
FITTING THE TRUNCATED PARETO
DISTRIBUTION TO LOSS

DISTRIBUTIONS

BY ALBERT V. BOYD

1. INTRODUCTION

HOGG AND KLUGMAN (1) use the truncated Pareto distribution with probability
density function

where 6 > 0 is specified and a > 0 and A > 0 are unknown parameters, to describe
insurance claims. This is fitted first of all by the method of moments, using the
estimators

and

where x is the mean of a simple random sample, and the (biased) variance

The authors then suggest, on pp. 11316, that these estimates be used as starting
values in a Newton iteration to get the maximum likelihood estimates of the
parameters, but this technique can fail as a result of convergence problems. The
object of this note is to show that this has led Hogg and Klugman to
underestimate seriously the area in the tail of a fitted loss distribution, and to
discuss a method of circumventing this difficulty.

2. EXISTENCE OF A MAXIMUM LIKELIHOOD SOLUTION

For a simple random sample x\, x2 xn the likelihood
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satisfies
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(1)

(2)

where θ = λ+5, and we need to solve simultaneously the equations g 1 = 0 and

If we first fix 0>O then

It follows that then In L has exactly one relative maximum for some positive a.
Next, fix a >0. Then

Since g2 is a continuous function of 0 for 6 > 0, therefore £2=0 for some 6 > 0; and
if θ0a is the least such value of θ then, for 0 > 60,
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Hence for each fixed a > 0 there is only one positive solution of g2(a,θ) = 0 and, as
g2 is changing sign from positive to negative at this point then In L, as a function
of 6, has a relative maximum there.

In practical applications when In L is plotted as a function of a and 0 it is found
that the loci of maxima of In L for fixed 6 and for fixed a are usually of the form
shown in Figure 1, where they correspond to curves lying on a long ridge of the
surface In L (a,0) as a function of a and 0, and these curves intersect at a point
where a>0, θ>0 and L has a relative maximum there. (For an example where
this is not the case see the illustration 6 = 1, X1 = xi = 2, x3 = 3 discussed below.)

Hogg and Klugman warn readers that to reach the peak by Newton's
successive approximation technique it is important to have good preliminary
guesses of a and 6, and they suggest that a and θ = X+ 8 are often convenient
starting values.

In their example (p. 64) the simple random sample is

Xi, loss (in $ 106 ) due to
wind-related catastrophes

2
3
4
5
6
8
9

15

fi,frequency
in 1977

12
4
3
4
4
2
1
1

Xi fi

17 1
22 1
23 1
24 2
25 1
27 1
32 1
43 1

The method of moments estimators are a = 4.809,1=27-921 and, with 5 = 1.5,
this makes θ = λ + l . 5 = 29-421. Hogg and Klugman discuss (pp. 115-16) the
maximum likelihood procedure, starting from the moments estimators a and X,
and give a = 5-084 and 0 = 30-498; but at this point g2 = — 043 which is not close
enough to 0, and the Newton iteration diverges when started from a and 1.

By using an alternative optimization technique such as the method of Nelder
and Mead discussed on pp. 81-4(2), and for which Bunday<3) has provided a BASIC
program, it can be found that In L attains its maximum value of — 117-7359858 at
5=1-455688 and X=3-613672. For comparison we mention that In
L=-119-54605 ata = 4-809 and 9= 29-421, while at a = 5.084 and 0=30-498 the
value of In L is -119-58179.

The discrepancy in the values of In L might not appear to be large, but in
applications it can be serious. Thus Hogg and Klugman use the fitted truncated
Pareto distribution to estimate the probability of getting a loss exceeding
$29,500,000, and find this to be

With the incorrect values a = 5.084 and λ = 28-998 this gives a point estimate of A
as 036 and an approximate 95% confidence interval as 0 to -084. With the correct
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Figure 1. Projection of the Log Likelihood Function In L (a,6) onto the 0,a plane showing the locus of
g, = g2=O and the positions of alternative estimates.

maximum likelihood estimates, however, h(a,2) = -0659 and making the relevant
changes to the argument on pp. 116-18(1) gives an approximate 95% confidence
interval for h as 002 to 130.

Because of the appreciable discrepancy between the two sets of estimators it is
desirable to have a better method of starting the search for the maximum
likelihood estimators. Two such methods will now be considered.

3. OBTAINING FIRST APPROXIMATIONS TO
MAXIMUM LIKELIHOOD ESTIMATES

Method A

On equating g\(a,6) and gfaff) from (1) and (2) to zero we get
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Eliminating a leads to F{8) = 0 where

Hence if sx> \jc-6\=*>X-5 then F{0)->O- as 0-»oo. As θ->O+, so (θ) - con-
stant and constant x |ln 0| tends to infinity less rapidly than 1/θ; and so

In the case sx>x—S the graph of F(0) must therefore cross the 0-axis for some
0 O > 0 ; since

it then follows that

When sx < x—8 the above analysis does not guarantee the existence of a positive
solution of F(θ)=O and, in fact, the concentration of the x-values about their
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mean suggests that a heavy-tailed distribution, such as the Pareto, no longer
provides a suitable description of the data.

For a simple illustration of this, one may take the values <$= 1, xi = x2 = 2,
xj = 3. In the plane of a and 8 the locus of maxima of In L for fixed 8 can be shown
to approach 0=4a/3—3/4 asymptotically as 8 increases; the locus of maxima of
In L for fixed a approaches 0=4<x/3—1/6 asymptotically as a increases; and on
both these asymptotes In L increases to the limiting value 3 hi 3/4—3 as 8 or a
tends to infinity, so that there are no finite maximum likelihood estimates of the
parameters for the truncated Pareto distribution.

In this case, if k is any constant,

which suggests that the Pareto distribution should be replaced by an exponential
one. It is easily checked that, when the density function is taken as ce -c(x-1) for
x>l, then the maximum likelihood estimate of c is 3/4.

Method B

If t = l/6» and A(f)= -F{l/t)lsi(l/t) then it is easily verified that

(i) solving the equation P(d)=Q is equivalent to solving h(i)=0 where

(ii) for small values of |r| the Maclaurin expansion of h(i) is

higher powers of /,

It follows that if sx > x—S then
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so that in the neighbourhood of f=0 the graph of h(t) behaves like a parabola
with a minimum turning point at the origin; and as t-*co so h(t)-* — oo. There is
therefore a positive solution r=t0 of h(t)=0, and hence a solution 6=l/t0 of the
maximum likelihood equations, & can then be found from s\(0) and s2(@) as in
Method A.

If sx < x—d then, as with the function F{8) in Method A, we do not necessarily
get a solution of the maximum likelihood equations, and some other form of
distribution should be fitted to the data.

4. COMPARISON OF METHODS A AND B

As will be seen from Figures 2 and 3 which correspond to the data of Hogg and
Klugman's example, both methods are suitable for attack by the Newton-
Raphson technique for a single variable with a suitable starting value, since
5x=10-108>7-725=Jc-a.

Figure 2. Method A—Plot o/F(0) against 0 showing the maximum likelihood estimate of 6.
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Figure 3. Method B—Plot of H(t) against t showing the maximum likelihood estimate of 6.

In the case of method A any value of 0 for which F\6) > 0, and certain values for
which P(6)<0 and F(ff)<0, could usefully be taken as starting values; for
method B any value of t for which h'(t) < 0 will lead to convergence of the process.
Numerical evidence suggests that the convergence is sometimes slightly faster
with method A, but that with method B it is a bit easier to hit on a suitable
starting value when the estimators given by the method of moments are used to
initiate a search.
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