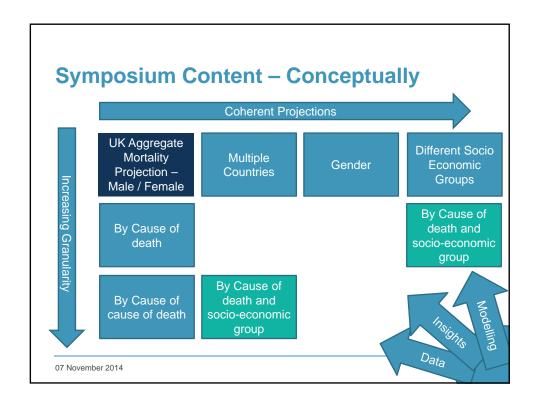
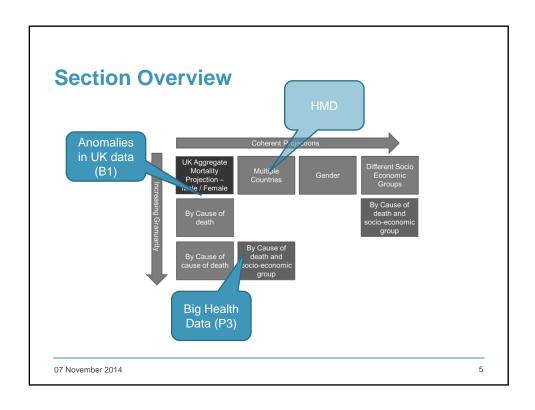


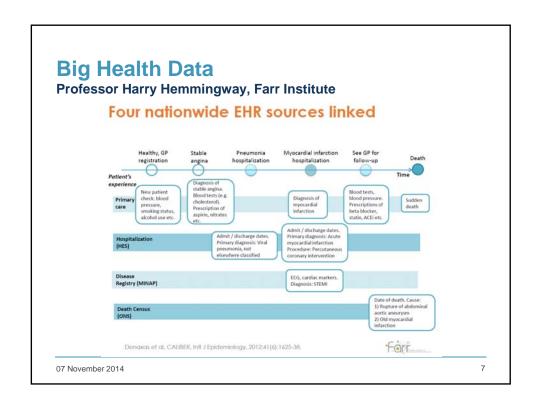
What's Hot in Mortality and Longevity Research

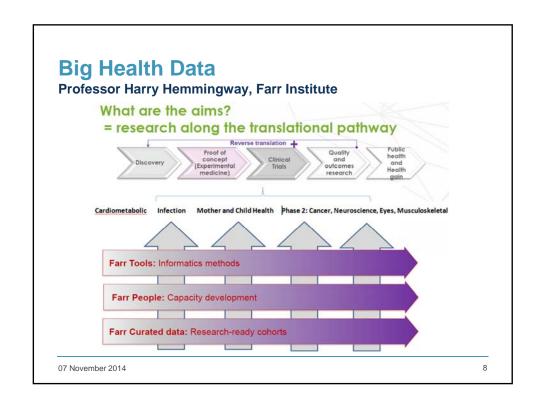
A debrief from the 2014 International Mortality and Longevity Symposium

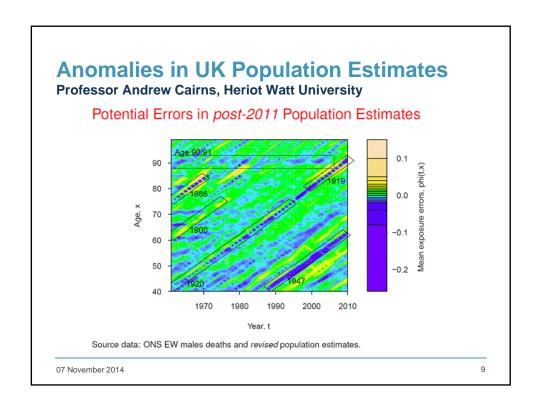

Peter Banthorpe - Head of Biometric Research, RGA Matthew Edwards - Senior Consultant, Towers Watson

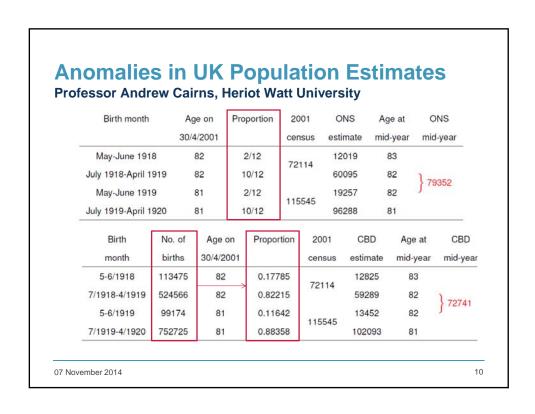
Overview

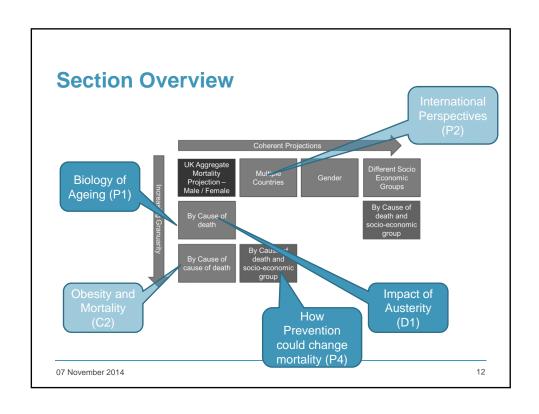

- 22 Sessions
 - 6 Plenaries
 - 5 x 3 Workshop sessions
 - 1 pre-dinner speaker
- 3rd Residential Conference of the Mortality Research Steering Committee
- Overall symposium score:
 4.7 / 5


07 November 2014







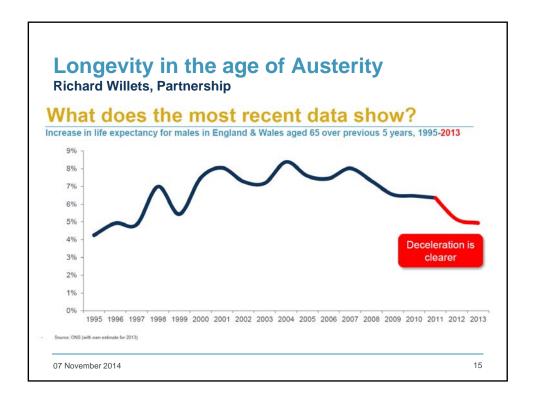


Advances in the Biology of Ageing

Prof Richard Faragher, Chair, British Society for Research on Ageing

The long and short of it:

- Fundamental ageing mechanisms exist, are evolutionarily conserved and cause the things we think of as 'ageing changes', the things we think of as 'age-related diseases' and the things that compromise health in later life which we have trouble classifying (e.g. Menopause).
- Targeting them is a plausible and <u>ergometric</u> route to preventing later life morbidity.
- So why don't we do more work on ageing?
- Perhaps because ageing is seen as a 'natural process' distinct from 'unnatural' disease. This leaves us prey to..

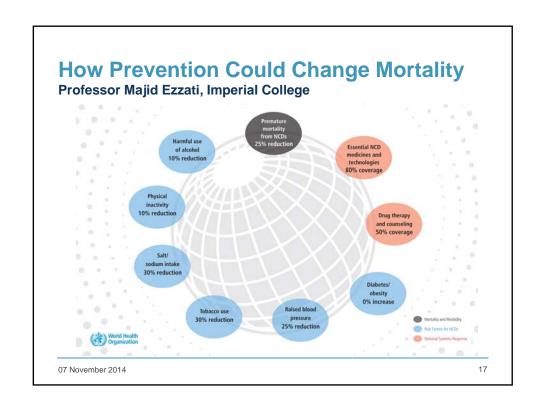

07 November 2014

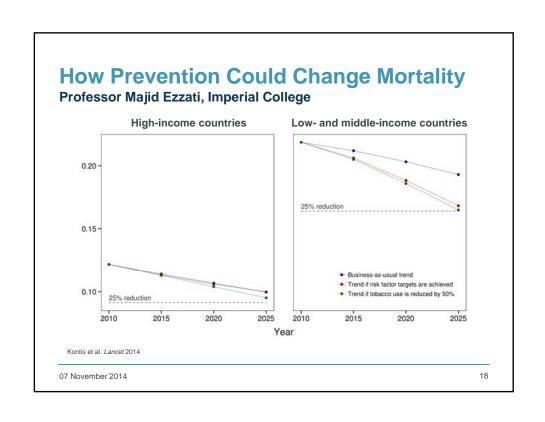
Advances in the Biology of Ageing

Prof Richard Faragher, Chair, British Society for Research on Ageing

- Most plausible further outcome was compression of morbidity, perhaps associated with lifespan expansion
 - the distinction between ageing processes and age related diseases is a false dichotomy
- Two main mechanisms of ageing:
 - Nutrient Sensing Pathways, and
 - Tumour suppression mechanisms (leading to senescent cells)
- Suggestion that if current research in the lab could be translated to the clinic a 20% reduction in mortality by 2050 could be achieved.

07 November 2014 14




Longevity in the age of Austerity

Richard Willets, Partnership

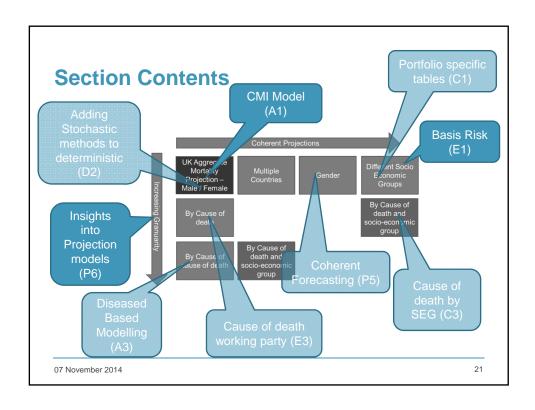
- Many factors suggest improvement rates should be falling:
 - · NHS Indicators suggest significant strain
 - Reduced spending on social care
 - · Jump in deaths caused by dementia
 - Falling rate of improvement from Circulatory disease
- International comparisons suggest periods with highest rates of increase in life expectancy correlate high economic growth
- Impact can be different for different age groups (e.g. Ireland)

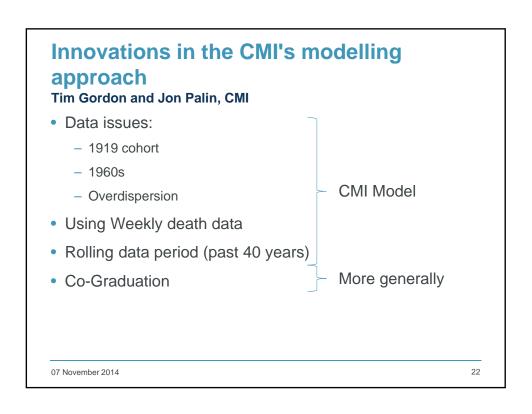
07 November 2014 16

How Prevention Could Change Mortality Professor Majid Ezzati, Imperial College

The contribution of risk factors to reducing premature mortality from top 10 NCDs

Cause of death	BAU reduction	Reduction if risk factor targets are achieved	Risk factor contribution towards the 25×25 mortality target
Ischaemic heart disease	-17%	-33%	>100%
Stroke	-20%	-38%	>100%
COPD	-18%	-27%	>100%
Lung cancer	-3%	-12%	56%
Diabetes	+11%	-5%	51%
Liver cancer	-2%	-5%	17%
Stomach cancer	-10%	-19%	63%
Breast cancer	+3%	+3%	1%
Hypertensive heart disease	-19%	-43%	>100%
Colorectal cancer	-9%	-10%	10%
All CVDs	-18%	-34%	>100%
All cancers	-3%	-7%	26%
Chronic respiratory diseases	-16%	-24%	92%
Diabetes	+11%	-5%	51%
Four main NCDs	-10%	-21%	77%


07 November 2014


Kontis et al. Lancet 2014

Section 3: Modelling

Towards an industry standard to assess longevity basis risk

Steven Baxter, Hymans Robertson LLP and Andres M Villegas, Cass Business School

- Background:
 - Joint LLMA / IFoA work party commissioned research
 - Objective : Practical method for assessing basis risk in population index based swaps
 - Academic / Commercial partnership between Hymans Robertson and Cass won a competitive tender
 - Final results to be presented on 8 December at Sessional Meeting
- Major challenge is to assess the risks presented by demographic differences between portfolio and population

07 November 2014 23

Towards an industry standard to assess longevity basis risk Steven Baxter, Hymans Robertson LLP and Andres M Villegas, Cass Business School Choice of two-population model *8 years Alternative "indirect" approach CAE+Cohorts or M7-M5 *25K lives Number of years of available data

Applying Insights to Mortality Projection Models

Richard Willets, Joseph Lu and Dr Tim Crayford

- Three areas of influence for future mortality (Lu)
 - Socio-economics
 - Sciences
 - Health Care System
- Use of conceptual models which (Willets):
 - Develop models with (5-10) cause-of-death groups
 - Allow for changes in disease classification over time
 - Parameterise models for each cause group using historic data
 - Allow future projections to be modified to reflect expert opinion
 - Blend into aggregate model at high ages

07 November 2014

Applying Insights to Mortality Projection Models

Richard Willets, Joseph Lu and Dr Tim Crayford

Practical solution (Crayford)

- Take a synthetic population with an 'average' mix of important diseases and risk factors at retirement (HES, GHS, CPRD)
- Model your future incidence rates (CPRD, HES, Cancer registries)
- Generate multivariate models at transition points during the life of the disease as per UKPDS methods. Derive mortality estimates.
- Make some real-world assumptions about risk-factor modification. Make assumptions about the impact of emerging new drugs / treatments. Make assumptions about catastrophes. Accept that human biology isn't evolving much.
- Derive bottom-up projections
- · Triangulate with CMI projections
- POHEM (Canada)

07 November 2014 26

Section 4: MRSC and Future Research

His Carling Control of Street Control of Street Control of Street Control of Control of

The Mortality Research Steering Committee

- Established 2006 by the IFoA
- Aim to further the understanding of past, present and future mortality trends through collaboration with other disciplines
- Steers mortality research across the profession
 - Supporting the Research and Thought Leadership Committee

07 November 2014

8

The Mortality Research Steering Committee - People

- · Peter Banthorpe (Chair), Head of Biometric Research, RGA UK
- Madhavi Bajekal, Senior Research Fellow, UCL
- Adrian Gallop, GAD
- Carol Jagger, Professor of Epidemiology and Director of the Leicester Nuffield Research Unit
- Angus Macdonald, Director of the Genetics and Insurance Research Centre, Heriot-Watt University
- · Sarah Mathieson, Head of Research, the Institute and Faculty of Actuaries
- · Matthew Edwards, Senior Consultant, Towers Watson
- Brian Ridsdale, UK representative on the IAA Mortality Task Force
- · Philip Simpson, Principal, Consulting Actuary, Milliman
- Trevor Watkins, Director of Education, the Institute and Faculty of Actuaries
- Lorraine Atherton, Research and Knowledge Assistant, the Institute and Faculty of Actuaries (Committee Secretary)

07 November 2014 2:

The Mortality Research Steering Committee – Research Themes

Frailty

Dementia

Seeking to build on

- UK Mortality Data Directory
- Cause of Death Modelling

Working on

- Antibiotic resistance
- · Limits to Growth

Scoping

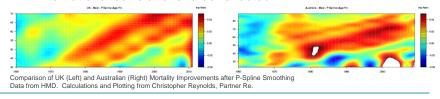
- Obesity and Diabetes
- Trends by Socio-economic classifications

Seeking ideas

Long-term improvement rates

30

07 November 2014



Human Mortality Database

A Real Star, University of California, Berkeley and Max Planck Institute for Demographic Research

- Underpinned many of the presentations, posters and interaction opportunities
- Enables different countries' mortality to be rapidly compared, permits:
 - Wider validation of findings
 - Insights from comparing countries
 - International correlations to be reflected

07 November 2014

33

Obesity and Mortality

Sam Gutterman

Comparison of recent pooled data studies

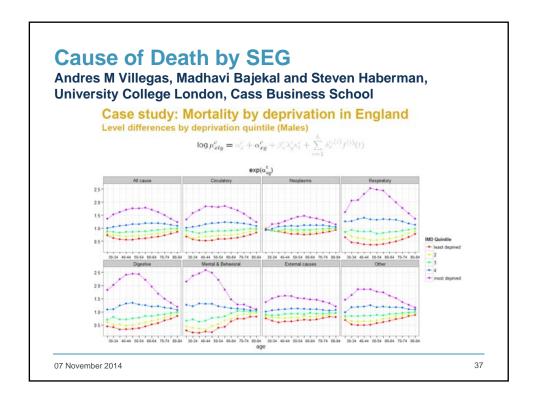
BMI Range	Flegal (2013)	Berrington de Gonzalez (2010) Females Males	
< 18.5	excluded	1.47	1.37
18.5 – 19.9	1.00	1.14	1.01
20.0 - 24.9	1.00	1.00	1.00
25.0 - 29.9	0.94	1.13	1.13
30.0 - 34.9	0.95*	1.44	1.44
35.0 - 39.9	4.00*	1.88	2.06
40.0 – 44.9	1.29*	2.51	2.93
>= 45.0	excluded		

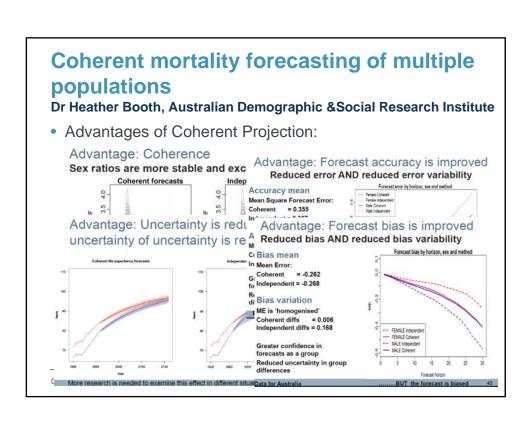
* Obesity classes 1-3; 1.18

215

07 November 2014

34


Obesity and Mortality


Sam Gutterman

- BMI is not a good measure of obesity
 - Location of fat tissue more important
 - Waist circumference or waist to hip ratio may be better
- BMI categories wide and contains heterogeneous individuals
- Different impact at different ages
- Has the epidemic matured yet?
- Physical activity and overall fitness important
- Lots of these results are from meta-studies, which can be hard to combine in a non-biassed manner

07 November 2014 3

Cause of Death by SEG Andres M Villegas, Madhavi Bajekal and Steven Haberman, University College London, Cass Business School Modelling mortality by cause of death Cause of death coding changes Age-standardised mortality rate for respiratory diseases (Male age 25-84 – England and Wales) - Adjustment methods - Bridge coding and comparability ratios (e.g. ONS for ICD-9 to ICD10) - Statistical correction methods (e.g. Rey et al (2009), Park et al (2006))

Coherent mortality forecasting of multiple populations

Dr Heather Booth, Australian Demographic & Social Research Institute

Male – better accuracy:

Female – better accuracy:

- Sex-coherent
- Taking female mortality into account
- · State-coherent
- Taking other female mortality into account

For both sexes, female mortality as 'other' tends to give a better forecast

07 November 2014