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Disclaimer

The views expressed in this presentation are those of invited contributors
and not necessarily those of the Institute and Faculty of Actuaries (IFoA).
The IFoA does not endorse any of the views stated, nor any claims or
representations made in this presentation and accept no responsibility or
liability to any person for loss or damage suffered as a consequence of
their placing reliance upon any view, claim or representation made in this
presentation. The information and expressions of opinion contained in
this presentation are not intended to be a comprehensive study, nor to
provide actuarial advice or advice of any nature and should not be
treated as a substitute for specific advice concerning individual situations.
On no account may any part of this presentation be reproduced without
the written permission of the IFoA.
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Outline

Background and Motivations

Impact of population size on mortality modelling
based on two-stage approach

A Bayesian approach for modelling the small
population longevity risk

Summary and conclusion

Further research
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Fertility
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Crude Mortality Improvement at age 70 (HMD)
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Measure for Mortality

mc(t, x), the age-specific crude death rate at age x , year t, More
specifically

mc(t, x) =
Number of deaths during calendar year t, age x last birthday

Average population during calendar year t aged x last birthday
.

m(t, x), the underlying death rate, which is equal to the expected
deaths divided by the exposure. More specifically

m(t, x) =
D(t, x)

E (t, x)

q(t, x), the mortality rate, which is the probability that an individual
aged exactly x at exact time t will die between t and t + 1.

We modelled logit q(t, x) as crude m(t, x) can be greater than one
at advanced ages.
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Why analyse small population

Experiencing faster mortality improvement, lower interest rate, more
pressure on pension funds.

Most pension schemes are less than 1% of national population.

Significantly more variability exhibited for mortality rates of small
population

Stochastic models might poorly fit small populations

Motivation
For small population:

Greater sampling variation of deaths causes increased uncertainty of
parameter estimates and high levels of uncertainty on projected
mortality rates.

Divergence between future realized rates and projections, future
sampling variation, uncertain projection.
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Stochastic Model and Data

Let θ1 = (κ
(1)
t , κ

(2)
t , κ

(3)
t , γ

(4)
t−x). Stochastic Model:

D(t, x)|θ1 ∼ Pois(m(θ1, t, x)E (t, x))

m(θ1, t, x) = − log(1− q(θ1, t, x))

logit q(θ1, t, x) = κ
(1)
t + κ

(2)
t (x − x̄) + κ

(3)
t ((x − x̄)2 − σ̂2

x) + γ
(4)
t−x

Identifiability Constraints∑
c∈C

γ(4)c = 0,
∑
c∈C

cγ(4)c = 0,
∑
c∈C

c2γ(4)c = 0

θ1 is estimated maximising the log-likelihood function:

l(θ1;D,E ) =
∑
t,x

D(t, x)log[E (t, x)m(θ, t, x)]

−E (t, x)m(θ, t, x)− log[D(t, x)!]
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Stochastic Model and Data (cont.)

Projecting Period Effects κ = (κ(1), κ(2), κ(3)) with a three
dimensional normal random walk model

∆κt = µ + Lεt ,

where covariance matrix V ε = LL′ and the drift µ are estimated
given estimated θ1.

Data: Benchmark exposure E0(t, x) and corresponding deaths count
D0(t, x) of the males in England and Wales (EW) in the HMD
database, during year 1961 to 2011, aged 50-89 last birthday.

Simulation Method

Estimate θ1 for benchmark population, denoted as θ̂1,0
Construct small population Ew (t, x) = wE0(t, x) for
w = 1, 0.1, 0.01, 0.001, i.e. construct 4 scaled populations.
(Re-) Simulate Dw (t, x)|θ̂1,0 ∼ Pois(m(θ̂1,0, t, x)wE0(t, x))
Estimate θ1 for Dw (t, x), denoted as θ̂w1 .
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Distribution (90% CI) of the Finite Sample MLEs
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Distribution (90% CI) of the Finite Sample MLEs
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Estimated Volatility of Random Walk verse Benchmark

Dr L Chen, Prof Andrew Cairns, Dr Torsten Kleinow A Bayesian Model for Small Population 13 / 34



,

Projected Mortality Rate
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Projected Mortality Rate with Parameter Uncertainty
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Summary of the Findings

There exists a bias in the estimated covariance matrix of the random
walk fitted to the period effects when the size of the underlying
population is small. As a consequence, prediction intervals are rather
wide for small populations even when parameter uncertainty is
ignored.

Parameter uncertainty becomes much less important when only
relatively short forecast horizons are considered. This finding aligns
with Cairns et al. (2006).

The inclusion of parameter uncertainty for the drift parameter µ
adds further uncertainty about the projected mortality rates.

This is in line with results obtained by Kleinow and Richards (2016)
who have found that the uncertainty about the drift of the period
effect in a Lee-Carter model has little impact on the uncertainty of
short term projections while it significantly affects the uncertainty of
long-term projections.
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Two-Stage and Bayesian Approaches

Two-stage approach that fits and projects mortality rates separately,
leads to biased estimates of volatility for small populations

- Large sampling variation affects latent parameter estimation, with
significant noise obscuring the true signal (Cairns et al. 2011)

- Result in non-negligible bias to the parameter estimation of the
projecting model (Chen, Cairns and Kleinow 2016)

- Over-fit the short cohorts (Cairns et al. 2009)

Bayesian approach offers a way to avoid or reduce this bias by:

- Combining the Poisson likelihood with the projecting time series
models

- The estimated latent parameters are restricted to be more like
proposed time series models when projecting models dominate while
modelling small populations.

- Using more informative prior distribution with the knowledge of the
larger benchmark population.

- Better estimation for short cohorts.
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Prior Distributions

(κ
(1)
t1 , κ

(2)
t1 , κ

(3)
t1 ) ∝ 1,

κt = κt−1 + µ + εt for t ≤ t2,

µ = (µ1, µ2, µ) ∝ 1,
εt ∼ MVN(0,V ε), i.i.d three dimensional multi-variate normal
distribution independent of t,

V ε ∼ InverseWishart(ν,Σ)

- MCMC-Mean: Fix the mean of the prior to V̂ ε
EW

- MCMC-Mode: Fix the mode of the prior to V̂ ε
EW

γ
(4)
c = αγγ

(4)
c−1 + εc for c > t1 − xna ,

- i.i.d εc ∼ N(0, σ2
γ),

- αγ ∝ (1− α2
γ)g for |αγ | < 1,

- σ2
γ ∼ Inverse Gamma (aγ , bγ)

γ
(4)
c1 ∼ N(0,

σ2
γ

1−α2
γ

)
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Results: γ MCMC
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Results: αγ MCMC
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Results κ(1)
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Results: V ε(1, 1) MCMC
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Results: µ(1) MCMC
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Longevity Risk of A 25-year Temporary Annuity

A temporary annuity of £1 per annum payable annually in arrears to a
life aged 65 exactly, starting at the beginning of year 2012 with term of
25 years. We define the Longevity Risk (LR) at 99.5% level as:

LR99.5% =
(a99.5%

a50%
− 1
)
× 100,

where a.% is the percentile of the distribution of the annuity price.

i = 4% i = 2% i = 0%
Mean LR (%) Mean LR (%) Mean LR (%)

EW-MCMC 12.2631 5.27 14.8394 6.28 18.3365 7.47
w -MCMC 12.1220 5.72 14.6420 6.76 18.0556 7.95
EW-MLE 12.2166 4.24 14.7720 5.04 18.2371 5.98
w -MLE 12.2052 5.12 14.7441 6.08 18.1805 7.09

Dr L Chen, Prof Andrew Cairns, Dr Torsten Kleinow A Bayesian Model for Small Population 24 / 34



,

Longevity Risk of A 25-year Temporary Annuity Deferred
by 10 Years

A temporary annuity of £1 per annum payable annually in arrears to a
life aged 55 exactly, deferred for 10 years, starting at the beginning of
year 2012 with term of 25 years.

i =4% i =2% i = 0%
Mean LR (%) Mean LR (%) Mean LR (%)

EW-MCMC 8.2744 7.02 12.2519 8.14 18.6117 9.45
w -MCMC 7.9292 8.23 11.6832 9.45 17.6509 10.87
EW-MLE 8.1928 5.50 12.1150 6.35 18.3759 7.32
w -MLE 8.2539 7.57 12.2039 8.80 18.5059 10.17
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Sensitivity Test: αγ MCMC
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Sensitivity Test: V ε(1, 1) MCMC
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Sensitivity Test: µ1 MCMC
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Sensitivity Test: m(t, x) MCMC
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Summary

We have demonstrated to the users of the stochastic mortality
models how the information of a larger population could be
embedded for parameter estimation and forecasts by a Bayesian
model.

Studied to what extent the parameter estimation could be improved
compared with the two-stage approach and the financial implication
in the context of annuity pricing.

The users should be informed how the importance of the prior
information dominates the parameter estimation of a much smaller
population and in what way the sampling variation affects the
parameter estimation and mortality forecasts.

We find that our Bayesian model and methodology of using the
information of large referencing population provide an improved
estimation for the volatility of small population.

The (central) projections of small populations are not ”significantly”
different from the ”true” projections (of the larger reference
population).
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What is next?

We will pursue our research on developing a methodology with the
advantages of both the two-stage and the Bayesian methods for
modelling the mortality experience of small populations. We aim to
develop a likelihood based Bayesian approach that can be easily
implemented by both the industry practitioners and faculty researchers.
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Appendix: Markov Chain Monte Carlo (MCMC)

The joint posterior density for θ = (κ,γ,µ,V ε, αγ , σγ) conditional on
D,E can be expressed as:

p(θ|D,E ) ∝ p(D,E |κ,γ)p(κ,γ|µ,V ε, αγ , σγ)p(µ,V ε, αγ , σγ)

257-dimensional parameter vector. Drawing samples directly from the
above? Hmm...

The aim of MCMC, based on Gelman et al. (2014), is to simulate a
random walk path in the space of θ that eventually converges to our
target distribution p(θ|D,E ).

Gibbs sampler and Metropolis-Hastings algorithm have been widely used
in previous studies, e.g. Cairns et al. (2011), Czado et al. (2005),
Pedroza (2006).
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Hamiltonian Monte Carlo (HMC)

See Neal (1993) and De Almeida (1990) for the principle of Hamiltonian
dynamic system. Updating Algorithm is as follows:

- Given the current value for θ and p at iteration τ , denoted as
(θ̂(τ), p̂(τ)), sample a new momentum variable through the
canonical function p̃(τ) ∼ fP(p̂(τ)).

- From state τ to τ + 1, perform leapfrog discretization by L times
with step size δ. Denote as (θ∗,p∗) the ending value.

- Calculate the Metropolis acceptance probability:

α = min
{

1, exp
(
− Uθ(θ∗) + Uθ(θ̂)− KP(p∗) + KP(p̂)

)}
(1)

- Draw a random number u ∼ U(0, 1) where U(·) represents a
uniform distribution. If u ≤ α, accept the new state value (θ∗,p∗)
as the current value for iteration τ + 1, else (θ̂(τ), p̂(τ)) is kept for
state τ + 1.

Dr L Chen, Prof Andrew Cairns, Dr Torsten Kleinow A Bayesian Model for Small Population 33 / 34



,

Thank You!

Questions?

Dr L Chen, Prof Andrew Cairns, Dr Torsten Kleinow A Bayesian Model for Small Population 34 / 34


