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FINITE INTEGRATION BY PARTS (SERIES FOR ΣuXVX)
PART II

BY G. J. LIDSTONE, LL.D., ETC.

1. The following additional notes are in sequence to those printed
in J.I.A. Vol. LXIV, pp. 160-4. It will be shown by numerical
illustrations how the formulae there obtained, and others based
thereon, may be practically applied when ux is a polynomial and
vx an arbitrary set of quantities. In these illustrations we shall
take ux=x3 or (x+3)3, and make use of the following table of the
function and its differences:

X

-3

— 2

— 1

Ο

1

2

3

4

5

6

x + 3

0

1

2

3

4

S

6

7

8

9

ux

0

1

8

27

64

[94½]
125

216

343

512

729

ux

1

7

19

37
[49]
61

91

127

169

217

2ux

6

12

18

24

[27]
30

36

42

48

3ux

6

6

6

6
[6]
6

6

6

6

6

Figures in [ ] are mean values; those in black type show the sets of values
used in the Examples.

2. If the indefinite integral, represented by the expressions (3)
and (7) in the former text, be denoted by Sx, the required definite

sum is Sn—So. We can make either Sn or So vanish—so

reducing the definite sum to a single expression instead of the
difference between two expressions—by so arranging the sum-
mations of vx as to give zero values to the particular values of
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9° Finite Integration by Parts (Series for

appearing in Sn or So. This we are entitled to do

provided we preserve the fundamental relations

whence

and use the latter to build up the whole table of sums, beginning
with the zero values.

3. Since there are two expressions for Sx, and in each we may
make either Sn or So take the value o, there are in all four forms:
two of these involve v's and their differences exterior to the
"difference-triangle" of the v's actually involved in Σuv. We shall
exemplify these four forms by applying them to the following
simple case in which n = 4; the values of u and the Δ's are taken
from the table already given, as there shown by the heavy type.

X

vx

ux= (x+3)3

uxvx

0

1
27
27

1

3
64

192

2

7
125
87s

3
5

216
1080 Sum=2174

Form (3).

involving backward differences.
(a) To use un-1 (the last value involved) and its backward

differences (which fall inside the difference-triangle) we make

The result is

The sums are taken downwards and are here stepped-down a line at a time
so as to fall on the proper line of x. The sums are all positive; the negative signs
in the calculation come from the formula.

(b) To use u-1 (the value preceding the first involved in the
sum) and its backward differences (which fall outside the difference-
triangle) we make

for x = n.

for x = 0.

Calculation

....(3a)
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Finite Integration by Parts (Series for Σuχνχ) 91

The result is

The sums are taken upwards to the top line and are alternately negative and
positive. Thus the products will become positive.

[If the table be continued downwards by the same rules it will be found that
(whatever the values of un+1, un+2 , ···) there are two consecutive o's in the column
of Σ2, three in that of Σ 3 , and so on. Thus there is a wedge of zeros at the foot
of the table, corresponding to the wedge at the top of the table in the previous
example. This property will be used later (para, 12).]

Form (7).

involving forward differences.
(a) To use un (the value succeeding the last in the sum) and its

forward differences (which fall outside the difference-triangle) we
make

The result is

The suras are taken downwards and are here stepped-down a line at a time
so as to fall on the proper line of x. In practice they would be made to begin
on the line of x = 0. The sums are all positive ; the negative signs in the calculation
come from the formula.

for x=0

Calculation

Calculation

......(3b)

.....(7b)
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(b) To use u0 and its forward differences (which fall inside the
difference-triangle) we make

The result is

The sums are taken upwards and are here stepped-down a line at a time so
as to fall on the proper line of x. In practice they might be made to begin on
the line of x = 0. The sums are alternately negative and positive. Thus the
products in the formula all become positive.

[If the table be continued downwards there will be a wedge of zeros at the
foot, whatever the values of un+1 , uη+2 , ..., as in the case of the table for
formula (3 b). See note at the foot of that table, para. 3.]

4. While it is convenient to illustrate the four variant forms
separately it will be seen that they are closely related. The downward
sums of (3a) are those of (7a) re-aligned; and the upward sums of
(7b) are those of (3b) re-aligned. Also if (3a) be applied to the u's
and v's written in reverse order we shall get exactly the figures of
(7b) in reverse order; and similarly with (3b) and (7a).

5. If the summation is divided into two parts, say

(where a is any interior* point), we may use

(A) Formula (3a) for i.e. the top half, and formula (3b) for

the bottom half; both formulae involving the same multi-

pliers, viz. ua_1 and its backward differences ; or
(B) Formula (7a) for the top half and (7b) for the bottom half,

both involving ua and its forward differences.

* We use the word "interior" rather than "central" because a, the point of
division, may be any point between the extremes, i.e. it is not necessarily at the
precise centre of the range included in the summation. Hence it is immaterial
whether n is even or odd.

i.e.

and

Calculation

for x = n.

......(7b)
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By thus dividing the range into two parts we shall have much
smaller figures to deal with, especially if the number of terms is
large, in which case the higher sums increase very rapidly.

6. If we use a line slanting to represent values of u

and its differences, the formulae may be represented

diagrammatically thus:

Plan (A) is that used by Elderton, Table IV (A), and otherwise
proved by him. See table on the next page.

VARIANT FORMULAE

8. In the first paper, starting from the following fundamental
relations

or 3, p. 21], calling the data v0 , ... v9 and forming

The arrows show the directions of the summations involved

7. For an example of the use of (A) and (B) we shall take the
data in Table IV of Elderton's book, Frequency Curves... [ed. 1, 2

we found the two standard series (3) and (7) by expanding the last
term of (5) by a repetition of (5), and the last term of (8) by
a repetition of (8), respectively. But we may equally well expand
the last term of (5) by (8), or the last term of (8) by (5). Thus at
any stage we have a choice of two next terms, and so in a formula
of « terms there are in all z" different forms. We shall show that
these can be formed by simple rules. On examining the process
of expansion it will be seen that if we reach a new term by the use

upwords
downwords

and

and

combined

combined

to

b ckward
fo ward

.....

......
(5 )
(8)
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Finite Integration by Parts (Series for  95

of (5) this will involve reducing by 1 the previous suffix of u,
and in passing to the next term the suffix of υ is unchanged, which-
ever formula we use. But if we reach a new term by the use of (8)
this will involve no change of the suffix of u, but in passing to the
next term the suffix of υ must be reduced by 1, whichever formula
we use. Hence we are led to the following.

GENERAL RULES

(1) The form of the series is

where the suffixes of u and ν remain to be inserted.
(2) The first term is either uxΣvx or uχ_1 Σνχ. In order to make the

Rules general we shall consider that the first term is preceded by an
imaginary term of zero value, which may be called the oth term, with
suffixes x and x.

(3) In passing from any term (including the oth) to the next the suffix
of u may remain unchanged or be reduced by 1.

(4) If at any step [say from the nth term to the (n+ 1)th, where n

may be zero] the suffix of u is then at the next step

[i.e. from the (n + 1)th term to the (n + 2)th] the suffix of ν is
increased by 1

unchanged

9. The writer has communicated these Rules to Mr D. C. Fraser,
M.A., F.I.A., with the suggestion that it must be possible to derive
them from his elegant Hexagon Diagram as extended to Σuν (see
his important paper, T.F.A. Vol. xv, pp. 163-9). It is understood
that he will prove this in a supplementary Note, ibid. Vol. XVII.

10. The Rules lead immediately to the standard series (3) and
(7), and to extensions. Take as an example the following case :

Term
Suffix of u
Suffix of ν

oth
X

X

1st
X

X

2nd
X - 1

[X + 1]

3rd
X - 1

[X + 1]

4th
X - 2

[X + 2]

5th
X - 2

[x + 2]

Here we first write down the unbracketed values. Starting with
the oth term the differences of the suffixes of u are 0, — 1 ; 0, — 1 ; ....
Hence by the Rules, starting with the 1st term, the differences in
the suffixes of ν are + 1 , 0; + 1 , 0; ..., and thus we build up the
values in [ ]. We are thus led to the formula

.......(A)

unchanged
reduced by I

'

'

...
...
...
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96 Finite Integration by Parts (Series for Σuxνx)

where the sequence of the 's corresponds to the Gauss Backward
Interpolation formula beginning with ux. In the same way we find

........(B)

which corresponds to the Gauss Forward Formula, beginning with
ux. Similarly

.......(C)

corresponding to the Gauss Forward Formula beginning with ιιx - 1.
11. Taking the mean of (A) and (B) we get the following formula

involving central differences or mean differences as in Stirling's
Interpolation Formula:

.......(D)

........(E)

and taking the mean of (A) and (C) we get

involving central differences or mean differences as in Bessel's
Interpolation Formula. These summation formulae have been
given, and otherwise proved, in various places (see G. F. Hardy's
Lectures... [1909], Note E, pp. 125-8, etc.).

12. Like the standard series (3) and (7) already discussed, the
formulae given in this section all give the indefinite sum Sx, and

the definite sum is equal to Sn— So. In applying the

formulae either Sn or So is made to vanish by suitable arrangement
of the summations round an interior point. No fresh conventions
are required to secure this result, for it will be found that the
wedges of zeros [which, as previously pointed out, exist at the top
or bottom of the columns of sums in (3α), (3b), (7α) and (7b)]
coalesce in such a way that zero values are obtained also for the
differences and mean differences that are required to vanish in
applying the central-difference formulae (D) and (E).

13. As an illustration of the central-difference formulae (D)
and (E) we shall apply them to our preceding example, para. 7.
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The bulk of the summation work will be the same, but for clearness
we shall show it in full. In these cases it is usual and convenient
to begin registering the sums on the top line.

0

1

2

3

4
5

6

7
8
9

29
23
81

151

192

239

157

93
2 9

6

1000

29

52
133

284

476
524

285

128

35
6

29
81

2 1 4

498
[736]
974
978

[716]
454

169
41

6

29
110
324

[573]
822

1648
[1159]

670

2 1 6

47
6

29

139
463

[874]
1285

939
[604]
269

53
6

The appropriate values of u and its central differences or mean differences are
taken as before from the table in para, 1.

(D) Calculation
524 + 476 = 1000
978 - 498 = 480

1159 + 573 = 1732
939-463= 476

X 6 4

X 4 9
X 2 4
X 6

64000
23520

41568
2856

131944

(E) Calculation
524 + 476 =
716 - 736 =
670 + 822 =
604- 874 =

1000
- 20
1492

- 270

x 94½
x 61
x 27
x 6

94500

- 1220
40284

- 1620

131944

14. When the number of terms involved is at all considerable,
there is an undoubted advantage in the use of one or other of the
formulae referred to some interior point. In general it would not
appear that those just illustrated, involving central differences,
have much if any advantage over the formulae (A) and (B) illus-
trated in para. 7. There are, however, some cases in which the
central-difference formulae are greatly to be preferred: viz. when
we can so choose the interior point a that alternate differences
or mean differences vanish. For examples reference may be made
to G, F. Hardy's Lectures, Note E, pp. 125-8 ; and to A. W. Joseph's
paper, J.I.A. Vol. LXV, p. 285, where examples quoted from a paper
of Aitken's are given.

AJ 7
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INTERCONNEXION OF FORMULAE

15. The plan of these notes is to deduce all the summation
formulae directly from the fundamental relations

without using interpolation formulae, or formulae expressing
in terms of the ν's involved, or even binomial coefficients. It will

illustrate the very close connexion between differencing and
summing, and the consistent interlocking of different parts of the
general theory, if we show that these classes of formulae can them-
selves be deduced from the summation formulae, instead of serving
as their basis.

16. In formula (3b) put for ux

(x + t-1)(t _I) (x + t-1)(x + t-2) ... (x + 1)/(t-1)!.

Then ux vanishes for x= — 1, —2, ..., — (t — 1), and so all the
differences involved in the formula vanish until we reach Δt—lu_t = 1.
Thus the right-hand side reduces to a single term, and reversing
the sides we get

Taking α instead of ο as the origin this becomes

where all the factorials are of order (t - 1). Since

the expression may alternatively be written

 Σu V )
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These expressions give the tth summation taken upwards from
the line of ω to the line of α with the convention that sums of all
orders vanish on the line ω + 1. This may be conveniently repre-

sented by the suggestive symbol which is specially useful

when ν is constant so that a suffix is inapplicable. Putting v = 1,

since the factorial in [ ] vanishes at the lower limit.

17. In (7b) put ux for ux and v= 1 and we get

Using the last formula in the preceding paragraph, this becomes

which is equivalent to the advancing-difference interpolation
formula.

18. In the same way we may obtain expressions for descending
sums and for the backward-difference interpolation formula. In
(3a) put

ux = (x + t-1-n)(t-1).

Then ux vanishes for x=n—1, n — 2, ..., n — t+1, and so all the
differences involved in the formula vanish until we reach Δt-1 un-t=1.
Thus the right-hand side reduces to a single term, and reversing
the sides we get

7-2
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or, excluding zero terms from the summation on the right and
cancelling ( - )

t-1

 which appears on both sides,

which involves n - t + 1 terms, from vo to vn-t. Inspection of the
scheme (3 a) in para. I shows that the formula gives the downward
sum standing on the line of n (which is arbitrary) with the conven-
tion that sums of all orders are zero on the line of 0. This sum may

be conveniently represented by the symbol Making ν = 1

we get, in this notation,

since the factorial in [ ] vanishes at the upper limit. Changing
the origin from 0 to α, and writing ω for n — t + α, this becomes

19. In (3a) put Δux for ux, and v = 1, and we get

which is equivalent to the backward-difference interpolation
formula.

20. In the same way the Gauss interpolation formulae and the
central-difference formulae, and expressions for the corresponding

 Σu V )
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sums, may be derived from the summation formulae given in
paras, 10-11. The close inter-connexion of the formulae is thus
strikingly illustrated.

LIMITS OF ERROR

21. If, as assumed in our numerical illustrations, ux is a poly-
nomial of degree t, whose differences vanish after Δtu, the sum-
mation formulae are accurate if taken to the term involving that
difference. But if ux is not a polynomial the results are approximate
only, and it is important to find limits for the error involved.
Steffensen (Interpolation [1927], p. 101, § 116) has shown how to
determine remainder-terms of the form

..........(F)
On reference to Part I of the paper (loc. cit. pp. 160-3), it will be
seen that the last term in this formula is the first term in the

expansion or a remainder-term If the greatest
and least values of over the range of the sum be denoted
by the accurate value of the last term in (F) liesand
between

and

where the term represents the (t + 1)th differential coefficient

is a value of x between the extreme values
involved. But this formula is not always suitable, because

(1) A further sum of ν is involved: this may be laborious, and
if available might perhaps be better utilized to bring in another
term in the summation formula.

(2) Since ξ is unknown we can only say that falls between
its greatest and least values in the range, and it may not be easy
either to evaluate or to determine its limiting values. In
particular in a function of unknown form [such as ax, Ax, qx, ...,
in a table not based on a mathematical formula] the differential
coefficients cannot be accurately evaluated.

22. It is therefore practically useful to base limits of error on
the differences of u, which are always known. Omitting suffixes,
which depend on the particular formula in use, let the summation
formula be

and

 Σu V )
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from which we get at once the limits of the error involved in the
use of (F). Assuming that Δtu is not changing rapidly these limits
depend chiefly on Σt+1 v, and they may therefore be considerably

contracted by using one of the formulae of paras. 5-11, in which
upward and downward summations are made from some interior
point, such as the point a in para. 5; for in this case the sums of
higher orders are greatly reduced in comparison with those arising
when the summations are made from a terminal point. Moreover,
if we end with a term involving a difference of even order, we take
the difference instead of the total of the upward and downward
sums; and if the interior point a is so selected that the upward
and downward sums of order (t+1) are not greatly different the
limits of error are comparatively small. To this end if vx is generally
increasing below

the point a should be the centre of the range.

decreasing
It will be seen that the "interior" or "point-a" formulae not only
involve smaller figures but are also likely to be more accurate thanthe terminal formulae, if ux is not a simple polynomial. Note,
however, that for the point-a formulae the limits of error must

usually be found separately for the upper and lower sections; and
if we end with a term involving upward and downward sums of
different signs, in one section must be combined with
in the other section, and vice versa.

decreasing above
 "seen that the "interior" or "point" formulae not only

23. Note. Throughout our illustrations, as stated in the small
print notes, the sums (except in para. 13) have been registered
on the line of x corresponding to the subscript of Σt in the ap-
propriate formula. This has been done in order to show clearly
the correspondence between the working and the formula. Further,
in summing long series by machine, the sums will necessarily fall
on the lines and not between them. But for some purposes it is
convenient to space the sums so that Σtux falls on the line of
x—½t, as in the examples given on p. 103. [Cf. Steffensen, loc. cit.
pp. 94 and 98; Fraser, loc. cit. pp. 143, 146, 173.] By this arrange-
ment it is seen that, reading the table from right to left, the figures
to the left of any column are its successive differences, spaced in
the usual way.
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— 2

- 1

0

1

2

3

4

5

6

1

3

7

S

0

1

4

11

16

0

1

5

16

32

0

1

6

22

54

1

3

7

5

-16

-15

-12

- 5

0

48

32

17

5

0

- 102

- 54

- 22

- 5

0

Ex. (3 a). Downward sums Ex. (3 b). Upward sums

x ux ux
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