scaled.



Real data: model fit by PQ
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Real data: model fit by AQ (injury severity 1)
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Real data: known data features
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• Failure of fit results from data 

features that were known in 

advance

– Legislative change affecting AQ ≥
35

• Perverse to ignore it in model 

formulation

• Introduce a few simple interactions 

between injury severity, AQ, OT 

without penalty

– Brief side investigation required to 

formulate these

• Model fit considerably improved



Real data: Human vs Machine

• Same data set modelled with GLMs for many 

years as part of consulting assignment

– Separate GLM for each injury severity

– Many hours of skilled consultant’s time

• Loss reserves from two sources very similar

– Note that severity 9 is a small and cheap 

category

• BUT consultant’s analysis

– More targeted

– Less abstract

– Conveys greater understanding of claim process
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Discussion: feature selection

• How many covariates out of AQ, 

DQ, PQ should be included?

– Usually at least 2

– But 3 will generate collinearity

• Enlarges model dimension

• May cause mis-allocation of model 

features between among 

dimensions

• So caution before introducing 3

• Make use of feature selection where 

features are known/strongly suspected
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• Implications for forecasting

• Forecasts depend on future PQ effects

– Should these be extrapolated?

– How will forecasts be affected by mis-allocation?

• Proposition. Consider data set containing DQ and 

PQ effects but no AQ effect. Let 𝑀1 denote model 

containing explicit DQ, PQ effects but no AQ effect. 

Let 𝑀2 denote identical model except that also 

contains explicit AQ effects.  Then, in broad terms, 

𝑀1 and 𝑀2 will generate similar forecasts of future 

claim experience if each extrapolates future PQ 

effects at a rate representative of that estimated for 

the past by the relevant model.



Discussion: interpretability

• Most machine learning models subject to the interpretability problem

– Model is an abstract representation of the data

– May not carry an obvious interpretation of model’s physical features

– Physical interpretation usually possible, but requires some analysis for visualization
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Discussion: miscellaneous matters
• Prediction error

– Bootstrap can be bolted onto lasso

– Preference for non-parametric bootstrap

– Computer-intensive if min CV chosen separately for 

each replication

• Lasso for real data

– 20 minutes without CV

– 4½ hours with CV

– Bootstrap will include at least part of internal model 

error, but not external model error
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• Model thinning

– Most appropriate distribution provided  by lasso 

software glmnet is Poisson

– Low significance hurdle

– Reduce number of parameters by applying GLM 

with gamma error and same covariates as lasso

– Model performance sometimes degraded, 

sometimes not

• Bayesian lasso

– Lasso can be given a Bayesian interpretation

• Laplacian prior with 𝜆 as dispersion parameter

– Software (Stan) then selects 𝜆 according to defined 

performance criterion
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Conclusions (1)

• Objective was to develop an automated scheme of claim experience modelling

• Routine procedure developed

– Specify basis functions and performance criteria

– Then model self-assembles without supervision

• Tested against both synthetic and real data, with reasonable success

– Lasso succeeds in modelling simultaneous row, column and diagonal features that are 

awkward for traditional claim modelling approaches

• Procedure is applicable to data of any level of granularity
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Conclusions (2)

• Some changes of unusual types may be difficult for an unsupervised model to 

recognize

– If these are foreseeable, a small amount of supervision might be added with minimal loss 

of automation

• Standard bootstrapping can be bolted on for the measurement of prediction 

error

– Uniquely, this can be formulated so as to incorporate part of model error (internal systemic 

error) within estimated prediction error

• As with any form of unsupervised learning, strong back-end supervision is 

recommended
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