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FITTING THE TRUNCATED PARETO
DISTRIBUTION TO LOSS
DISTRIBUTIONS

By ALBERT V. BoyD

1. INTRODUCTION

HoGG AND KLUGMAN use the truncated Pareto distribution with probability
density function

_ a(A + &)
_(x+}.)°‘+"

where 6 >0 is specified and a >0 and A> 0 are unknown parameters, to describe
insurance claims. This is fitted first of all by the method of moments, using the
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estimators
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where X is the mean of a simple random sample, and the (biased) variance
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The authors then suggest, on pp. 113-16, that these estimates be used as starting
values in a Newton iteration to get the maximum likelihood estimates of the
parameters, but this technique can fail as a result of convergence problems. The
object of this note is to show that this has led Hogg and Klugman to
underestimate seriously the area in the tail of a fitted loss distribution, and to
discuss a method of circumventing this difficulty.

2. EXISTENCE OF A MAXIMUM LIKELIHOOD SOLUTION
For a simple random sample x,, x,, . .. ., x, the likelihood

L =a"(A+ o)™ f] (A +x)~* = (af°y [1 (0 + x,—8)~ !

i=1
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satisfies
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where 6=1+J, and we need to solve simultaneously the equations g, =0 and
gz=0.
If we first fix 6> 0 then
‘__1_,
oo a
gi(a, @ — o0 and In L— — o0 as -0+ and
InL=nrlna— Y Mm@+ x,—8)+a In 6
! 0 + x,-_a

fw} ol
— — o0 as a— 00, since x;> 4 for each i.

It follows that then In L has exactly one relative maximum for some positive a.
Next, fix x> 0. Then

aso-»o+,sog,(u,o)~1'é°-‘~» + ®;

asf— + oo,sogz(a,e)~§§—(a+ 1){'540—;

Since g, is a continuous function of @ for 8 > 0, therefore g, =0 for some 6 > 0; and
if 6y is the least such value of @ then, for 8> 6,,
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Hence for each fixed « > 0 there is only one positive solution of g;(x,0) =0 and, as
g2 is changing sign from positive to negative at this point then In L, as a function
of 6, has a relative maximum there.

In practical applications when In L is plotted as a function of « and @it is found
that the loci of maxima of In L for fixed 6 and for fixed o are usually of the form
shown in Figure 1, where they correspond to curves lying on a long ridge of the
surface In L(a,0) as a function of a and 6, and these curves intersect at a point
where 2> 0, >0 and L has a relative maximum there. (For an example where
this is not the case see the illustration 6 =1, x;=x>=2, x3=13 discussed below.)

Hogg and Klugman warn readers that to reach the peak by Newton’s
successive approximation technique it is important to have good preliminary
guesses of a and 0, and they suggest that & and §=1+4 are often convenient
starting values.

In their example (p. 64) the simple random sample is

xi, loss (in $10°) due to  f;, frequency

wind-related catastrophes  in 1977 x; f
2 12 17 1

3 4 2 1

4 3 231

5 4 24 2

6 4 25 1

8 2 27 1

9 1 32 1

15 1 43 1

The method of moments estimators are §=4-809, 1=27-921 and, with §=1-5,
this makes §=1+1-5=29-421. Hogg and Klugman discuss (pp. 115-16) the
maximum likelihood procedure, starting from the moments estimators a and 4,
and give a = 5-084 and 6 = 30-498; but at this point g, = —-043 which is not close
enough to 0, and the Newton iteration diverges when started from & and 7.

By using an alternative optimization technique such as the method of Nelder
and Mead discussed on pp. 81-4@, and for which Bunday® has provided a Basic
program, it can be found that In L attains its maximum value of —117-7359858 at
4=1-455688 and 1=3-613672. For comparison we mention that In
L= —119-54605 at & =4-809 and §=29-421, while at « = 5-084 and 6 = 30-498 the
value of In L is —119-58179.

The discrepancy in the values of In L might not appear to be large, but in
applications it can be serious. Thus Hogg and Klugman use the fitted truncated
Pareto distribution to estimate the probability of getting a loss exceeding
$29,500,000, and find this to be

A+ 295

With the incorrect values a = 5-084 and A =28-998 this gives a point estimate of A
as -036 and an approximate 95% confidence interval as 0 to -084. With the correct

h(ad) = Pr(X > 29-5) = ( At 1S )a.
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Figure 1. Projection of the Log Likelihood Function in L (a,8) onto the 6,a plane showing the locus of
81 =g>= 0 and the positions of alternative estimates.

maximum likelihood estimates, however, h(&,1) = -0659 and making the relevant
changes to the argument on pp. 116-18" gives an approximate 95% confidence
interval for k as -002 to -130.

Because of the appreciable discrepancy between the two sets of estimators it is
desirable to have a better method of starting the search for the maximum
likelihood estimators. Two such methods will now be considered.

3. OBTAINING FIRST APPROXIMATIONS TO
MAXIMUM LIKELIHOOD ESTIMATES

Method A
On equating g1(«,6) and g2(a,0) from (1) and (2) to zero we get
1
-~= —ln0+ls2(0)anda=—il—(ﬂ—
a n n
a—s 1(6)

n n

where 5,(0) = z x++6 and 5,(0) = z In(x; + 6—9).
L+ 60—

fmm] i=m1
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Eliminating « leads to F(f) = 0 where

AO) = ——s.w){l + 40 an}

” n

n 1 1 1 X, —-
6 @ Z x,—0 { +"Zln( * 06)}
jm1 +—— im1
[/}
n 1 1 1 .1
= a—a{n—a Z(x,—0) + e X(x,—0)? + terms in I etc}

X {l +;1-62(x,—6)—ﬁ Z(x,~6)* + terms inb!;etc}

=55 {Z(x, 82—~ [E(x,-—é)]z} + terms in % etc

= - 12 _(%—5) in L
20’{"3‘ (= 6)}+termsm0‘

and s2 = ! i (x,— %)%
Biay

Hence if s, > |%—6|=%— then ()= 0 — as 0—00. As 00+, so s5,(6)—con-
stant and constant x |In 8| tends to infinity less rapidly than 1/6; and so

p(o)~g-»+oo.

In the case s, > X — 0 the graph of F(0) must therefore cross the #-axis for some

0,> O; since
1 < i
x, + 00—6 eo

— 5,(6,)
b'"'_sl(oo)

0

it then follows that
> 0.

When s, < X— & the above analysis does not guarantee the existence of a positive
solution of F{(#)=0 and, in fact, the concentration of the x-values about their
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mean suggests that a heavy-tailed distribution, such as the Pareto, no longer
provides a suitable description of the data.

For a simple illustration of this, one may take the values 6=1, x;=x;=2,
x3=13. In the plane of « and 8 the locus of maxima of In L for fixed # can be shown
to approach 8 =4a/3 —3/4 asymptotically as # increases; the locus of maxima of
In L for fixed a approaches 6 =4a/3 — 1/6 asymptotically as « increases; and on
both these asymptotes In L increases to the limiting value 3 In 3/4—3 as @ or «
tends to infinity, so that there are no finite maximum likelihood estimates of the
parameters for the truncated Pareto distribution.

In this case, if k is any constant,

forx>1

k+ 1\=
1+ —
_3 4a/3
xa—+k - s
4 k+x a+1
1+ —
40/3
3,1
—3(x—1)
~ —e asa— o0,
4

which suggests that the Pareto distribution should be replaced by an exponential
one. It is easily checked that, when the density function is taken as ce~“*~" for
x> 1, then the maximum likelihood estimate of ¢ is 3/4.

Method B
If t=1/6 and A(f)= — F(1/1)/si(1/t) then it is easily verified that
(i) solving the equation F(6) =0 is equivalent to solving h(f) =0 where
nt
si(1/9y

(ii) for small values of |7| the Maclaurin expansion of A(¢) is

h(t) =1+ 1s2(1> +Int—

h(H) = f'—'{ Y (e;—8)? —ncz} + higher powers of ¢,
1

=

where ¢;= x;—§; and

(iii) when 1= + o0, h(f) ~ —

Z l/cl.
f=1

It follows that if s,>x—4d then
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Y (c—8*—n& >0,

il
so that in the neighbourhood of ¢=0 the graph of h(7) behaves like a parabola
with a minimum turning point at the origin; and as ¢-» o0 so A(#)— — co. There is
therefore a positive solution ¢= o of h(f)=0, and hence a solution § = 1/1, of the
maximum likelihood equations, & can then be found from s,(6) and s,(f) as in
Method A.

If 5, < % — & then, as with the function F{6) in Method A, we do not necessarily

get a solution of the maximum likelihood equations, and some other form of
distribution should be fitted to the data.

4. COMPARISON OF METHODS A AND B

As will be seen from Figures 2 and 3 which correspond to the data of Hogg and
Klugman’s example, both methods are suitable for attack by the Newton-
Raphson technique for a single variable with a suitable starting value, since
$x=10-108 > 7-725=x 4.

F(0)4
3
2+
1-
0=5-114
10 20 30 40 ©
0 ! | | Ly

Figure 2. Method A—Plot of F(0) against 6 showing the maximum likelihood estimate of 0.
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Figure 3. Method B—Plot of h(t) against t showing the maximum likelihood estimate of 0.

In the case of method A any value of 8 for which F{@) > 0, and certain values for
which F(8)<0 and F(6) <0, could usefully be taken as starting values; for
method B any value of ¢ for which A’(f) < 0 will lead to convergence of the process.
Numerical evidence suggests that the convergence is sometimes slightly faster
with method A, but that with method B it is a bit easier to hit on a suitable
starting value when the estimators given by the method of moments are used to
initiate a search.
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