FITTING THE TRUNCATED PARETO
 DISTRIBUTION TO LOSS
 DISTRIBUTIONS

By Albert V. Boyd

1. INTRODUCTION

Hogg and Klugman ${ }^{(1)}$ use the truncated Pareto distribution with probability density function

$$
f(x ; \alpha, \lambda)=\frac{\alpha(\lambda+\delta)^{\alpha}}{(x+\lambda)^{\alpha+1}},(\delta<x<\infty),
$$

where $\delta \geqslant 0$ is specified and $\alpha>0$ and $\lambda>0$ are unknown parameters, to describe insurance claims. This is fitted first of all by the method of moments, using the estimators
and

$$
\begin{gathered}
\tilde{\alpha}=\frac{2 s^{2}}{s^{2}-(\bar{x}-\delta)^{2}} \\
\tilde{\lambda}+\delta=\frac{(\bar{x}-\delta)\left\{s^{2}+(\bar{x}-\delta)^{2}\right\}}{s^{2}-(\bar{x}-\delta)^{2}}
\end{gathered}
$$

where \bar{x} is the mean of a simple random sample, and the (biased) variance

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

The authors then suggest, on pp. 113-16, that these estimates be used as starting values in a Newton iteration to get the maximum likelihood estimates of the parameters, but this technique can fail as a result of convergence problems. The object of this note is to show that this has led Hogg and Klugman to underestimate seriously the area in the tail of a fitted loss distribution, and to discuss a method of circumventing this difficulty.

2. EXISTENCE OF A MAXIMUM LIKELIHOOD SOLUTION

For a simple random sample $x_{1}, x_{2}, \ldots, x_{n}$ the likelihood

$$
L=\alpha^{n}(\lambda+\delta)^{n \alpha} \prod_{i=1}^{n}\left(\lambda+x_{i}\right)^{-\alpha-1}=\left(\alpha \theta^{\alpha}\right)^{n} \prod_{i=1}^{n}\left(\theta+x_{i}-\delta\right)^{-\alpha-1}
$$

satisfies

$$
\begin{align*}
& g_{1}(\alpha, \theta)=\frac{\partial \ln L}{\partial \alpha}=\frac{n}{\alpha}+n \ln \theta-\sum_{i=1}^{n} \ln \left(\theta+x_{i}-\delta\right) \tag{1}\\
& g_{2}(\alpha, \theta)=\frac{\partial \ln L}{\partial \theta}=\frac{n \alpha}{\theta}-(\alpha+1) \sum_{i=1}^{n} \frac{1}{\theta+x_{i}-\delta} \tag{2}
\end{align*}
$$

where $\theta=\lambda+\delta$, and we need to solve simultaneously the equations $g_{1}=0$ and $g_{2}=0$.

If we first fix $\boldsymbol{\theta}>0$ then

$$
\begin{gathered}
\frac{\partial g_{1}}{\partial \alpha}=-\frac{n}{\alpha^{2}}<0 \\
g_{1}(\alpha, \theta) \rightarrow \infty \text { and } \ln L \rightarrow-\infty \text { as } \alpha \rightarrow 0+: \text { and } \\
\ln L=n \ln \alpha-\sum_{i=1}^{n} \ln \left(\theta+x_{i}-\delta\right)+\alpha \sum_{i=1}^{n} \ln \frac{\theta}{\theta+x_{i}-\delta}
\end{gathered}
$$

$$
\rightarrow-\infty \text { as } \alpha \rightarrow \infty, \text { since } x_{i}>\delta \text { for each } i
$$

It follows that then $\ln L$ has exactly one relative maximum for some positive α.
Next, fix $\alpha>0$. Then

$$
\begin{gathered}
\text { as } \theta \rightarrow 0+, \operatorname{sog}_{2}(\alpha, \theta) \sim \frac{n \alpha}{\theta} \rightarrow+\infty ; \\
\text { as } \theta \rightarrow+\infty, \text { so } g_{2}(\alpha, \theta) \sim \frac{n \alpha}{\theta}-(\alpha+1) \frac{n}{\theta} \rightarrow 0-
\end{gathered}
$$

Since g_{2} is a continuous function of θ for $\theta>0$, therefore $g_{2}=0$ for some $\theta>0$; and if θ_{0} is the least such value of θ then, for $\theta>\theta_{0}$,

$$
\begin{aligned}
g_{2}(\alpha, \theta) & =\frac{\alpha+1}{\theta}\left\{\frac{n \alpha}{\alpha+1}-\sum_{i=1}^{n} \frac{1}{1+\frac{x_{i}-\delta}{\theta}}\right\} \\
& <\frac{\alpha+1}{\theta}\left\{\frac{n \alpha}{\alpha+1}-\sum_{i=1}^{n} \frac{1}{1+\frac{x_{i}-\delta}{\theta_{0}}}\right\} \\
& =\frac{\theta_{0}}{\theta} g_{2}\left(\alpha, \theta_{0}\right)=0
\end{aligned}
$$

Hence for each fixed $\alpha>0$ there is only one positive solution of $g_{2}(\alpha, \theta)=0$ and, as g_{2} is changing sign from positive to negative at this point then $\ln L$, as a function of θ, has a relative maximum there.

In practical applications when $\ln L$ is plotted as a function of α and θ it is found that the loci of maxima of $\ln L$ for fixed θ and for fixed α are usually of the form shown in Figure 1, where they correspond to curves lying on a long ridge of the surface $\ln L(\alpha, \theta)$ as a function of α and θ, and these curves intersect at a point where $\alpha>0, \theta>0$ and L has a relative maximum there. (For an example where this is not the case see the illustration $\delta=1, x_{1}=x_{2}=2, x_{3}=3$ discussed below.)

Hogg and Klugman warn readers that to reach the peak by Newton's successive approximation technique it is important to have good preliminary guesses of α and θ, and they suggest that $\tilde{\alpha}$ and $\tilde{\theta}=\tilde{\lambda}+\delta$ are often convenient starting values.

In their example (p.64) the simple random sample is

x_{i}, loss (in $\$ 10^{6}$) due to wind-related catastrophes	$\mathrm{f}_{\mathrm{i},}$, frequency in 1977	x_{i}
2	12	17
3	4	22
4	3	23
5	4	24
6	4	25
8	2	27
9	1	32
15	1	43

The method of moments estimators are $\tilde{\alpha}=4.809, \tilde{\lambda}=27.921$ and, with $\delta=1.5$, this makes $\tilde{\theta}=\tilde{\lambda}+1 \cdot 5=29.421$. Hogg and Klugman discuss (pp. 115-16) the maximum likelihood procedure, starting from the moments estimators α and λ, and give $\alpha=5.084$ and $\theta=30.498$; but at this point $g_{2}=-.043$ which is not close enough to 0 , and the Newton iteration diverges when started from $\tilde{\alpha}$ and λ.

By using an alternative optimization technique such as the method of Nelder and Mead discussed on pp. 81-4 $4^{(2)}$, and for which Bunday ${ }^{(3)}$ has provided a BASIC program, it can be found that $\ln L$ attains its maximum value of -117.7359858 at $\hat{\alpha}=1.455688$ and $\hat{\lambda}=3.613672$. For comparison we mention that \ln $L=-119.54605$ at $\tilde{\alpha}=4.809$ and $\tilde{\theta}=29.421$, while at $\alpha=5.084$ and $\theta=30.498$ the value of $\ln L$ is -119 .58179.

The discrepancy in the values of $\ln L$ might not appear to be large, but in applications it can be serious. Thus Hogg and Klugman use the fitted truncated Pareto distribution to estimate the probability of getting a loss exceeding $\$ 29,500,000$, and find this to be

$$
h(\alpha, \lambda)=\operatorname{Pr}(X>29 \cdot 5)=\left(\frac{\lambda+1 \cdot 5}{\lambda+29 \cdot 5}\right)^{\alpha} .
$$

With the incorrect values $\alpha=5.084$ and $\lambda=28.998$ this gives a point estimate of h as .036 and an approximate 95% confidence interval as 0 to $\cdot 084$. With the correct

Figure 1. Projection of the Log Likelihood Function $\ln \mathrm{L}(\alpha, \theta)$ onto the θ, α plane showing the locus of $\mathrm{g}_{1}=\mathrm{g}_{2}=O$ and the positions of alternative estimates.
maximum likelihood estimates, however, $\mathrm{h}(\hat{\alpha}, \hat{\lambda})=.0659$ and making the relevant changes to the argument on pp. 116-18 ${ }^{(1)}$ gives an approximate 95% confidence interval for h as $\cdot 002$ to $\cdot 130$.

Because of the appreciable discrepancy between the two sets of estimators it is desirable to have a better method of starting the search for the maximum likelihood estimators. Two such methods will now be considered.

3. OBTAINING FIRST APPROXIMATIONS TO MAXIMUM LIKELIHOOD ESTIMATES

Method A

On equating $g_{1}(\alpha, \theta)$ and $g_{2}(\alpha, \theta)$ from (1) and (2) to zero we get

$$
\frac{1}{\alpha}=-\ln \theta+\frac{1}{n} s_{2}(\theta) \text { and } \alpha=\frac{s_{1}(\theta)}{\frac{n}{\theta}-s_{1}(\theta)}
$$

$$
\text { where } s_{1}(\theta)=\sum_{i=1}^{n} \frac{1}{x_{i}+\theta-\delta} \text { and } s_{2}(\theta)=\sum_{i=1}^{n} \ln \left(x_{i}+\theta-\delta\right) .
$$

Eliminating α leads to $\boldsymbol{F}(\boldsymbol{\theta})=0$ where

$$
\begin{aligned}
& \qquad(\theta) \equiv \frac{n}{\theta}-s_{1}(\theta)\left\{1+\frac{s_{2}(\theta)}{n}-\ln \theta\right\} \\
& =\frac{n}{\theta}-\frac{1}{\theta}\left\{\sum_{i=1}^{n} \frac{1}{1+\frac{x_{i}-\delta}{\theta}}\right\}\left\{1+\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+\frac{x_{i}-\delta}{\theta}\right)\right\} \\
& =\frac{n}{\theta}-\frac{1}{\theta}\left\{n-\frac{1}{\theta} \Sigma\left(x_{i}-\delta\right)+\frac{1}{\theta^{2}} \Sigma\left(x_{i}-\delta\right)^{2}+\operatorname{terms} \text { in } \frac{1}{\theta^{3}} \text { etc }\right\} \\
& \times\left\{1+\frac{1}{n \theta} \Sigma\left(x_{i}-\delta\right)-\frac{1}{2 n \theta^{2}} \Sigma\left(x_{i}-\delta\right)^{2}+\operatorname{terms} \text { in } \frac{1}{\theta^{3}} \text { etc }\right\} \\
& =\frac{-1}{2 \theta^{3}}\left\{\Sigma\left(x_{i}-\delta\right)^{2}-\frac{2}{n}\left[\Sigma\left(x_{i}-\delta\right)\right]^{2}\right\}+\text { terms in } \frac{1}{\theta^{4}} \text { etc } \\
& =-\frac{n}{2 \theta^{3}}\left\{s_{x}^{2}-(\bar{x}-\delta)^{2}\right\}+\operatorname{terms} \text { in } \frac{1}{\theta^{4}} \\
& \text { and } s_{x}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
\end{aligned}
$$

Hence if $s_{x}>|\bar{x}-\delta|=\bar{x}-\delta$ then $F(\theta) \rightarrow \mathrm{O}$ - as $\theta \rightarrow \infty$. As $\theta \rightarrow \mathrm{O}+$, so $s_{1}(\theta) \rightarrow$ constant and constant $\times|\ln \theta|$ tends to infinity less rapidly than $1 / \theta$; and so

$$
F(\theta) \sim \frac{n}{\theta} \rightarrow+\infty
$$

In the case $s_{x}>\bar{x}-\delta$ the graph of $F(\theta)$ must therefore cross the θ-axis for some $\theta_{0}>0$; since

$$
\sum \frac{1}{x_{1}+\theta_{0}-\delta}<\sum \frac{1}{\theta_{0}}
$$

it then follows that

$$
\alpha=\frac{s_{1}\left(\theta_{0}\right)}{\frac{n}{\theta_{0}}-s_{1}\left(\theta_{0}\right)}>0 .
$$

When $s_{x} \leqslant \bar{x}-\delta$ the above analysis does not guarantee the existence of a positive solution of $F(\theta)=O$ and, in fact, the concentration of the x-values about their
mean suggests that a heavy-tailed distribution, such as the Pareto, no longer provides a suitable description of the data.

For a simple illustration of this, one may take the values $\delta=1, x_{1}=x_{2}=2$, $x_{3}=3$. In the plane of α and θ the locus of maxima of $\ln L$ for fixed θ can be shown to approach $\theta=4 \alpha / 3-3 / 4$ asymptotically as θ increases; the locus of maxima of $\ln L$ for fixed α approaches $\theta=4 \alpha / 3-1 / 6$ asymptotically as α increases; and on both these asymptotes $\ln L$ increases to the limiting value $3 \ln 3 / 4-3$ as θ or α tends to infinity, so that there are no finite maximum likelihood estimates of the parameters for the truncated Pareto distribution.

In this case, if k is any constant,

$$
\begin{gathered}
f\left(x ; \alpha, \frac{4 \alpha}{3}+k\right)=\frac{3}{4} \cdot \frac{\left(1+\frac{k+1}{4 \alpha / 3}\right)^{\alpha}}{\left(1+\frac{k+x}{4 \alpha / 3}\right)^{\alpha+1}} \text { for } x>1 \\
\sim \frac{3}{4} e^{-\frac{3}{4}(x-1)} \text { as } \alpha \rightarrow \infty
\end{gathered}
$$

which suggests that the Pareto distribution should be replaced by an exponential one. It is easily checked that, when the density function is taken as $c e^{-c(x-1)}$ for $x>1$, then the maximum likelihood estimate of c is $3 / 4$.

Method B

If $t=1 / \theta$ and $h(t)=-F(1 / t) / s_{1}(1 / t)$ then it is easily verified that
(i) solving the equation $F(\theta)=0$ is equivalent to solving $h(t)=0$ where

$$
h(t)=1+\frac{1}{n} s_{2}\left(\frac{1}{t}\right)+\ln t-\frac{n t}{s_{1}(1 / t)}
$$

(ii) for small values of $|t|$ the Maclaurin expansion of $h(t)$ is

$$
h(t)=\frac{t^{2}}{2 n}\left\{\sum_{i=1}^{n}\left(c_{i}-\bar{c}\right)^{2}-n \bar{c}^{2}\right\}+\text { higher powers of } t
$$

where $c_{i}=x_{i}-\delta$; and
(iii) when $t \rightarrow+\infty, h(t) \sim \frac{-n t}{\sum_{i=1}^{n} 1 / c_{i}}$.

It follows that if $s_{x}>\bar{x}-\delta$ then

$$
\sum_{i=1}^{n}\left(c_{i}-\bar{c}\right)^{2}-n \bar{c}^{2}>0
$$

so that in the neighbourhood of $t=0$ the graph of $h(t)$ behaves like a parabola with a minimum turning point at the origin; and as $t \rightarrow \infty$ so $h(t) \rightarrow-\infty$. There is therefore a positive solution $t=t_{0}$ of $h(t)=0$, and hence a solution $\theta=1 / t_{0}$ of the maximum likelihood equations, $\hat{\alpha}$ can then be found from $s_{1}(\hat{\theta})$ and $s_{2}(\hat{\theta})$ as in Method A.

If $s_{x} \leqslant \bar{x}-\delta$ then, as with the function $F(\theta)$ in Method A, we do not necessarily get a solution of the maximum likelihood equations, and some other form of distribution should be fitted to the data.

4. COMPARISON OF METHODS A AND B

As will be seen from Figures 2 and 3 which correspond to the data of Hogg and Klugman's example, both methods are suitable for attack by the NewtonRaphson technique for a single variable with a suitable starting value, since $s_{x}=10 \cdot 108>7.725=\bar{x}-\delta$.

Figure 2. Method A-Plot of $\mathrm{F}(\theta)$ against θ showing the maximum likelihood estimate of θ.

Figure 3. Method B—Plot of $\mathrm{h}(\mathrm{t})$ against t showing the maximum likelihood estimate of θ.

In the case of method A any value of θ for which $F(\theta)>0$, and certain values for which $F(\theta)<0$ and $F(\theta)<0$, could usefully be taken as starting values; for method B any value of t for which $h^{\prime}(t)<0$ will lead to convergence of the process. Numerical evidence suggests that the convergence is sometimes slightly faster with method A, but that with method B it is a bit easier to hit on a suitable starting value when the estimators given by the method of moments are used to initiate a search.

5. REFERENCES

(1) Hogo, R. V. and Klugman, S. A. (1984) Loss Distributions. Wiley.
(2) Walsh, G. R. (1975) Methods of Optimisation. Wiley.
(3) Bunday, B. D. (1984) Basic Optimisation Methods. Arnold, London.

