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FINITE INTEGRATION BY PARTS (SERIES FOR Zwu,)
PART II

By G. J. LIDSTONE, LL.D., g1c.

1. The following additional notes are in sequence to those printed
in ¥.LA. Vol. Lxtv, pp. 160—4. It will be shown by numerical
illustrations how the formmulae there obtained, and others based
thereon, may be practically applied when #, is a polynomial and
v, an arbitrary set of quantities. In these illustrations we shall
take #,=2 or (x+3)°, and make use of the following table of the
function and its differences:

& ®+3 Uy An, A%y, Alu,
—3 o o
I 6
-2 1 I 6
7 6
-1 2 8 1z
19 6
[ 1 27 b 2.3
37 6
1 4 84 [49] 24 61
(9441 6x [27] 6
2 5 125 30
oI 6
3 & 236 36
127 6
4 7 343 42
159 6
5 8 512 48
217 &
6 9 729

Figures in [ ] are mean values; those in black type show the sets of values
used in the Examples.

2. If the indefinite integral, represented by the expressions (3)
and {7} in the former text, be denoted by S, the required definite

n—1
sum X% (n.2,)is S,—8,. We can make either 3, or S, vanish-—so
x=0
reducing the definite sum to a single expression instead of the
difference between two expressions—by so arranging the sum-
mations of v, as to give zero values to the particular values of
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v, Z%, ... appearing in S, or S,. This we are entitled to do
provided we preserve the fundamental relations

Aty == Bty
whence T, = BP0, + T,
and use the latter to build up the whole table of sums, beginning
with the zero values.

3. Since there are two expressions for S, and in eack we may
make either 5, or 8, take the value o, there are in 2l four forms:
two of these involve o's and their differences exterior to the
“difference-triangle” of the ¢’s actually involved in Zup, We shall
exemplify these four forms by applying them to the following
simple case in which n=4; the values of # and the A’s are taken
from the table already given, as there shown by the heavy type.

x o 1 2 3

Uy I 3 7 5

,={x+3)% 27 64 125 216

Uy Ty 27 192 84y 1080 Sum=21%4

Form (3). S,=u,  Zv,—Au,, %%, + A%, Do, ~...
involving backward differences.

(@) To use u,_, (the last value involved) and its backward
differences {which fall inside the difference-triangle) we make

o=3gp,=X% =%, ... forx=o,
The result is
n—1
Bu,v,=8,=u, o, —Au, Pv,+Aw, Yo, —.... (34)
X
* Uy v, L%, Tp, iy, Calculation
o 1 o o o o 216 X 16 = -+ 3456
1 3 1 o o o —9r %16 = — 1456
2 7 4 I 0 o +30x 6=+ 180
n—1 3 5 11 5 1 o — 6x =~ &
n 4 th 16 6 ¥ 1 2174
= Luv

The sums are taken downwsrds and are here stepped-down a line at a time
80 as to fall on the proper line of x. The sums are al! pogitive,; the negative aigns
in the calculation come from the formula.

(# To use u_, (the value preceding the first involved in the
sum) and its backward differences (which fall outside the difference-
triangle) we make

o="12gp, =2y, =23, ... forx=n
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The result is

Zu0,=—8,=u_, x —Zu,+Au_, T, +Au_ % -, +...

Xor

...... (35)
x v, —Zo, X%, —Ily, Ly, Calculation

o b 16 48 1oz 183 8x 16= 128

1 3 15 32 54 81 7x 48= 336

2 7 1z 15 22 27 6x102= 612

r—1 3 [ s $ 5 5 6x 183=1008

n 4 o o o o 2174
= Tuw

The sums are taken upwards to the top line and are alternately negative and
positive. Thus the products will become positive.

[If the table be continued downwards by the same rules it will be found that
(whatever the values of vyay, Vpyqs --.) there are two consecutive o’s in the column
of £2%, three in that of 3, and so on. Thus there is a wedge of zeros at the foot
of the table, corresponding to the wedpe at the top of the table in the previous
example. This property will be used later (para. 12).]

Form (7). 8,=u,Zv,—Au, 2P0, + 0%, 2P0, —...

involving forward differences.

(@) To use u, (the value succeeding the last in the sum) and its
forward differences (which fall outside the difference-triangle) we
make

o=3y, =30, =3gp .. forx=o.

The result 18

y 1,0, =8, =, 29, — A, Xy, .+ Nu, Do, —.... (70)

X

x Ty Doy L2y, Iy, IHo, Calculation

o 1 o o ° o 343 % 10= + 5488

1 3 1 o ° o ~169 % 32= — 5408

2 7 4 ¥ o o 48X 54= +2592
L) 3 5 Ir 5 1 ) —6x8y=— 408
n 4 6 16 6 H 2174

5 32 22 7 = Zny

6 S4 20

7 83

The sums are taken downwards and are here stepped-down a line at a time
so 2a to fall on the proper line of . In practice they would be made to begin
on the line of x=0. The sums are alf positive; the negative signs in the calculation
come from the formula,
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(8) To use u, and its forward differences (which fall inside the
difference-triangle) we make

o=2y, =X, =%v, . .. forax=n
The result is
n—1
Y uw.=—8,=u,x — Yo, +Au, *v, - Ay, Dv,+.... (75)
=g
x v, —XYo, o, —Lip, D4y, Caleulation
o I 113 a7 x 1= 432
1 3 5 32 37K 32=1184
2 rd I2 & 22 z4x22= 538
n~x 3 5 [ 5 5 5 6x 5= 30
n 4 o ] ] -] 2174
= Zup

The sums are taken upwards and are here stepped-down a line at a time so
as to fail on the proper line of . In practice they might be made to begin on
the line of x=o0. The sums are alternateiy negative and positive. Thus the
produets in the forrmula all become positive.

[If the table be continued downwards there will be a wedge of zeros at the
foot, whatever the values of v,y;, vppa, .-., 88 in the case of the table for
formula (3 ). See note at the foot of that table, para. 3.]

4. While it is convenient to illustrate the four variant forms
separately it will be seen that they are closely related. The downward
sums of (3a) are those of (74) re-aligned; and the upward sums of
(7b) are those of (35) re-aligned. Also if (34) be applied to the #’s
and #’s written in reverse order we shall get exactly the figures of
{75) in reverse order; and similarly with (33} and (7 a)

—1I n—1

5. If the summation is divided into two parts, say E and E
{where a is any interior® pomt) we may use

(A) Formula (34) for E i.e. the top half, and formula (38) for
Z i.e. the bottom half; both formulae involving the same muiti-

phers, viz. #,_, and its backward differences; or
(B) Formula (74) for the top half and (70) for the bottom haif,
both involving %, and its forward differences.

* We use the word “interior” rather then “central® because a, the point of
division, may be any point between the extremes, i.e. it is not necessarily at the
precise centre of the range included in the summation, Hence it is immaterial
whether a is even or add,
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By thus dividing the range into two parts we shall have much
smaller figures to deal with, especially if the number of terms is
large, in which case the higher sums increase very rapidly.
upwards

6. If we use a line slanting downwards

to represent values of u

and its backward differences, the formulae may be represented
forward

diagrammatically thus:

oat | °
=g | _A4)11, (3a) and (35) combined
0] ; A1, (3a) and (35} combine
A I T
: | [T, (7a) and (98) combined
et i
nid”” Lzt

n
\(mn

The arrows show the directions of the summations involved

7. For an example of the use of (A) and (B) we shall take the
data in Table IV of Elderton’s book, Frequency Curves.., [ed. 1, 2
or 3, p. 21}, calling the data w,, ... v, and forming X {u,.x%).
Plan (A} is that used by Elderton, Table IV (A), and otherwise
proved by him. See table on the next page.

VARIANT FORMULAE

8. In the first paper, starting from the following fundamental
relations
bX (uxwx =y Ei"x_ X (Au -1 E?Jx L (5)
=u, 00, — L (Au, Bw,,,), (8)

we found the two standard series (3) and (7} by expanding the last
term of (5) by a repetition of (5), and the last term of (8) by
a repetition of (8}, respectively. But we may equally well expand
the last term of (5) by (8), or the last term of (8) by (5). Thus at
any stage we have a choice of two next terms, and so in a formula
of n terms there are in all 2" different forms. We shall show that
these can be formed by simple rules, On examining the process
of expansion it will be seen that if we reach a new term by the use
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of (5) this will involve reducing by 1 the previous suffix of #,
and in passing to the next term the suffix of v is unchanged, which-
ever formula we use. But if we reach a new term by the use of (8)
this will involve no change of the suffix of #, but in passing to the
next term the suffix of v must be reduced by 1, whichever formula
we use, Hence we are led to the following.

GENERAL RULES
{1) The form of the series is
T Uy =uZv—An Lo+ A%y Dio— ..,
where the suffixes of # and v remain to be inserted,

(2} The first term is either w,Zv, or #, ; Zo,. In order to make the
Rules general we shall consider that the first term is preceded by an
imaginary term of zero value, which may be called the oth term, with
suffixes x and x.

(3) In passing from any term (including the oth) to the next the suffix
of # may remain unchanged er be reduced by 1,

(4) If at any step [say from the nth term to the (n+ 1)th, where »

may be zere] the suffix of # is r‘:jl:it?%;d p» then at the next step

fi.e. from the (n+1)th term to the (m+2)th] the suffix of ¢ is
increased by 1

unchanged *

9. The writer has communicated these Rules to Mr D. C. Fraser,
M.A,, F.L.A., with the suggestion that it must be possible to derive
them from his elegant Hexagon Diagram as extended to Zuv (see
his important paper, T.F.4. Vol, xv, pp. 163—9). It is understood
that he will prove this in a supplementary Note, ébid. Vol. xvir,

160. The Rules lead immediately to the standard series (3) and
(7), and to extensions. Take as an example the following case:

" Term oth | 1st 2nd ard 4th sth
Suffix of x x x—1 &—1 x—z n—z
Suffix of » x x {x+1] [x+1] [x+2] [x+2]

Here we first write down the unbracketed values. Starting with
the oth term the differences of the suffixes of wareo, —1;0, — 15 ....
Hence by the Rules, starting with the 1st term, the differences in
the suffixes of  are +1, 05 +1, o; ..., and thus we build up the
values in [ ]. We are thus led to the formula

2, 2
Euxt’x = uxzﬂx - Aux—qz I A ux—rzavxﬂ - Asux—zz‘kv:wz )
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where the sequence of the A’s corresponds to the Gauss Backward
Interpolation formula beginning with #.. In the same way we find

Zu v su o, —Au o, +Nu, P, —ANu T, ...,

which corresponds to the Gauss Forward Formula, beginning with
#,. Similarly

Su v, =, 20, — A, v+ Nu, 3P0, — M, B,

corresponding to the Gauss Forward Formula beginning with , .

11. Taking the mean of (A) and (B) we get the following formula
involving central differences or mean differences as in Stirling’s
Interpolation Formula:

v =1 2o, — (Au,+Au,_ ) T,

+A%, (20, + 20, ) — ey e (D)
and taking the mean of (A) and (C) we get
Zu,v, =3 (n,+u, ) Io,—Au, § (o, +ZP0,,)

+3 (A%, + A%, ) Do+, .. (E)

involving central differences or mean differences as in Bessel’s
Interpolation Formwula. These summation formulae have been
given, and otherwise proved, in various places (see G. F. Hardy’s
Lectures. .. [1909], Note E, pp. 125-8, etc.).

12. Like the standard series (3) and (7) already discussed, the
formulae given in this section all give the indefinite sum S,, and
the definite sum X #,9, is equal to 5,—S,. In applying the

=0

formulae either S, or S, is made to vanish by suitable arrangement
of the summations round an interior point. No fresh conventions
are required to secure this result, for it will be found that the
wedges of zeros [which, as previously pointed out, exist at the top
or bottom of the columns of sums in (34), (38), (74) and (78)]
coalesce in such a way that zero values are obtained also for the
differences and mean differences that are required to vanish in
applying the central-difference formulae (D} and (E).

13. As an illustration of the central-difference formulae (D)
and (E) we shall apply them to our preceding example, para. 7.
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The bulk of the summation work will be the same, but for clearness
we shall show it in full. In these cases it is usual and convenient
to begin registering the sums on the top line,

H

¥ v, % z2 I3 x4
-] 29 20 20 29 29
1 23 <] 81 110 139
z 81 133 214 324 463
[573] [874]
3 181 284 498 822 1285
[736]
4 192 476 974
5 239 524 978 1648
f716) [x159]
6 157 285 454 670 939
[6o4]
7 93 128 169 216 269
8 29 35 41 47 53
g 6 [ 1 é &
1000

'The appropriate values of # and its central differences or mean differences are
taken as before from the table in para, 1.

(D} Caleulation (E} Calculation

524+ 476 =000 %64 B4000 524+ 4576= 1000 X943 94500
978 —408= 480 x40 23520 F16—736= —20 XBI —r2z0
1150+ 573==21732 %24 41568 670+ 822= 1492 x27 40284

604 =874=—270 x 6 —i1620
131944

930—463= 476 x 6 2856
131944

14. When the number of terms involved is at all considerable,
there is an undoubted advantage in the use of one or other of the
formulae referred to some interior point. In general it would not
appear that those just illustrated, involving central differences,
have much if any advantage over the formulae (A} and (B) illus-
trated in para. 7. There are, however, some cases in which the
central-difference formulae are greatly to be preferred: viz. when
we can so choose the interior point @ that alternate differences
or mean differences vanish. For examples reference may be made
to G, F. Hardy’s Lectures, Note E, pp. 125-8; and to A. W, Joseph’s
paper, ¥.1.A. Vol. 1xv, p. 285, where examples quoted from a paper
of Aitken's are given.

Aj 7



98 Finite Integration by Parts (Series for Zu2,)

INTERCONNEXION OF FORMULAE

15. The plan of these notes is to deduce all the summation
formulae directly from the fundamental relations

Awo.=u, Av,+v.du,,
At g, =Xy,

without using interpolation formulae, or formulae expressing Zfv,
in terms of the ©'s involved, or even binomial coefficients. It will
illustrate the very close connexion between differencing and
summing, and the consistent interlocking of different parts of the
general theory, if we show that these classes of formulae can them-
selves be deduced from the summation formulae, instead of serving
as their basis.
16. In formula {34) put for u,

(x+t—Dyp=E+i—-1) (x+1-2) ... (x+1)/(T-1)!.

Then %, vanishes for x= —1, —2, ..., —(¢#—1), and so all the
differences involved in the formula vanish until we reach A'"*u_,=1.
Thus the right-hand side reduces to a single term, and reversing
the sides we get

(= B 0,= Z (54— emsy -

Taking « instead of o as the origin this becomes

n-1
(""): by Vg = > (e+t— I)(t—q}wa-i-x
=0

= Z(x—ati—T)u_ 0 (w=at+n—1)

x=u
=~ Dpony Vo + bpmy Vg + oo F{@ =+ E = 1)y 0,
where all the factorials are of order (t—1). Since
(x—ﬂ.“‘“ t— 1)(:_1) =(x—-0t+ f—- I)(:E—c;)
the expression may alternatively be written
("_)I x U= Z (.‘.’C—'d.-l-t— I)(x—m)gx

yma

=T+ { P +(t+ I)(z)gu-{»z Foot (wma‘”i_‘t_ I)(oz—a) Yese
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These expressions give the fth summation taken upwards from
the line of @ to the line of « with the convention that sums of all
orders vanish on the line w+ 1. This may be conveniently repre-

&

sented by the suggestive symbol Irvx, which is specially useful

when o is constant so that a suffix is inapplicable. Putting v=1,

&

(—)'T.zz ;‘.. (x—a+t— 1)y

A=
o

=fx—at+i-1)yl™
=(w-—ot+t)m,
since the factorial in [ ] vanishes at the lower limit.

17. In (7b) put Au, for u, and o=1 and we get

R=1I
#,—t,= I Au,
Aoy
1 2

=Au, x — TI-{-—A‘uO Tz 1—A%y, TB I+....

n—1 Hw—1
Using the last formula in the preceding paragraph, this becomes
Uy =ty =gy Dk, + 1y AP0, 1 Dt 4L,

which is equivalent to the advancing-difference interpolation
formula.

18. In the same way we may obtain expressions for descending
sums and for the backward-difference intérpolation formula, In
(34) put

= (o = 1=y,

Then u, vanishes for ¥=n—1, n—2, ..., n—¢+1, and so all the
differences involved in the formula vanish until we reach A*~%u,_,=1.
Thus the right-hand side reduces to a single term, and reversing
the sides we get

-1
(=) Zfo,= S(x+f—1— ”){c—x)”*

Xy

=2 (-)PI (n—x—l)(,_,)v,,

x=



100 Finite Integration by Parts (Series for Zu.v,)

or, excluding zero terms from the summation on the right and
cancelling (— )" which appears on both sides,

n—I
Etvn= z (n—x— 1)(‘—:)”::

K=

= (” - I)(t«x)”o + (” - 2)(:—1)91 +o F U, T,

which involves #n—¢+1 terms, from #, to o,_,. Inspection of the
scheme (34) in para. 1 shows that the formula gives the downward
sum standing on the line of # (which is arbitrary) with the conven-
tion that sums of all orders are zero on the line of o. This sum may

be conveniently represented by the symbol l‘ v,. Making v=1
n—t

we get, in this notation,

ot n—1t
l I= X (R—%—T)4,

n—1 X
= —[(n—x)yla=**

=M1y

since the factorial in [ ] vanishes at the upper limit, Changing
the origin from o to «, and writing w for 2 —?+ «, this becomes

I‘1=(w—cx+t)(,)=(—)‘ft1.

19. In (34) put Az, for u,, and v=1, and we get

=1
u,—t,= X Au,
L]

=] [+] =]
2 3
=An,_,x ll—Azu,,_zx l I+A%, X l I—...

H=—1I n—2z n—a
=i Athy oy Nty 0y Doty — .,

which is equivalent to the backward-difference interpolation
formula,

20. In the same way the Gauss interpolation formulae and the
central-difference formulae, and expressions for the corresponding
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sums, may be derived from the summation formulae given in
paras. 10-11. The close inter-connexion of the formulae is thus
strikingly illustrated,

LIMITS OF ERROR

z21. If, as assumed in our numerical illustrations, wu, is a poly-
nomial of degree f, whose differences vanish after A'y, the sum-
mation formulae are accurate if taken to the term involving that
difference. But if , is not a polynomial the results are approximate
only, and it is important to find Hmits for the error involved.
Steffensen (Interpolation [1927], p. 101, § 116) has shown how to
determine remainder-terms of the form

R=u?+ 1) 234'20’
where the term u{*? represents the (¢ + 1)th differential coefficient
of u, for x=£, and £ is a value of x between the extreme values
involved. But this formula is not always suitable, because

(1) A further sum of © is involved: this may be laborious, and
if available might perhaps be better utilized to bring in another
term in the summation formula.

(2) Since ¢ is unknown we can only say that #{*© falls between
its greatest and least values in the range, and 1t may not be easy
either to evaluate #{!*® or to determine its limiting values. In
particular in a function of unknown form [such as a,, A,, ¢, ...,
in a table not based on a mathematical formula] the differential
coefficients cannot be accurately evaluated.

22. It is therefore practically useful to base limits of error on
the differences of u, which are always known. Omitting suffixes,
which depend on the particular formula in use, let the summation
formula be :

Zuv=uZo—AuZlo+ ... +(= YA uT . L. (F)

On reference to Part I of the paper (loe. cit. pp. 160-3), it will be
seen that the last term in this formula is the first term in the
expansion of a remainder-term {—) X (A'uX'v). If the greatest
and least values of A’u, over the range of the sum Xf o, be denoted
by Al .. and Al , the accurate value of the last term in (F) lies
between

(=Y 2 (A T'0)=(—) ALy 2 @
and () B (A 'o)=(—) Apin &7 o,
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from which we get at once the limits of the error involved in the
use of (F). Assuming that A'% is not changing rapidly these limits
depend chiefly on X', and they may therefore be considerably
contracted by using one of the formulae of paras. 511, in which
upward and downward summations are made from some interior
point, such as the point 4 in para. 5; for in this case the sums of
higher orders are greatly reduced in comparison with those arising
when the summations are made from a ferminal point. Moreover,
if we end with a term involving a difference of even order, we take
the difference instead of the fotal of the upward and downward
sums; and if the interior point a is so selected that the upward
and downward sums of order {¢-1) are not greatly different the
limits of error are comparatively small. To this end if ©, is generally
glc U8 the point a should be below

ecreasing above
It will be seen that the “interior” or “point-a* formulae not only
involve smaller figures but are also likely to be more accurate than
the terminal formulae, if #, is not a simple polynomial. Note,
however, that for the point-a formulae the limits of error must
usually be found separately for the upper and lower sections; and
if we end with a term involving upward and downward sums of
different signs, Al ., in one section must be combined with Al
in the other section, and wice versa.

the centre of the range.

23. Note. Throughout our illustrations, as stated in the small
print notes, the sums {except in para, 13) have been registered
on the line of x corresponding to the subscript of %F in the ap-
propriate formula. This has been done in order to show clearly
the correspondence between the working and the formula. Further,
in summing long series by machine, the sums will necessarily fall
on-the lines and not between them. But for some purposes it is
convenient to space the sums so that Z'u, falls on the line of
x—4%2, as in the examples given on p. 103. [Cf. Steffensen, loc. cit.
pP. 94 and 98; Fraser, Joc. cit. pp. 143, 146, 173.] By this arrange-
ment it is seen that, reading the table from right to left, the figures
to the left of any column are its successive differences, spaced in
the usual way.
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Ex. (3a). Downward sums Ex. (38). Upward sums

x U, Zu X X3u iy Zu PICTR
—z
~ 102
-1 48
o - 16 — 54
o I o 1 32
! o —15 — 22
r 3 I 3 17
4 1 -12 - 5
2 7 5 7 5
11 6 -5 [
3 5 16 5 o
111] 22 a

32
54

& ot





