FITTING THE TRUNCATED PARETO DISTRIBUTION TO LOSS DISTRIBUTIONS

BY ALBERT V. BOYD

1. INTRODUCTION

HOGG AND $KLUGMAN^{(1)}$ use the truncated Pareto distribution with probability density function

$$f(x; \alpha, \lambda) = \frac{\alpha(\lambda + \delta)^{\alpha}}{(x + \lambda)^{\alpha + 1}}, (\delta < x < \infty),$$

where $\delta \ge 0$ is specified and $\alpha > 0$ and $\lambda > 0$ are unknown parameters, to describe insurance claims. This is fitted first of all by the method of moments, using the estimators

$$\tilde{\alpha} = \frac{2s^2}{s^2 - (\bar{x} - \delta)^2}$$

 $\tilde{\lambda} + \delta = \frac{(\bar{x} - \delta)\{s^2 + (\bar{x} - \delta)^2\}}{s^2 - (\bar{x} - \delta)^2}$

where \bar{x} is the mean of a simple random sample, and the (biased) variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

The authors then suggest, on pp. 113–16, that these estimates be used as starting values in a Newton iteration to get the maximum likelihood estimates of the parameters, but this technique can fail as a result of convergence problems. The object of this note is to show that this has led Hogg and Klugman to underestimate seriously the area in the tail of a fitted loss distribution, and to discuss a method of circumventing this difficulty.

2. EXISTENCE OF A MAXIMUM LIKELIHOOD SOLUTION

For a simple random sample x_1, x_2, \ldots, x_n the likelihood

$$L = \alpha^n (\lambda + \delta)^{n\alpha} \prod_{i=1}^n (\lambda + x_i)^{-\alpha - 1} = (\alpha \theta^{\alpha})^n \prod_{i=1}^n (\theta + x_i - \delta)^{-\alpha - 1}$$

and

satisfies

$$g_1(\alpha, \theta) \equiv \frac{\partial \ln L}{\partial \alpha} = \frac{n}{\alpha} + n \ln \theta - \sum_{i=1}^n \ln(\theta + x_i - \delta)$$
(1)

$$g_2(\alpha,\theta) \equiv \frac{\partial \ln L}{\partial \theta} = \frac{n\alpha}{\theta} - (\alpha+1) \sum_{i=1}^n \frac{1}{\theta + x_i - \delta}$$
(2)

where $\theta = \lambda + \delta$, and we need to solve simultaneously the equations $g_1 = 0$ and $g_2 = 0$.

~

If we first fix $\theta > 0$ then

$$\frac{\partial g_1}{\partial \alpha} = -\frac{n}{\alpha^2} < 0;$$

 $g_1(\alpha, \theta) \to \infty \text{ and } \ln L \to -\infty \text{ as } \alpha \to 0+; \text{ and}$
 $\ln L = n \ln \alpha - \sum_{i=1}^n \ln(\theta + x_i - \delta) + \alpha \sum_{i=1}^n \ln \frac{\theta}{\theta + x_i - \delta}$
 $\to -\infty \text{ as } \alpha \to \infty, \text{ since } x_i > \delta \text{ for each } i.$

It follows that then $\ln L$ has exactly one relative maximum for some positive α . Next, fix $\alpha > 0$. Then

as
$$\theta \to 0 +$$
, so $g_2(\alpha, \theta) \sim \frac{n\alpha}{\theta} \to +\infty$;
as $\theta \to +\infty$, so $g_2(\alpha, \theta) \sim \frac{n\alpha}{\theta} - (\alpha + 1)\frac{n}{\theta} \to 0 -;$

Since g_2 is a continuous function of θ for $\theta > 0$, therefore $g_2 = 0$ for some $\theta > 0$; and if θ_0 is the least such value of θ then, for $\theta > \theta_0$,

$$g_{2}(\alpha,\theta) = \frac{\alpha+1}{\theta} \left\{ \frac{n\alpha}{\alpha+1} - \sum_{i=1}^{n} \frac{1}{1+\frac{x_{i}-\delta}{\theta}} \right\}$$
$$< \frac{\alpha+1}{\theta} \left\{ \frac{n\alpha}{\alpha+1} - \sum_{i=1}^{n} \frac{1}{1+\frac{x_{i}-\delta}{\theta_{0}}} \right\}$$
$$= \frac{\theta_{0}}{\theta} g_{2}(\alpha,\theta_{0}) = 0.$$

152

Hence for each fixed $\alpha > 0$ there is only one positive solution of $g_2(\alpha, \theta) = 0$ and, as g_2 is changing sign from positive to negative at this point then $\ln L$, as a function of θ , has a relative maximum there.

In practical applications when $\ln L$ is plotted as a function of α and θ it is found that the loci of maxima of $\ln L$ for fixed θ and for fixed α are usually of the form shown in Figure 1, where they correspond to curves lying on a long ridge of the surface $\ln L(\alpha, \theta)$ as a function of α and θ , and these curves intersect at a point where $\alpha > 0$, $\theta > 0$ and L has a relative maximum there. (For an example where this is not the case see the illustration $\delta = 1$, $x_1 = x_2 = 2$, $x_3 = 3$ discussed below.)

Hogg and Klugman warn readers that to reach the peak by Newton's successive approximation technique it is important to have good preliminary guesses of α and θ , and they suggest that $\tilde{\alpha}$ and $\tilde{\theta} = \tilde{\lambda} + \delta$ are often convenient starting values.

In their example (p. 64) the simple random sample is

x_i , loss (in \$10 ⁶) due to wind-related catastrophes	f _i , frequency in 1977	xi	fj
2	12	17	1
3	4	22	1
4	3	23	1
5	4	24	2
6	4	25	1
8	2	27	1
9	1	32	1
15	1	43	1

The method of moments estimators are $\tilde{\alpha} = 4.809$, $\tilde{\lambda} = 27.921$ and, with $\delta = 1.5$, this makes $\tilde{\theta} = \tilde{\lambda} + 1.5 = 29.421$. Hogg and Klugman discuss (pp. 115–16) the maximum likelihood procedure, starting from the moments estimators α and λ , and give $\alpha = 5.084$ and $\theta = 30.498$; but at this point $g_2 = -.043$ which is not close enough to 0, and the Newton iteration diverges when started from $\tilde{\alpha}$ and $\tilde{\lambda}$.

By using an alternative optimization technique such as the method of Nelder and Mead discussed on pp. $81-4^{(2)}$, and for which Bunday⁽³⁾ has provided a BASIC program, it can be found that ln L attains its maximum value of $-117\cdot7359858$ at $\hat{\alpha} = 1\cdot455688$ and $\hat{\lambda} = 3\cdot613672$. For comparison we mention that ln $L = -119\cdot54605$ at $\tilde{\alpha} = 4\cdot809$ and $\tilde{\theta} = 29\cdot421$, while at $\alpha = 5\cdot084$ and $\theta = 30\cdot498$ the value of ln L is $-119\cdot58179$.

The discrepancy in the values of $\ln L$ might not appear to be large, but in applications it can be serious. Thus Hogg and Klugman use the fitted truncated Pareto distribution to estimate the probability of getting a loss exceeding \$29,500,000, and find this to be

$$h(\alpha,\lambda) = Pr(X > 29.5) = \left(\frac{\lambda + 1.5}{\lambda + 29.5}\right)^{\alpha}.$$

With the incorrect values $\alpha = 5.084$ and $\lambda = 28.998$ this gives a point estimate of *h* as .036 and an approximate 95% confidence interval as 0 to .084. With the correct

Figure 1. Projection of the Log Likelihood Function ln L (α, θ) onto the θ, α plane showing the locus of $g_1 = g_2 = O$ and the positions of alternative estimates.

maximum likelihood estimates, however, $h(\hat{\alpha}, \hat{\lambda}) = .0659$ and making the relevant changes to the argument on pp. $116-18^{(1)}$ gives an approximate 95% confidence interval for *h* as .002 to .130.

Because of the appreciable discrepancy between the two sets of estimators it is desirable to have a better method of starting the search for the maximum likelihood estimators. Two such methods will now be considered.

3. OBTAINING FIRST APPROXIMATIONS TO MAXIMUM LIKELIHOOD ESTIMATES

Method A

On equating $g_1(\alpha, \theta)$ and $g_2(\alpha, \theta)$ from (1) and (2) to zero we get

$$\frac{1}{\alpha} = -\ln \theta + \frac{1}{n} s_2(\theta) \text{ and } \alpha = \frac{s_1(\theta)}{\frac{n}{\theta} - s_1(\theta)}$$

where $s_1(\theta) = \sum_{i=1}^n \frac{1}{x_i + \theta - \delta}$ and $s_2(\theta) = \sum_{i=1}^n \ln(x_i + \theta - \delta)$.

154

.

Eliminating α leads to $F(\theta) = 0$ where

$$F(\theta) \equiv \frac{n}{\theta} - s_1(\theta) \left\{ 1 + \frac{s_2(\theta)}{n} - \ln\theta \right\}$$
$$= \frac{n}{\theta} - \frac{1}{\theta} \left\{ \sum_{i=1}^n \frac{1}{1 + \frac{x_i - \delta}{\theta}} \right\} \left\{ 1 + \frac{1}{n} \sum_{i=1}^n \ln\left(1 + \frac{x_i - \delta}{\theta}\right) \right\}$$
$$= \frac{n}{\theta} - \frac{1}{\theta} \left\{ n - \frac{1}{\theta} \Sigma(x_i - \delta) + \frac{1}{\theta^2} \Sigma(x_i - \delta)^2 + \operatorname{terms} \operatorname{in} \frac{1}{\theta^3} \operatorname{etc} \right\}$$
$$\times \left\{ 1 + \frac{1}{n\theta} \Sigma(x_i - \delta) - \frac{1}{2n\theta^2} \Sigma(x_i - \delta)^2 + \operatorname{terms} \operatorname{in} \frac{1}{\theta^3} \operatorname{etc} \right\}$$
$$= \frac{-1}{2\theta^3} \left\{ \Sigma(x_i - \delta)^2 - \frac{2}{n} [\Sigma(x_i - \delta)]^2 \right\} + \operatorname{terms} \operatorname{in} \frac{1}{\theta^4} \operatorname{etc}$$
$$= -\frac{n}{2\theta^3} \left\{ s_x^2 - (\bar{x} - \delta)^2 \right\} + \operatorname{terms} \operatorname{in} \frac{1}{\theta^4}$$
and $s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$

Hence if $s_x > |\bar{x} - \delta| = \bar{x} - \delta$ then $F(\theta) \to O - as \theta \to \infty$. As $\theta \to O +$, so $s_1(\theta) \to constant$ and constant $\times |\ln \theta|$ tends to infinity less rapidly than $1/\theta$; and so

$$F(\theta) \sim \frac{n}{\theta} \to + \infty$$
.

In the case $s_x > \bar{x} - \delta$ the graph of $F(\theta)$ must therefore cross the θ -axis for some $\theta_0 > 0$; since

$$\sum_{x_i+\theta_0-\delta}^{1} < \sum_{\theta_0}^{1}$$

it then follows that

$$\alpha = \frac{s_1(\theta_0)}{\frac{n}{\theta_0} - s_1(\theta_0)} > 0.$$

When $s_x \leq \bar{x} - \delta$ the above analysis does not guarantee the existence of a positive solution of $F(\theta) = O$ and, in fact, the concentration of the x-values about their

mean suggests that a heavy-tailed distribution, such as the Pareto, no longer provides a suitable description of the data.

For a simple illustration of this, one may take the values $\delta = 1$, $x_1 = x_2 = 2$, $x_3 = 3$. In the plane of α and θ the locus of maxima of $\ln L$ for fixed θ can be shown to approach $\theta = 4\alpha/3 - 3/4$ asymptotically as θ increases; the locus of maxima of $\ln L$ for fixed α approaches $\theta = 4\alpha/3 - 1/6$ asymptotically as α increases; and on both these asymptotes $\ln L$ increases to the limiting value $3 \ln 3/4 - 3$ as θ or α tends to infinity, so that there are no finite maximum likelihood estimates of the parameters for the truncated Pareto distribution.

In this case, if k is any constant,

$$f\left(x; \alpha, \frac{4\alpha}{3} + k\right) = \frac{3}{4} \cdot \frac{\left(1 + \frac{k+1}{4\alpha/3}\right)^{\alpha}}{\left(1 + \frac{k+x}{4\alpha/3}\right)^{\alpha+1}} \text{ for } x > 1$$
$$\sim \frac{3}{4}e^{-\frac{3}{4}(x-1)} \text{ as } \alpha \to \infty,$$

which suggests that the Pareto distribution should be replaced by an exponential one. It is easily checked that, when the density function is taken as $ce^{-c(x-1)}$ for x > 1, then the maximum likelihood estimate of c is 3/4.

Method B

If $t = 1/\theta$ and $h(t) = -F(1/t)/s_1(1/t)$ then it is easily verified that

(i) solving the equation $F(\theta) = 0$ is equivalent to solving h(t) = 0 where

$$h(t) = 1 + \frac{1}{n} s_2\left(\frac{1}{t}\right) + \ln t - \frac{nt}{s_1(1/t)}$$

(ii) for small values of |t| the Maclaurin expansion of h(t) is

$$h(t) = \frac{t^2}{2n} \left\{ \sum_{i=1}^n (c_i - \bar{c})^2 - n\bar{c}^2 \right\} + \text{higher powers of } t,$$

where $c_i = x_i - \delta$; and

(iii) when
$$t \to +\infty$$
, $h(t) \sim \frac{-nt}{\sum_{i=1}^{n} 1/c_i}$

It follows that if $s_x > \bar{x} - \delta$ then

$$\sum_{i=1}^{n} (c_i - \bar{c})^2 - n\bar{c}^2 > 0,$$

so that in the neighbourhood of t=0 the graph of h(t) behaves like a parabola with a minimum turning point at the origin; and as $t \to \infty$ so $h(t) \to -\infty$. There is therefore a positive solution $t=t_0$ of h(t)=0, and hence a solution $\hat{\theta}=1/t_0$ of the maximum likelihood equations, $\hat{\alpha}$ can then be found from $s_1(\hat{\theta})$ and $s_2(\hat{\theta})$ as in Method A.

If $s_x \leq \bar{x} - \delta$ then, as with the function $F(\theta)$ in Method A, we do not necessarily get a solution of the maximum likelihood equations, and some other form of distribution should be fitted to the data.

4. COMPARISON OF METHODS A AND B

As will be seen from Figures 2 and 3 which correspond to the data of Hogg and Klugman's example, both methods are suitable for attack by the Newton-Raphson technique for a single variable with a suitable starting value, since $s_x = 10.108 > 7.725 = \bar{x} - \delta$.

Figure 2. Method A—Plot of $F(\theta)$ against θ showing the maximum likelihood estimate of θ .

Figure 3. Method B—Plot of h(t) against t showing the maximum likelihood estimate of θ .

In the case of method A any value of θ for which $F(\theta) > 0$, and certain values for which $F(\theta) < 0$ and $F'(\theta) < 0$, could usefully be taken as starting values; for method B any value of t for which h'(t) < 0 will lead to convergence of the process. Numerical evidence suggests that the convergence is sometimes slightly faster with method A, but that with method B it is a bit easier to hit on a suitable starting value when the estimators given by the method of moments are used to initiate a search.

5. REFERENCES

- (1) HOGG, R. V. AND KLUGMAN, S. A. (1984) Loss Distributions. Wiley.
- (2) WALSH, G. R. (1975) Methods of Optimisation. Wiley.
- (3) BUNDAY, B. D. (1984) Basic Optimisation Methods. Arnold, London.