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Dedicated to those practical actuaries who thought they had

escaped from the clutches of seriously tricky maths ....

Look out it’s behind you.

FRACTALS ~ A Discussion of the role of Actuaries in the developing world of complexity



Preface

Perhaps the biggest challenge in writing this paper has been to establish a tone that is
both robust and appropriate.

The problem has been borne from a fundamental conflict; how do you address a
subject that ought to be considered by the general populous of the profession and hence
should be argued on a level of principle, when the very heart of that subject is witnessed
by complex modern mathematical techniques, which in their turn require to be
considered on a level of detail.

That the paper is termed ‘Fractals’, however, merely points to the roots of this
document and to the tricky maths in its nether regions. Please do not be deterred by it.
A diversion into the pages of ‘New Scientist’ gave rise to an inquisitive journey, and this
paper represents the current staging post of that mathematical research. However it has
also raised some issues which are more fundamental, issues that are raised in the early
pages of the paper and which may warrant consideration by a wider audience.

Hence we have attempted to structure the paper in the manner of a funnel, with the
widest concepts and concerns first and the narrowest principles last. We have also adopted
what we hope is a fairly light approach to our narrative, for if successful we may yet gain the
attention of the wider audience. Our primary hope is that many will read the widest
concepts and at best place them into the context of the debate on the future of the
profession (or at worst discard them). Our secondary hope is that a few will slide down the
funnel and into the dark nether regions of the paper and come to contribute to the serious
consideration of the use of complex and chaotic systems in the understanding of risks.

® The illustration on the front is the “Frothy Basin Attractor”
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SECTION 1

Themes

The Fractal Fern

“The sciences do not try to explain, they hardly even try
to interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and

. . . 9
preasely that it is expected to work.

John Von Neumann
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1.1 Themes

This paper, like the title, is somewhat schizophrenic in nature for we have two points
that we would like to present.

The first theme is that fractal geometry offers scope for risk analysis and may, in time,
lead to actuarial processes based upon it. This is a fairly technical presentation even at this
early stage in our research and as such most of the discussion is carried in Sections 3 and 4.

The second theme is that the actuarial profession is not geared up to embrace technical
advances efficiently when those advances are rooted in the science of mathematics. This
theme is discussed at greatest length in the first two sections.

The two themes are related by the fact that the research into the first concept has
uncovered significant advancement in the application of fractal geometry in areas that are
closely related to those of actuarial interest by related disciplines. These areas include
demography, oncology, epidemiology and complex modelling.

At a time when the profession is looking to take its applied skills into wider areas of
risk management, we found it a little disconcerting to discover that the pure mathematics
behind those skills was moving, What has been of greater concern is that it has been
moving behind the backs of most of the profession for some years now. Is it remotely
possible that the development of investment derivatives by an allied discipline is the thin
edge of a much larger wedge?

The two themes are expanded further below.

1.1.1 Why might a Fractal be of use to an Actuary?

Fractal geometry burst onto the mathematical scene in the early 1980’s following a
relatively short gestation period in the preceding 20 years. It brought with it a new
glossary of terms and has given a different perspective to a whole range of natural
phenomena. Above all it is a strikingly visual form of mathematics and up to a point this
can shield the potential for serious application of the relatively simple concepts that lie
behind it.

In its purest sense a ‘fractal’ is a set of points in a space of as many dimensions as you
wish to operate in, that have been plotted by the repetitive application of mapping
algorithms. The mapping algorithms, however, remain the same for each round of
transformation. If those mappings apply scale changes then you end up with a set that
either tends to the infinite or to the infinitesimal but one that is ‘self similar’ at all orders
of magnification. There also exist ‘natural’ fractals which are objects that reveal a certain
degree of self similarity on a number of scales and which can be approximated to by the
use of the pure or ‘mathematical’ fractals. In mathematical fractals the parts are copies of
the whole transformed; in natural fractals the parts are only reminiscent of the whole.

The geometry is that which applies to this scale relationship and which is, by definition,
discontinuous and non-differentiable. Looking at a set of observations, or at a structure, as
the end result of the repetitive mapping of a fixed set of algorithms rather than as a set
with a ‘snap-shot’ relationship is what makes fractal geometry different from traditional
geometry. This perspective has clearly been facilitated by the power of PCs.

Many risk profiles appear to show the trademarks of natural fractals, particularly if
plotted over time.
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However, there are only three alternative scenarios for fractals and any other new
techniques emerging;

B They may be of no use at all, or at least are of no greater value than simpler
measures or other well established tools.

B They will become an additional tool, such as Chi-squared tests, that give an extra
piece of information on a set of data and may one day take up a chapter in the
statistics text book for student reading,

B They will evolve new analytical processes that may be applied to the relationship
combinations that drive long term sensitivities. This will provide the profession
with fast, visual, methods of understanding the mechanics that they are managing,

At this juncture you may be tempted to close the paper and escape before you become
immersed in a mire of formulae and jargon. If so then we will shortcut the later conclusions
for you by saying that in our opinion the application for fractals lies somewhere between the
last two scenarios, but it is not debated any further until section 2.

1.1.2 Why might a Fractal be a threat to an Actuary?

The mathematical landscape has appeared relatively static for some time. Einstein
shook the world of physics into a new era of discovery, medicine continues to march on
and new findings constantly revolutionise chemistry, but good old mathematics has largely
bumbled along unencumbered by the arrival of anything too dramatic for many decades.

Speed of application has changed due to ever improving technology, of course, but our
children’s maths text books are carrying the same subject matter that we studied 30 years
ago; albeit with a change in emphasis. Not so physics and chemistry (wasn’t a quark a
sound that was emitted from a West Country duck ?). So the profession upon which much
of the mechanics of financial services has been based; the actuarial profession (arguably the
one and only commercially based profession with its roots deep in pure mathematics), has
been quite stable as a profession with its face firmly towards the commercial world in
which it operates.

Commercial operations based on medicine or physics (such as audio-visual and
electronic companies) have their technical professions split, with a substantial proportion
being based in research processes; so that the industry may become more accurate, faster,
cheaper etc etc.

Actuaries have had no need to take this stance. Yet with only a few full-time
actuademics (to coin a phrase) the volume of output from that source is huge. If such a
small, albeit select, group can push barriers forward from a small research base, what is
the industry missing, for such a group cannot have much time left over to explore too
many alternatives? This was not a great risk in a relatively static science, of course.
Furthermore the industry in which actuaries worked was very stable, as well as being very
narrow.

However, the science on which the industry is based (mathematics) is no longer static,
nor is our traditional industry (be it insurance, pensions or investment) and the profession
is also looking beyond these traditional boundaries towards wider horizons.

Commerecially, finding a way of doing everything more accurately, faster, cheaper is the big
challenge; for the profession to contribute its traditional values effectively in this new and
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volatile environment, it will have to embrace these commercial demands.

Commercial developments within our traditional industries and the application of our
basic skill sets to non-traditional industries are being well debated and lie beyond the
scope of this paper. It is the developments in the world of mathematics that occupy the
thoughts of these pages. To consider this the functions of the actuary may arguably be split
into twoj; the application of techniques and the techniques themselves. While mathematics
offers some opportunity to widen the scope of the former, the major impact clearly lies
with the latter function. This definition of function does not envisage actuaries pushing
forward the evolution of mathematics but it implicitly accepts that actuaries should
embrace such evolution in the development of their processes and applications.

Fuzzy Logic, Chaos Theory, Fractals, Complexity and Genetic Algorithms are all
‘modern’ arrivals on the mathematical scene. While interesting in themselves they are not
here in their own right. It is their potential to contribute to practical and commercial
application that is important. The question is:

Do these new concepts offer any potential to improve the techniques
(processes) used in actuarial applications ?

As you may have gathered by now we believe that it is not this question that is
important. The most pressing question is different:

Is the profession in a position to answer the first question, in relation to
any new mathematical concept, quickly ?

There is some reason to have concern about this question for historically process
changes have taken a long time to gain a foothold in actuarial training.

In the late 1970s the actuarial study notes on life office practice had a small paragraph
on cash flow projections and their application in product pricing. Yet some offices were
already running their control processes on them.

One actuary’s anecdote is that when expressing concern to his MD that he didn’t have
pensions experience and was going to sit his pensions final next, he was advised that if he
wanted to pass the pension exam the last place he should be was in a practical pensions
environment, picking up all of the modern practices which the examinations didn’t
reflect.

The Institute and Faculty have put a lot of effort in getting good practice into the
training of actuaries recently, but what about the unproven practices? Where do they get
tested ?

Should the actuarial profession be up there hunting with the most effective tools, for if
not is it possible that another branch of the scientific fraternity will make the connection
and do it instead ?

Isn’t it worrying that Dr Mandelbrot (he of “fractalicious” mug designs) dedicates space
in his theses to showing how a technique already being applied vigorously in particle
physics could analyse investment trends?
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Fractals may not be a gateway to more efficient processes, but the certain message
from this is, as they say in the movie, ‘we are not alone’ in professional terms. If it isn’t
fractals then it might be Chaos Theory, Complexity or Neural Networks, and what about
Surreal Numbers? Given that this very new branch of mathematics claims to be able to
code every type of number (including imaginary numbers) in a combination that is either
point up or point down it could revolutionise mathematics in a computerised (ie binary)
world.

For so long actuaries have played a core role in the practice of life insurance, pensions
and investment and latterly general insurance, researching the performance of their
company and its assets. How does a profession so heavily rooted into commercial
applications find the resource to address effective consideration of any new technique?

Perhaps it should not try to address it in developmental terms, merely act as a
watchdog on fiscal prudence in the application of techniques brought forward by others, a
role it has arguably taken on in the development of derivatives.

Perhaps the fact that this paper gives no definitive answer, only questions, means that
the profession is actually going to have to face up to a need to find a way to escalate the
research into our own science as well.
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SECTION 2

Complexity, Chaos and Risk

The Spider Fractal

(1% .
Clouds are not spheres, mountains are not cones, and
. . . . . »
lightning does not travel in a straight line.

B Mandelbrot
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2.1 Actuaries and Mathematics
- the Premise

No paper entitled ‘Fractals’ can hope to escape without reference to Benoit
Mandelbrot, but his quote, taken at the start of this section, is one of the few references
we shall make to him in this wider discussion of the role of actuaries with mathematics in
general and modern mathematics in particular. It is an interesting quotation however, not
simply because it is rooted in the observations that gave birth to fractal mathematics, but
because it touches on the principles of actuarial science as well.

It is an analogy that is worth pursuing, for while clouds are not spheres, mountains are
not cones, and lightning does not travel in a straight line, an actuary would base his work
on the assumption that this is what they are, with the final shape caused by variations
(mostly random) around the norm.

The most obvious example is that of mortality, described often in terms of a formula
around which the actual observations might reasonably be random variations, well within
acceptable confidence limits.

The most topical example, meanwhile, would be that of stochastic modelling where the
results are random variations around a selection of (usually) mathematically ‘smooth’
distributions, of which more later.

However, this mathematical principle is only one of several underlying most of the
application processes used by actuaries in their work. While most definitions of actuaries
rightly revolve around the applications of our work, there is, not surprisingly, a commonality
of mathematical principles that give rise to the processes adopted for those applications.
These principles are the current pretexts upon which actuarial processes are based.

It seems to us to be worth trying to define the current pretexts underlying data analysis.
If a set of simple pretexts can be established that give a definition of the function to be played
by mathematical processes for actuarial applications, set in terms of principle, it then
becomes significantly easier to measure the worth of any new mathematical technique and
hence to consider the resources to be applied to the interrogation of its application.

Bear in mind that it is not impossible for a new mathematical concept to change the
pretexts (exponents of pure chaos theory may suggest that this is required of the pretext
given below), but while we touch on this possibility it is not explored in any depth in
this paper.

We believe there are currently five such pretexts for the use of mathematical processes
in long-term contingéncy risk management.
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Principle Pretext 1
There is underlying smoothness (homogeneity)

As mentioned above, for many risks it is assumptive that a set of experiences are
merely random variations around a common underlying risk pattern. Where such
commonality is deemed to exist for a group of risks they are regarded as being
‘homogeneous’ and it is possible to find, or estimate, the mathematical model that reflects
the underlying risk pattern.

For many risks the actuarial profession has established a linear profile, or a series of
linear profiles, as the underlying pattern. .From these profiles, formulae and processes
have been established to allow effective risk management applications to be brought to
life. It is not necessary for all of the profiles to be fixed by formulae, however, and
decrement tables have long permitted a lack of smoothness to be incorporated. Bear in
mind, though, that actuarial text books have always recommended that even where a
formula is not ensuring smoothness that the actuary looks for continuity in decrement
changes by looking at differences. This is analogous to the cloud being a sphere, a
mountain - a cone and lightning a straight line.

Principle Pretext 2
There is random variation around underlying smoothness

In the above scenario the actual differences in experience are assumed to be driven by
random variations around the underlying risk profile. In other words the ‘experience will
differ from that of the past- as expressed by statistics- quite by coincidence, ie without
following a definite pattern’ (Gerathewohl, 1980).

The actuary is expected to have due regard for the potential risk, not only of adverse
random variations in experience but in adverse movements in the underlying risk shape.
To achieve this the actuary must err toward conservatism.

It has to be said, of course, that some of the ‘randomness’ is not really random, it is
merely expedient to assume that it is. Some elements of risk are occasionally taken out of
this assumed bracket (random) and placed in the grouping that follows (non-random) if
the risk is both different enough to no longer warrant being basically homogeneous with
the other groups, and that it can be measured as a risk with a different profile.

This concept of randomness has been in existence for some time. However, until
recently it has been left to the inherent conservatism of actuaries to defend against adverse
random variations, the necessary margin required being largely a matter of subjective
judgement. Alternatively (or as well) the use of reinsurers, who have taken the principle
a stage further by spreading such variations across wider ranges of risk, have been used in
order to permit random variations more opportunity to even themselves out.

It has only been the relatively recent arrival of stochastics that has taken this subject
onto a higher and more objective plane. It has been a classic case of new mathematics
using higher performance technology and generating new techniques to arrive at a less
deterministic approach to ensuring that actuarial pricing and valuation of risk are robust
enough to withstand most reasonable spreads of random variation.

Now clouds are fluffy, mountains are rugged and lightning is jagged, all without
compromising actuarial principles.
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Principle Pretext 3

There can be non-random variation around underlying
smoothness (heterogeneity)

If the actual variation is too great as to be explained by random changes, the actuary is
required to consider that the underlying risk profile is no longer suitable. The actuary is
now faced with heterogeneity.

In recent decades mortality rates have been differentiated by age, sex, and more
recently by smoking habits when such heterogeneity was deemed to have gone beyond
reasonable variation to the point of posing a threat of selection (by prospective
policyholders) against life offices.

In the case of a pension fund there may also be numerous groupings, caused not only
by underlying claim differences (eg sex, occupation) but by different benefits (eg ages of
retirement) or different types of movement (eg deaths, retirements, job leavers)
historically resulting in double or multiple decrement tables.

It is possible that the new risk patterns are related to other risk patterns in the same
group, but equally it is not impossible for them to look completely different.

So clouds may yet be domes, mountains may be cubes and lightning may be stairways.

Principle Pretext 4
There is a point of spurious accuracy

The first three pretexts ought to explain all of the risk types within any one group.
However, whether processes emerging from them will be used will depend upon the
importance of additional accuracy in setting the risk profile. Benjamin and Haycocks
(1970) considered the subdivision of mortality in the context of practical homogeneity
and summarised the issue very effectively by stating that:

“...in fact one can go on until one is almost forced to the conclusion that
each individual should be considered in isolation and group measurement is
impossible! Certainly in respect of mortality any population is in practice
very heterogeneous. A mortality investigation always raises the question of
subdivision. The amount of subdivision must depend on the purpose the
investigation is to serve. Thus if a population is mixed and rates are obtained
from such a population, these rates can be used only in connection with
similarly mixed populations.”

Again, judging where the line is drawn has been largely subjective to date and much
guidance has been written concerning where ‘intrinsic roughness’ within observed data (ie
non-random) may be ignored in the graduation of a risk. Such consideration is bound to
be guided by the amount of data available. However this act remains mathematical if only
because that judgement is, at the very least, about which of two mathematical processes to
adopt. At best the judgement itself may possibly be assessed mathematically.

A very different tale may yet serve to illustrate what happens, however, if your model
is too simple, too assumptive of homogeneity. It is termed the story of the ‘spherical
chicken’ (Kaye, 1989) and goes roughly like this:

Fundamentally the spherical chicken syndrome is the extensive study of oversimplified
models of real systems. It apparently dates back to late 1960s USA when a physicist was
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asked to study the heat generated by a hut full of chickens. The object was to determine how
the heating system should react to conditions during the winter months in order to keep the
chickens comfortable with the aim of maximising their egg laying, After six months of study
the physicist reputedly informed his sponsors that his best endeavours to get a good model
established has run aground on the complexity of the surface areas of feathers, legs and
wings. ‘Not to worry’, he comforted them, for he had now developed a computer model
that ‘works out how much heat is lost from the surface of a spherical chicken.” History
records that the outcome arising from the implementation of his recommendations was not a
success, but the exact fate of the chickens remains a mystery. The moral of the story is to
beware of relying too much on the arguments of ‘spurious accuracy’ for they will change the
nature of the problem. Sometimes you need to insist on the resource to develop the new
technology, tools or knowledge, for it may cost less in the long run than the potential
mistakes due to the erroneous conclusions from making decisions based on spherical
chickens, spherical clouds, conical mountains or linear lightning,

Principle Pretext 5
A time series exists for risk variation

For many risks it is accepted that the risk profile being used will indeed date.
Benjamin & Haycocks (1970), again pointed out in relation to mortality analysis that:

“...the actuary traditionally employs the life table as a model but he knows
that the past experience from which that table has been derived will never be
exactly reproduced in the future. Mortality is itself constantly varying; there
are fluctuations about an underlying trend...”

In mortality assumptions used for annuitants, for example, fairly complex processes are
adopted to make allowance for a suitable trend of improving mortality into the future.

Allowing for such time series will also require mathematical alteration to the basic risk
profiles established by one of the earlier pretexts.

Basically clouds change shape, mountains crumble and lightning moves on.

These are then the five key areas of usage, by actuaries, of mathematics in the
investigation of risk. It is against these pretexts that we shall measure the potential
employment of some of the modern mathematical processes, notably of fractals. Our
conclusions are recorded within this second section and evidenced thereafter.

This section also then considers the principle of ongoing actuarial research into
applications and the threats potentially posed to the profession by only considering
emerged processes as opposed to emerging processes.
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2.2 Actuaries and Mathematical
Development - the usage

Having established the conventions for use of mathematical developments it seems
worth considering how this manifests itself in the work of actuaries by looking at the trail
of involvement on a longitudinal basis. We see this as three broad areas: the application
and processes referred to earlier plus underlying mathematics. This section considers
these three areas in turn, but in section 2.3 we will concentrate on the latter, and most
fundamental, element.

Our reasoning for this approach is that the former two (application and processes) are
the almost exclusive domain of actuaries, our fortresses if you will. The method of their
development has not only held the profession in good stead for decades, even centuries,
but has actually been an asset of incalculable value, involving as it does, practitioners in the
interrogation of developmental work. Our concerns lie entirely with the latter area
(mathematical bases).

2.2.1 Application

The most visible part of the work is obviously in the application of processes to achieve
results. Such applications may be directly or indirectly for ‘commercial’ application. We
take the word commercial in a very loose sense here to mean both for private purposes
(notably companies of course) and for public purposes be those of a fiscal nature or of a
social nature.

The key areas of application have long been in three main areas: investment, life and
pensions, although these have been expanded by the involvement of the profession in
non-life risk management in the form of general insurance.

Applications take the form, across all of the areas of:

B Pricing, be that of a product, benefit or service.

B The setting of adequate reserves for future fixed or contingent liabilities,
together with appropriate margins.

m  Portfolio management, be that of risks or of assets held against risks, aimed
at minimising the net exposure to risk.

m The on-going monitoring of the assumptions made in the above areas.

Informally, actuarial skills have been adopted in a wide variety of ancillary areas of
analysis for many years, some explicitly involving risk (such as the financial structures of
sales operations) and some a long way removed (such as road and rail timetable planning).
These areas may yet expand formally, however, given the work of the Future of the
Profession Working Party and the Wider Fields Board. This was highlighted most
effectively in last year’s Presidential Address (Ferguson, 1996) from whence the following
plea is taken:

“Let us be, and be seen to be, experts in the practical application of
financial modelling and risk analysis in all areas of business. Let us be the
preferred qualification for applied statisticians who see benefit in belonging
to a professional body.”
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The one clear identifier of this element of work is that it is used in a practical, often
commercial, often multi-discipline environment. Ferguson’s quotation stresses that
practicality of application and the text from which it was extracted is focused strongly on
the application skills of our profession. Clearly the majority of actuaries are employed in
this broad area of work.

2.2.2 Processes

However, by definition, applications are based on processes which have been developed
by actuaries to provide robust tools and rules that effectively minimise risk.

These processes have usually been applied across numerous areas of application.
Decrement tables have been applied to pénsions and life areas in the past and cash flow
projection techniques have been applied across even wider areas, just as stochastic
methods are being applied now. Ultimately the effectiveness of these processes is
measured against the success of their application, but also against the fundamental
principles of actuarial work now embodied in the Manual of Actuarial Practice. This area
is of interest to most actuaries and involves a reasonable amount of academic, as well as
practical, development within the profession.

It is embedded within the profession’s culture that practitioners are encouraged to
contribute to these debates, either by attending papers or by actually writing them; a
feature that, while the base science has been relatively stable, has been one of the
keystones of the profession’s durability and success. With some 60 of 64 Institute
Presidents being ‘front-line’ practitioners, either corporately or in the management of
state insurance responsibilities and the remaining four being ‘second line’ consultants, it is
clear to see that pure researchers have to date, played a very limited role in the
profession’s development at any level.

This said, it is not our purpose to question this particular structure. It has worked well
and so long as actuaries continue to stay true to the view that ‘every man is a debtor to his
profession’ there is no reason to believe that the structure will not continue to offer much
the most effective manner of process development and interrogation that could be
conceived.

2.2.3 Fundamental Mathematics

Behind all of this, however, lie the mathematical bases, be they statistics, numerical
analysis, basic algebra or differential calculus.

Until recent years the mathematical landscape has been fairly static. Hence there has
been no need to consider how developments may affect the processes or applications.
There were none, if you will excuse the sweeping generalisation. These concerns were
expressed fully in section 1, but in the context of this section it is worth stressing that this
particular domain is not the exclusive domain of actuaries. As new forms of fundamental
mathematics appear, therefore, they potentially open up an avenue of access to the
applications currently under the stewardship of this profession, should processes be so
developed.

It is also true that if the profession is to be successful in taking its skills into wider
fields of commercial risk management, it is sure to meet other disciplines entering, or
already present in, such fields utilising some of these techniques for modelling purposes.
As will be seen in section 3, oncology, the study of cancer, has been investigating chaotic
and fractal models for over a decade for example.
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As will be seen within the narrow context of fractals, such processes are beginning to
emerge in related areas of work. Hence in section 1 we asked two questions;

Do these new concepts offer any potential to improve the tedhniqucs
(processes) used in actuarial applications ?

A question we aim to give our views on, in specific relation to fractals, but that in
general terms begs the ancillary question:

Is the profession in a position to answer the first question, in relation
to any new mathematical concept, quickly ?

This could, however, arguably lead to a third question:

Is it the aim of the profession to be involved in the development of
such fundamental concepts at all or is it sufficient to aim to interrogate
emerging processes (be they from other professional or academic
disciplines) and adapt them for application in risk management work?

We believe that these matters need some debate and this section ends with the humble
offering of our own views on the subject.
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2.3 Actuaries and Fundamental
Mathematics - the Options

There is an ever broadening range of developments that could be considered within this
section. They have been emerging over the past few decades spurred on by the ever
increasing power and, just as important, the accessibility, of computers for use by
individuals. In particular some very broad but complicated concepts have been able to be
brought to life. An example of this might be the emergence of ‘surreal numbers’. Martin
Kruskal of Rutgers University addressed the Isaac Newton Institute at Cambridge
University in 1995 on this particular subject - a new-family of numbers.

The proposition is that surreal numbers can represent, within one numbering system,
all natural counting numbers, all negative numbers, all fractions and even irrational
numbers. What is more it can represent infinity (and beyond), as well as the infinitesimal
(and below). Surreal numbers, just for the record, are represented by arrows, either
pointing upwards or pointing downwards (and combinations of both obviously). This
simple binary option makes them particularly applicable to computers, whence they can
be ‘powered up’. At this juncture we shall put this particular topic to bed, but only after
pointing out that this numbering system has been pioneered by a team of physicists, albeit
that the concept was inspired by the work of mathematician John Conway on game theory.

The point is that technology is not only providing the capacity to explore new
mathematical domains, it is, in some branches of science, delivering access to phenomena
that themselves ask more questions of mathematics, that are then themselves in need of
solution. Telescopes and microscopes and related technology are, in particular, driving
astrophysicists and particle physicists respectively in to the search for more accurate and
more flexible mathematical bases for their work.

The most advanced of the ‘new’ areas (although its roots go back over a century to the
work of Henri Poincaré) is that of chaos theory, and its sister ‘on the edge’, complexity.
Hence this section will give an overview of chaos theory, complexity and finally fractals in
order to consider whether they hold any potential to meet the conventions laid out in
section 2.1.

2.3.1 Chaos

“Complete disorder; utter confusion” is how The New Collins Concise English
Dictionary defines chaos, a fairly succinct definition that would fit most people’s
understanding of the term. Of course, disorder is not something that lends itself to
mathematics by definition, yet the definition does not in itself say that chaos is meant to be
random by nature. Indeed the Longman Dictionary gives one definition of chaos as “the
irregular and unpredictable behaviour of a dynamic system which nonetheless has an
underlying order” and it is this definition that gives rise to the mathematics of Chaos Theory.

Chaos Theory works with sequences of events that contain surprise‘ and unpredictability
and while chance is certainly one source of surprise, it is not an essential ingredient. Such
unpredictability, ie failure to be able to predict or forecast results accurately, can actually
arise even where the events of the future are exactly determined by the events of the past
and there is no chance or random influence upon those results at all. Peak and Frame
(1994) refer to this as ‘Deterministic Chaos’, an interesting phrase given the connotations
for the actuarial profession.
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The elements that actuaries observe in many of the rates and indices that they measure,
referred to earlier, usually show an underlying trend and variation around that trend. This
is true of the stock market, of mortality, of sickness rates and indeed it is the existence of
this phenomenon that invites actuarial science to be applied. If you regard the trend as a
‘signal’ and the variation as ‘noise’ however, you can see that the same phenomenon exists
in electronics and in physics in general. Of course some ‘signals’ carry very little ‘noise’
and are thus very predictable, others are almost all ‘noise’. Here then we can link back to
our statements of the use of mathematics in actuarial science. Actuaries are able to apply
their processes where there is a strong ‘signal’ (Principle Pretext 1) and where the ‘noise’
is safely assumed to be random (Principle Pretext 2).

Chaos assumes that much of this noise is not random at all. The compelling argument
is that we don’t know all of the rules that govern every influence on the behaviour of the
observed systems and hence we are unable to predict events accurately, simply because the
model is based on incomplete ideas that thus lack in predictive power (the ‘spherical
chicken’ again). More importantly, if all of the rules really are deterministic there is still
room for the intrusion of disarray when many variables are involved, whence the
‘randomness’ of results is simply the fact that the complexity of the underlying system has
succeeded in overwhelming our ability to model the results.

As if to underline yet again the cross discipline interest in these areas it was a
meteorologist attempting to model convection in the atmosphere who put some real
tangible meaning into this whole process, one Edward Lorenz. His complex model took
warm air up and cold air down and predicted, in otherwise stable conditions, very
attractive ordered cloud patterns. Applying slight change gave very different results, but
none more surprising than when he simply reran his computer projection with ostensibly
the same data to check his result, except that he rounded the initial conditions to three
decimal places rather than his original six; the final result was “pure chaos”.

The implication is that no physical, biological or social state is infinitely precise; there is
always some uncertainty or assumption. If the underlying dynamics are what are termed
as being in a chaotic state (in the sense referred to above, ie deterministic) then any initial
uncertainty will grow so large that long-range prediction becomes impossible. Lorenz
referred to this as the ‘Butterfly Effect’, for in meteorological terms even the most gentle
flapping of a butterfly’s wings can ultimately give rise to a wide divergence of
meteorological conditions.

Hence chaos is irregular output from a deterministic source, whence the future results
of a chaotic system are completely governed by its past. It is not chance nor is it
randomness, but it is confounding, for in chaotic systems measurement discrepancies
compound. However, if you understand the system you.can still predict your limits within
which results will sit effectively.

The ‘Butterfly Effect’ could imply that all chaotic systems can produce huge variation
from tiny inaccuracies at outset, but if you will pardon the continuing use of the analogy,
not all Caribbean hurricanes are caused by butterflies in the Amazonian rainforests. The
actual range of effect will depend upon how near the underlying system is to a state of
equilibrium (or stability). The more complex a system is, and/or the more variable any
of its components are and the less stable it will be, thus the more effect any small
inaccuracy will ultimately have.

Up to a point, this is all intuitive stuff. Knowing when a measurement has to be
treated with greater accuracy is part and parcel of an actuary’s responsibility and requires
him or her to have some knowledge of the nature of the risks involved in the system he or
she is working with. For many risks, particularly the ‘binary’ risks such as mortality
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(either you are dead or you are not), the basic system is simple although the causes of the
claim may not be, of course. However, actuaries are moving into areas where risks
become more complex (household insurance can give rise to claims from many sources)
and far more susceptible to these chaotic considerations. It is interesting that in general
insurance the vast majority of risks are covered for a year at a time; this limits the
exposure to the underlying system throwing up a fundamental shift in risk. In chaotic
terms the industry has accepted that the premium rating methods are not accurate enough
when it comes to predicting longer term time series because of the lack of ‘equilibrium’ in
the underlying risks; whence there are real risks of a wide divergence of results if you
allow your initial inaccurate estimates to compound.

As in most things in life, there is always more than one way to overcome any perceived
obstacles. Digging deeper and deeper into the working of observed systems in order to
model them accurately is only one solution to managing risk systems. The insurance
industry, often without the technical guidance of actuaries, has long been adept in finding
ways to manage such matters with practical solutions. However, as a large number of
Lloyds syndicate members might testify, if those processes go wrong it can be in a big way.

2.3.2 Complexity

It is debatable as to whether chaos forms part of complexity or complexity forms part
of chaos, or indeed whether they are really the same thing, Perhaps the biggest
differentiator is only a practical one; a chaotic system is unpredictable, a complex one is
predictable. Thus all complex systems are potentially chaotic if inaccuracy is introduced
and all chaotic systems are potentially complex if it were possible to remove the
inaccuracies.

Complexity is arguably multi-dimensional thinking, but it sits at the very edge of chaos.
The link may be illustrated by work published in 1995 by mathematicians from the
University of Cincinnati: Ken Myer, Christopher McCord and Quidong Wang who used
18-dimensional geometry to disprove a 70-year-old theory about the dynamics of three
bodies moving freely in space, influenced only by each other’s gravity. Previous ‘vagaries’
have now been fixed by the use of multi-dimensional mathematics, chaos that has turned
into complexity.

This is true in many other areas of physics. The universe appears to have three visible
dimensions, four if you add time, but many observed phenomena are only modelled
accurately if you use in excess of 10 dimensions. Without this you gain a model that is a
little inaccurate and thus chaotic by nature.

In a practical sense this is a topic of conversation whose major use, we would propose,
is to clear a crowded bar at Christmas. However, actuaries are used to working with n-
dimensions in the formulae that have long driven the assumptions underlying risk curves.

In risk terms, complexity is the definitive Eldorado that models a risk pattern with
absolute predictability. We candidly suggest that it is practically impossible to achieve and
will remain so for the foreseeable future. The risks that we model, as well as the risks that
we aspire to model, are too complex in terms of the factors that influence them at a
detailed level. However they all fit the nature of risks to which the processes may apply.
In other words they may be viewed as an underlying trend. Interestingly enough if this
were not so there would be no need for an actuarial profession at all.
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2.3.3 Derivatives of Chaos and Complexity

Hence we are really looking to see whether the thrust of Chaos Theory, and its way of
looking at such complex systems, will yield processes that will manage risk patterns more
effectively than those processes already in play. To this end a range of techniques has
indeed emerged from complexity (as the ideal mathematical model on the edge of chaos)
and a few are listed below, before we concentrate on the key technique, that of fractals.

‘Strange Attractors’ emerge from certain chaotic systems where the underlying
system, even with inaccuracies present, will tend to work within known boundaries. This
area is a link back to that of statistical distributions and the world of histograms.
Histograms start with the observations and yield statistical mathematics from the results.
Strange Attractors provide the mathematical basis that yields the observations from
fundamentally chaotic systems.

‘Genetic Algorithms’ are an interesting side track emerging from the computer
sciences. They are ‘clever’ algorithms that work within defined rules while having the
ability to adjust their route until they ‘learn’ the quickest way to get to the end result. Ifa
complex model is too complex you can attack it with a genetic algorithm that starts with
your best guess and beavers away until it improves it.

‘Neural Networks’ are related to genetic algorithms in that they perform a range of
cognitive feats which are developed by discovering their own rules and subsequently
applying them. They are processing devices (algorithms or actual hardware) that are
loosely modelled after the neuronal structure of the mammalian cerebral cortex but on a
much smaller scale.

‘Quantum Chaos’ is the collision between quantum theory and chaos theory.
Quantum mechanics describes the behaviour of matter on an atomic scale and changed the
understanding of the actions of matter. By rights, chaos should not exist in quantum
systems, the laws of quantum mechanics actually forbid it. Classically chaotic systems,
such as the swing of a pendulum (when measured in fine detail) and even Brownian
motion, are ultimately made up of atoms which are subject to the laws of quantum
mechanics. The interest here lies in the fact that somewhere between pure (simple?)
quantum mechanics and chaotic systems there must be a link. The research into quantum
chaos may yield a new means of turning what is perceived as chaos into complexity.
Maybe not.

You will notice from this that the mathematics involved in this area is regularly
throwing up conclusions that had been reached long before from observation alone. It is
tempting to say that this complex mathematics is only generating the same processes as
already existed. However, we find this very heart-warming, for it gives added confidence
in the robustness of those processes. It also gives credibility to the mathematics of chaos
and complexity, however, whence any new conclusions cannot easily be discarded. Which
brings us neatly round to the subject of fractals.

It is worth mentioning ‘Extreme Value Theory’ (EVT) before leaving this section, if
only because it too is attracting much interest, appears to be a new concept and looks a
candidate for having its roots in chaos. In fact EVT is only related to chaos and complexity
by the fact that it is founded on the complete antithesis of the theory behind them. At the
heart of EVT is the standard statistical idea that the frequency of random events follows a
mathematical rule which leads to, or is, a distribution. EVT says that extreme values also
follow their own special family of curves and that it is possible to deduce the shape of
these curves from basic probability theory. For the record one proposed benefit of this is
that “It can help actuaries predict the likelihood of events that are incredibly rare, but so
devastating that they would threaten the survival of their companies” (Matthews, 1996).
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2.3.4 Fractals

We have begun each section with an illustration of a fractal.

Mandelbrot (1982) states that: “The most useful fractals involve chance and both their
regularities and their irregularities are statistical. Also the shapes tend to be scaling,
implying that the degree of their irregularity and/or fragmentation is identical at all scales.”

From this point on we shall ignore the philosophical debate at the heart of chaos theory
and complexity as to whether or not, with enough knowledge, everything is predictable. For
all practical purposes we shall assume, with due deference to Einstein, that God does indeed
play dice. This assumption fits very well with fractals and is embodied in Mandelbrot’s
definition given above. This is a critical point and will be elaborated upon later.

The history and the basic mathematics behind fractal geometry is given in Section 3. Its
potential to contribute to processes, even directly to applications, is also explored more
fully in Section 3 after a generalised introduction in Section 2.4. The purpose here is to
relate fractals to chaos and complexity and highlight their particular characteristics that
make them of potential interest.

Fractal shapes, of any number of dimensions or form, are generated by applying simple
algorithms repetitively. It is possible in theory, but not absolutely necessary in practice, to
repeat this through to infinity, to derive that ‘shape’. This resultant shape will thus be
similar on whatever scale you are observing it at. Looking at this process longitudinally,
rather than simply as a result, has produced a new form of geometry, termed fractal
geometry. Those that use it distinguish it from traditional geometry by terming the latter
as ‘Euclidean’ geometry for fairly obvious reasons and we shall adopt the same stance from
here on.

Because fractal shapes replicate to infinity (or to the infinitesimal) they cannot be
properly defined by Euclidean geometry, this can only happen if a boundary exists which
cannot be exceeded, whence the definition is not completely accurate. The potential
problem is amply demonstrated by consideration of an island, such as Great Britain
(explored in more detail later), where the coastline is actually infinite in length, but the area
within it has a finite limit to its size. You can define the latter with Euclidean geometry to
sufficient accuracy, but not the former. Put simply, fractal geometry will define the coast,
and thus the area within it to sufficient accuracy to replicate the shape.

As the name implies, fractals are usually discontinuous, or fractured, distributions. Each
point or area of the shape is uniquely defined in terms of what has gone before (by the
algorithm) and is not necessarily a continuous development thereof. Hence fractals are
correctly a subset of chaos. Equally, because the fractal is accurately described by the
algorithm it could be taken as being a subset of complexity, until you realise that you can
never actually reach that final definition in Euclidean terms and perhaps it is a pure chaotic

system, even though fully defined.

While in this headache creating mode, we would point out that fractals do not have some
of the other usual Euclidean properties, such as tangents. A visual representation of a fractal
may appear to have a line against which you can set a tangent, but look closer and the line
changes shape and the tangent has to move, look closer still and its moved again, and so on.

So here is a mathematical geometry based on models that are discontinuous in nature but
that tend to the infinitesimal. The mathematical processes emerging from this geometry
offer a new means of measurement that begs investigation. For a profession involved in
risks that are discontinuous and moving over time, but that manages those risks by grouping
the individual observations, it demands investigation.
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2.4 Actuaries and Fractals

The fundamental question is whether fractals offer the scope to be used in any of the
Principle Pretexts referred to in Section 2.1. Therefore we shall consider fractals in
specific relation to the five pretexts stated there. There is a second consideration that
arises from this debate, which is whether fractals could give rise to new Principle Pretexts
in risk evaluation. This topic is touched upon in Section 3, but its investigation is outside

the scope of this paper.

Principle Pretext 1
There is underlying smoothness (homogeneity)

This is assumptive in a fractal so long as this pretext is assumed to read ‘There is an
underlying function’. In actuarial terms, however, most functions used in this context are
continuous (ie smooth) and while a fractal is continuous in the sense that the underlying
algorithm continuously repeats itself it is usually discontinuous when relating one part of
the fractal to another. Implicitly this means that most fractals cannot be differentiated; yet
continuity is implicit within the development of most standard actuarial tools.

Homogeneity is certainly in the nature of fractals, indeed there is repetitive
homogeneity present by definition. A fractal shape is determined by a formula and is
exactly repeatable by using the same formula. Thus it is an homogeneous distribution on a
line/on a plane/in space. If that distribution is invariant under displacement and is also
invariant under a change of scale the fractal is termed ‘self similar’.

The practical question, though, is whether a fractal shape ‘fits’ a risk pattern effectively, in
particular whether it would fit a risk pattern more accurately than existing models would.
self similar fractals are very good at estimating and thus modelling otherwise apparently
random shapes and distributions. It is possible to get a better ‘fit” in numerous applications
using a fractal distribution rather than using a traditional Euclidean distribution. Whether
this falls foul of Principle Pretext 4 is considered below, for, of course it is possible to
replicate any finite set of observations exactly with a Euclidean formula.

Principle Pretext 2
There is random variation around underlying smoothness

This is an area that can cause some confusion to those with a passing knowledge of
fractals. This is because the best known fractals, the prettiest if you like, are exactly self
similar. Fractal geometry does not depend on the assumption that there is no underlying
randomness, indeed it is able to sit comfortably with statistical tools that measure
randomness around an underlying distribution.

At this juncture we can’t avoid using a Mandelbrot (1980) quotation, for as the prime
promoter of this geometry his own emphasis of this point is fairly crucial:

“..the reader may have formed the impression that the notion of fractal is
wedded to self similarity. Such is emphatically not the case, but fractal
geometry must begin by dealing with the fractal counterparts of straight

”

lines.....call them ‘linear fractals’.
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In other words self similar fractals are the simplest theoretical form, but the ‘real’
complex fractal forms are not exactly self similar, the parts are only reminiscent of the
whole. The central characteristic of a natural fractal is that the object offers (at least
approximate) invariance under magnification.

Mandelbrot offers the following definition:

“To be valid, the claim that any given natural phenomenon is fractal must
be accompanied by the description of a specific fractal set, to serve as a first
approximation model, or at least as a mental picture.”

We are therefore talking about a distribution form that merely replaces the core
distributions used to meet Principle Pretext 1. The assumptions with regard to Principle
Pretext 2 remain unaltered.

Principle Pretext 3

There can be non-random variation around underlying
smoothness (heterogeneity)

Following the same argument as used in Principle Pretext 2, it can be seen that if one
fractal distribution were to model effectively a section of the data being considered, but
were to leave ‘noise’ around that distribution that was clearly not random, there would be
cause to believe that the data was heterogeneous.

Interestingly enough, however, it is quite feasible to generate one fractal algorithm that
in itself develops into distinct ‘heterogeneous’ groupings. It is possible that some
heterogeneous groupings in a Euclidean analysis could become homogeneous in a fractal
analysis. Happily this is beyond the bounds of this section. Suffice to say that fractals
accept this pretext also.

Principle Pretext 4
There is a point of spurious accuracy

It is at this juncture that the whole consideration of this specific field of mathematics
comes to a head. It is possible that the whole consideration of fractal geometry fits
beyond the point of spurious accuracy for practical actuarial applications. It is quite clear
to us that the emerging work has to be tested rigorously against this pretext. It should be
quite clear that this has yet to be done thoroughly and that it may yet fail.

At this point in time it appears that fractals may fail this pretext for a number of areas
of risk management, in particular for simple or binary risks such as mortality. There are
some complex multi line risks, or extreme risks such as catastrophes, however, where
fractal distributions offer the chance to plot distributions more accurately or more simply
than traditional methods.

In terms of pure analysis, of understanding the drivers of individual risks, fractals do
offer a new perspective which gives, or looks likely to give, additional information on the
nature of the risks and their interplay. For the purposes of most actuaries involved in
practical applications this may not yield anything fundamental, but for professional risk
carriers and underwriters it becomes another window onto the nature of those risks.
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Principle Pretext 5
A time series exists for risk variation

Last but not least is the pretext offering the greatest scope of all. It is very clear that
while risk patterns do indeed vary over time, their intrinsic structure usually remains
unaltered, ie it is invariant and implicitly fulfils one of the requirements for the definition
of a natural fractal to be fulfilled.

In this area fractals naturally lend themselves to the prediction of developing risk profiles.

Thus fractals appear to be able to fulfil all of the pretexts required and to offer an
alternative distribution form to those already used. It therefore means that they could,
potentially, be used within existing processes and certainly for existing applications,
subject to the provisos of Principle Pretext 4. For example, there is no reason why a
fractal distribution could not effectively underpin part or even all of a stochastic model.

A second possibility is that fractals will lead to new processes. It is too early to speak
of this with any authority. However, it would be surprising if they did not do so in time if
they are able to work as models for the underlying distribution.

The third possibility is that they actually change the applications. One is tempted to
say that if this were to be the case then the whole actuarial profession would be redefined
as a result. From where we sit at present this seems highly unlikely, for there is nothing to
suggest that fractal geometry is anything more than, at best, a new means of measuring
distributions. What is more likely, and is thus addressed in the next section, is that
expertise in fractals and other forms of chaos based processes will permit different
disciplines to approach risk analysis and offer competition to the actuarial profession.
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2.5 Summary

We would like to summarise this second section of the paper in two parts in relation to
the mathematics and the profession.

2.5.1 Fractals

Fractal geometry appears to us to be the most promising area of the new forms of
mathematics for application in the actuarial domain. Of all of the complexity and chaotic
derivatives, it has the most proven practical application and, in theory, it lends itself to the
structure of the problems that this profession has to deal with. Notably its distributions
open up a new range of modellable patterns to the practising actuary and its very
processes lend themselves to the projection of risk rate developments over time.

We believe that their greatest application looks likely to be in areas of complex risk
patterns, but that the additional accuracy, if any, in some of the simpler risk patterns is
unlikely to warrant the additional complexity of process involved.

Section 3 takes this whole debate much further and displays the evidence to support
this conclusion. It is not, however, the core conclusion arising from our work.

2.5.2 Actuaries
This is the first paper to be published to the UK profession on this subject. It is most

certainly not a definitive work. It is also not the journey’s end, more of a staging post.

We are aware, however, that in some European Societies (for example in Germany) and
in North America (where in the University of Austen, Texas, for example there is an
insurance unit investigating chaotic systems in relation to insurance risks) work on these
techniques has been underway for some time.

We are also very well aware, as will be expanded upon in Section 3, that fractals in
particular are used in a fairly advanced state by mathematical cousins of ours based in
disciplines with more than a tenuous link to our field of expertise.

We have, not surprisingly, found some other pockets of UK actuarial expertise in some
of the techniques listed earlier as we have researched some of the matters in Section 3 of
this paper. We also sincerely hope that others will make themselves known after the paper
is published. However, there is no focal point for this sort of research in the UK.

It is fairly easy to surmise why this is so. As stated at the start of the paper, actuaries
train in a commercial environment. Mathematical theory is then frozen for most actuaries
while they learn the processes which they will have to apply. Equally those processes were
established several years earlier by other actuaries, whose mathematical base had also been
frozen some years before that.

As was expounded in Section 2.1, this organisation has worked very well in
maintaining standards of application and in developing processes which are brought for
interrogation before the profession, the majority of whom are practitioners (directly
or indirectly). This method does not lend itself to robust interrogation of new forms of
mathematics, however. They are likely to arrive late, with limited peer group
interrogation. Just like this one.
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Not surprisingly, the British actuarial profession has one of the highest (if not the
highest) standings amongst its international brethren for its practical professionalism and
arguably has the same standing above that of professions in neighbouring disciplines. If the
mathematical bases move, however, then at the very best, avenues of professional
expansion into wider fields will be closed by the emergence of modelling processes from
other disciplines. At the very worst those disciplines would offer alternatives to this
profession.

It is our view that the profession has to establish vehicles to research the development
of mathematical bases for risk analysis, which are rooted in the universities, to gain access
to current mathematical research. This must be intertwined with the practical world of
commercial application so that mathematical development can have the same rigorous
interrogation by commercial actuaries that is now applied to process and application
developments. We return to this theme at the end of Section 3.
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SECTION 3

Fractals

Sierpinski’s Triangle

149 . . . .
Though differentiable functions are the simplest and
the easiest to deal with, they are exceptional. Using
geometrical language, curves that have no tangents are

the rule.

Jean Perrin 1906
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3.1 The History of Fractals

3.1.1 Word Origin

‘Fractal’ is from the Latin adjective fractus. The corresponding Latin verb frengere
means ‘to break: to create irregular fragments’. Fractus means both “fragmented” and
“irregular”. Interestingly enough the word algebra is partly constructed from the Arabic
word jabara which means ‘to bind together’, the exact opposite of fractus.

3.1.2 Early Fractals

“Behold there come seven years of great plenty throughout all the land of Egypt: And there shall arise
qﬁer them seven years qf famine; and all the plenty shall be ﬁrgotten in the land of Egypt...” Genesis 41

Arguably knowledge of fractals has been around for a long time. Its hardly surprising
that a big discovery was made in Egypt. But we have to move forward from Joseph a few
millennia to the twentieth century. H E Hurst was a British hydrologist working on the
Nile. The flow of the river depends on rainfall, but that arrives in annual cycles due to the
melting snows in the African uplands. His problem was the regulation of the flow of the
river to maximise irrigation. What was quite clear to him was that these annual flows did
not follow a random walk. Since holding up water by dams is expensive and releasing
water too soon may lead to a drought, the model is important. Hurst had a long time
series as data - from 622AD to 1469AD.

Hurst took the view that for short periods the Nile flows followed a pure random
walk. But then something would happen and this situation would change to another
model. The change would be sudden and is called the joker effect. This is because in the
pre-computer days Hurst used a pack of cards to demonstrate the effects. If the joker
appeared the pack was re-shuffled. The results of many reservoirs filling and emptying
have profound effects on what might appear a random process The system would have
“memory”, changes would be sudden and unpredictable. The more the memory the higher
the ‘H coefficient’. Mandelbrot named H, the Hurst exponent, in honour of its
discoverer. The flow of the River Nile is persistent; the Hurst exponent comes out at
0.91. The river’s flow is not very rugged; that is if the flow is high in a year then the flow
is likely to be high the next year but by an unpredictable amount.

To a traditionalist the phases could be seen as cycles and an autoregressive model could
be attempted. But there is no reason to believe that in the time frames there was a natural
cycle. Like weather forecasting, flows can be predicted in the short term but not in the
long term.

Hurst published his work in the 1950s before fractals had been developed as a geometric
technique. His method using R/s statistics, does not depend on the process being normally
distributed.

3.1.3 Mathematical Origin

Fractal geometry was conceived in 1975 and introduced formally by Benoit
Mandelbrot in 1977, in a book entitled “Fractals: Form, Chance and Dimensions”. The
author had been promoting many of the geometric concepts for over 10 years prior to this
book, notably his research into ‘fractured’ distributions, such as the shape of coastlines.
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Many of the issues and anomalies thrown up or addressed by Mandelbrot, however,
were not new to the mathematical world, but this was the first time that they had been
pulled together into one comprehensive theoretical basis.

Louis Fry Richardson had written copious notes on the problems with the measurement
of coastlines in the 1920’s. Jean Perrin (1906, 1909,and 1913) had published on
discontinuous materials and problems in plotting Brownian motion to earn himself the
Nobel Prize and push forward the development of probability theory.

Mathematicians had always been aware of the two main features of fractals; irregularity
and self similarity, but had never dealt with either effectively. One of the first attempts to
approach irregularity was made in 1877 by Cantor, followed by Peano in 1890, and self
similarity was considered in the early 18th Century by Leibniz. The struggle to deal with
these notions using Euclidean geometry and hence topology (with integer dimensions) was
usually fruitless, however. As a result, the need to find a solution was often dismissed as
well. Notable French mathematician, Lebesgue (circa 1900), referred to “notions that are
new, to be sure, but of which no use can be made after they have been defined” and the
whole area was effectively buried in terms of mainstream mathematics for the bulk of
the century.

It would certainly be very easy to pick up Lebesgue’s quotation in terms of actuarial
applications for this field of development today. Whether it is correct is another matter.

3.1.4 The Mandelbrot Set

For the uninitiated, the Mandelbrot Set (see the image at the top of each page) is one
of the best known fractal images. It is worth mentioning in isolation for it is likely to be
encountered at some point. You can buy the T-Shirt, drink from the mug, or watch a very
pretty screen saver based on it. It appears on books, magazines and even some LP covers,
it is the nearest thing in mathematics to a pop cult. In many ways the Mandelbrot Set is
the prototype fractal, for it is remarkably easy to generate, but is highly complex in
structure and the study of its regular irregularities has gone a long way to generate this
new form of mathematics. Ironically the Mandelbrot Set has little to do with natural
fractals, it is purely a philosophical vehicle that forces questions to be asked about what is
simple, what is complex and what is chaotic.

For the record, the Mandelbrot set is a two-dimensional mapping system such that;

= 2 2
Xp+1 — X%n- Yn+a

Yor1 = 2.X.y, T b

Shading of the point (a, b) depends on whether either x or y tend to infinity or
becomes stationary, as n tends to infinity.

3.1.5 Recent Contributions

Practical developments are covered in a little more depth in Section 3.4, but
theoretical movement has been somewhat limited in the past decade other than in the
work of applying the geometry to natural phenomena. Kaye (1989) and his team at
Laurentian University in particular clearly made a marked contribution to the particle
applications of fractals which yielded an expansion of the geometry, but one is drawn to
the conclusion that this field is not so much an invention as a discovery, for after some 20
years of intense interrogation by fascinated mathematicians and physicists around the -
world, the basic geometry promoted by Mandelbrot remains completely intact.
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3.2 The Mathematics of Fractals

3.2.1 Introduction

Setting the scope of this section is particularly difficult. For some readers it will verge
on the banal: for those who have ignored geometry since school it may be more testing.
Space restricts us to continue the funnel analogy outlined in the preface, albeit on a
different scale.

For those requiring more detail the bible is Mandelbrot’s “The Fractal Geometry of
Nature”. We have also borrowed heavily from Hastings and Sugihara (1993) in this section.

3.2.2 A Fractal

A fractal is a scale invariant geometric object. By scale invariant we mean self similar
or self affine. As such this definition includes most shapes mathematicians deal with:
points, straight lines, squares, circles etc. Mandelbrot says that to qualify as a fractal then
the object must also have a fractal dimension that exceeds its topological dimension; these
objects can be strange. So there are a few concepts to explore.

We define self similarity, then we look at examples of regular fractal objects. This is
done by way of some exercises to get across some key concepts. We next look at
dimension and then the area of most obvious potential for actuarial applications - the
random walk. Finally we give the minimum you need to know about the stable paretian
distribution, a distribution used in many fractal processes. No room for proofs, but
hopefully enough to get strangers to the subject to the dark nether regions of the paper.

3.2.3 Self Similarity

A geometric object is called self similar if it may be written as a union of rescaled
copies of itself, with the rescaling uniform in all directions. A geometric object is called
self affine if it may be written as a union of rescaled copies of itself, where the rescaling
may be dependent on direction. Regular fractals display exact self similarity. Random
fractals display a weaker, statistical version of self similarity or more generally self affinity
(Hastings and Sugihara). In this paper most examples are self affine, but we have stuck
with the term self similar for both types.

3.2.4 Games and Puzzles

This section demonstrates some of the features of regular fractals, before moving onto
random fractals. The latter are more relevant to actuarial science.

The first two examples start with a simple triangle. The first shows how complex
ideas can come out of simple rules. The second shows that deterministic and fractal
processes are not discrete sets. The third example shows how a strange object can come
from a very simple equation. In the appendix we set out some programs written in gbasic
that you may prefer to use instead of pencil, compass, ruler and paper. So let’s start with

+

an equilateral triangle:
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Example 1

Koch’s snowflake

In the first example the aim is to draw a snowflake. This concept has come to be
known as the Koch Snowflake. The process is as follows:
Go to one side of the triangle.
Divide the line into three equal lengths.
Taking the two mid points as a base construct another equilateral triangle outwards.

Move clockwise round the original shape to the next line.

AW N =

When you arrive at the starting point you decide whether to go back to 2 or to
goto 6.
6. Admire your object.

The result looks like this:
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A variation on this model, and probably a more interesting one, is to throw a coin at
the end of step 2 and use the result to decide whether the new triangle faces inward or
outwards. The point of this exercise is to demonstrate how self similarity properties can
represent complex natural phenomena. Try describing a snowflake using Euclidean
geometry!

The simple Koch snowflake has infinite circumference and finite area. On each circuit
after the first, the perimeter grows by 4/3 while the snowflake never passes outside a
circle drawn through the original three points. The snowflake demonstrates how we can
get a handle on an object with infinite length, and this may prove useful when looking at
investment models.

Example 2

Sierpinski’s Triangle
Sierpinski’s triangle is another complex idea, where the instructions are the most

simple way to describe the creation. Start by outlining a new triangle, noting that none
of the triangle is coloured yet.

1. Where you have a triangle that is not coloured, draw a triangle with points at the
centre of each side of the old triangle.

2. Colour in the new smaller triangle.

3. Go to instruction 1 until you get the drift of the conception.

The result is the frontispiece for this section, albeit not so artistically enhanced. The
next game starts yet again with a triangle and this time you need a die as well.

1. Label the points A, B, C.

2. Go to a point anywhere in the triangle and mark it with the pencil.

3. Throw the die.

4. If the die shows 1 or 2 proceed to a point halfway between where you are and point A.
If the die shows 3 or 4 proceed to a point halfway between where you are and point B.
If the die shows 5 or 6 proceed to a point halfway between where you are and point C.

5. Mark the new point and go to 3.

You may prefer to use the program in the appendix. This game is a stochastic process
and is an example of an iterative function system. The results are surprising: firstly the
points are not spread at random over the triangle, secondly the result is identical to the
deterministic approach in the previous game.

This idea of using a random number generator to decide the next plot is very powerful.
With a small number of rules the computer will plot convincing looking trees, ferns (see
the illustration to section 1) or leaves. It will also plot more standard drawings such as a
circle, but Euclidean methods can plot these more easily.
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Example 3

The Henon Attractor

Not all attractors are easy to describe. This example developed by Michel Henon
comes from astronomy. The system is derived by stretching and shrinking an oval. The
equations are:

x(tt1) = y(t) + 1 - 1.4x(t)?
y(t+1) = 0.3x(t)

This maps onto the (x,y) plane as shown on the frontispiece for section 4.

We also include the computer prdgram for this in the appendix. This particular
example is of some historic interest as it was one of the first “strange attractors” to be
demonstrated. One feature is that if you plot x(t) against x(t+1) you get a similar (but
rescaled) object.

The standard method for identifying “strange attractors” is by using this idea. If all x(t)
that are close together move to a region close to a point x(t+1), then an attractor is at
work. This technique can be extended into n-dimensions by considering a similar
consecutive series {x(t-n), x(t-n+1),....... x(t-1)} as a point in n-space and seeing how
close x(t) is for each point. By considering the efficiency gain by adding an extra
dimension it is possible to get an idea of the fractal dimension of the attractor. Given the
many strange shapes that have been found in non-linear mathematics (the Henon attractor
is a relatively straightforward shape!) this is the best clue that can be got from a relatively
small data set.

3.2.5 Dimension
The dimension of many objects is already known to us :

B a point - dimension 0
a line - one dimensional
a square - two dimensional

a circle - two dimensional

a cube - three dimensional.

These are topological dimensions. The objects also have the same fractal dimension,
but as we shall see the fractal dimension is not always the same as the topological
dimension. And we shall start with an example close to home. The question is: what is
the length of the coastline of Britain? Let’s put aside all the islands (even though they

appear on our map), and use high water mark so as not to get diverted.
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Here is the map.

Since it is midwinter and walking round counting out steps is unattractive, we will use
dividers on the map to do the same thing. Some commentators call this the coastline of
England. Just to show we know better, we choose a unit distance between Edinburgh and
Inverness. If you treat the coastline as a polygon with sides of this length the perimeter is
about 12.5 units. Now try again with a distance of half the length (from London to
Dover as the crow flies). This time we get about 30 units. By changing the scale we get
a 20% increase in perimeter (30@.5 against 12.5@]1). The point is that at every scale
new headlands and inlets will emerge, increasing our estimate. The conjecture is that
these new features will emerge, statistically speaking, at the same rate on each reduction in
scale. Effectively the perimeter is infinite!

So the coastline of Britain is a natural or random fractal, and we can calculate its
fractal dimension.

If the perimeter is L(x) where x is the divider length, then

L(x) ~ x1-D
Hence we have 15 = F*Q 51D where F is a constant
and 12.5 = F*11-D
Combining and taking logs  log(1.2) = (1-D).log(0.5)
Hence D=1.26

D is defined as the fractal dimension of the coastline of Britain. Many other political
boundaries have infinite length, but they can have different fractal dimensions. However
not all such boundaries are infinite. Take a look at some American states, such as Wyoming
or Colorado: their fractal dimension is one.

Mandelbrot points out that for practical purposes there is a smallest scale that is
appropriate, say 20 metres. It is not suggested that the coastline of mainland Britain is the
same as the Isle of Wight's; clearly if we know the divider length we can calculate the
difference. The key point is that the only way of making sense of the length calculation is by
using the fractal dimension.
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Although we suggested dividers to measure the map of Britain, the formal
mathematical technique uses balls of various radii to cover the coastline. As an aside in
our examples in two dimensional ambient space - the sheet of paper - the ball is a circle,
but this technique is also done in n-dimensions where n dimensional spheres are used.

In two dimensions we can use shapes other than balls and get the same fractal
dimension. For instance, often boxes are the best shape.

We can now return to the Koch snowflake and Sierpinski’s triangle and calculate the
fractal dimension of their perimeters.

Looking at the Koch snowflake first. Consider the radius of a circle drawn round the
initial three points of length unity. If we now use balls radius 1/3 we need six balls to
cover the object, each covers one of the six triangles that make the star shape reached after
one circuit of shape building above.

Now consider zooming into the next stage with balls radius 1/9. 18 of these cover
the next layer of triangles, but some of the perimeter of the snowflake remains uncovered.
Six more balls are required to cover the inward pointing corners of the star shape - 24
balls in all. Every time we zoom in, by reducing the ball radius by a factor of three we
need a fourfold increase in balls to cover the perimeter.

The number of covers N, ball radius s, follows the following rule:

L(s) = s. N(s) = constant. sl'd

or N(s) = constant. sd

24 = constant.(%)'d
6= constant.(%)'d

Dividing 4= (Ad

Taking logs and rearranging
d = log4/log3 = 1.26

In the case of Sierpinski’s triangle it’s best to calculate the dimension by using triangles
to cover the area. If we start with an equilateral triangle of the same size as the outer
edges then trivially one is enough for full coverage. Now consider the cover triangle set
with lengths halved. Now we need three to cover the perimeter since none of it is within
the inner triangle (the part we coloured in). If we halve the cover triangle again we can
cover the object with nine triangles. Hence the number of covers grows by the following
rule

N(s) ~ 574
3~ (%4
Taking logs and solving d = log3/log2 = 1.58

The dimension of the Henon attractor comes out at 1.26, very close to Koch’s snowflake.
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3.2.6 Random Walks

A random fractal is an object which does not replicate itself exactly over scales.
However the various shapes (however defined) appear with the same regularity over all
scales. The bedrock of our stochastic processes is the random walk. The random walk is
a simple fractal and deserves some particular attention.

So let’s look at the fractal dimension of a random walk. A random walk is the
manifestation of Brownian motion; very small steps over infinitesimal time periods can be
accumulated to be measured over discrete time steps. Not much different from a
coastline! It can be shown that instead of considering different step sizes, as in our tour of
Britain, there is an equivalent more practical approach. The approach is as follows:

1. Plot a random walk - ours uses a standard PC random number generator for 256
points:
R(t+1) = R(t) + 1 if rand > 0.5;
R(t+1) = R(t) - 1if rand < 0.5.

R(0)=0
Random Walk
8
6
4
s 2
5 0
g 21299
-4
-8
-8 steps

2. Place a grid of 16 boxes over the walk by drawing horizontal and vertical lines
breaking the axes into 4 equal segments.

Random Walk
8
4 A A A
5 Wy
L
.'5 0
§ (e aca3ae RN
-4 -
-8
steps

3. Count the number of boxes that the line passes through. We make it 12.
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4. Repeat the process outlined in 2, by breaking each of the smaller rectangles into
four by doubling the lines drawn through each axis. Count the hits on the new grid -
we make it 28.

Random Walk
8
6
4 - i
5 2
= 0
7] © «© o ob < 4 (=
o -2
& ~— — 9 = o N
-4 Y ‘
s i
-8
steps

5. Keep repeating step 4 as long as you like.
The results we got were as follows:

period divided into hits

4 time steps 12
8 28
16 80
32 212

As the time step is quartered the hits go up approximately 8 fold. (We decided not to
find a better fit if only to demonstrate how frustrating it can be to find the fractal
dimension in a small data set). This is an example of self similarity and implies that since 8
=415, the fractal dimension of a random walk is 1.5. This particular example is
untypical as it stays near the x axis more than “expected”.

Another way of checking the result is to look at the extremes. If the example is
looked at on the scale of one time step the walk passes through the one box available. If
we look at the scale of 256 time steps then each step passes through precisely 1 unit that
has now been divided into (256/16=) 16 boxes. The random walk on this scale must pass
through 256*16 = 4096 boxes. By this stage the time steps have diminished by 28,
whereas the number of boxes has grown to 2'2. And 12/8 brings us back to 1.5. In terms
of wiggliness it sits half way between a Euclidean line and a plane. Its dimension is quite
close to Sierpinski’s triangle.

But a fractal process is not a new idea stealing the clothes of standard statistical models,
it is far richer. Since stochastic processes are a core actuarial tool we make no apology for
going into a bit more detail. A single variable fractal process can have wiggliness
anywhere between the line (dimension 1) and the plane (dimension 2).
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3.2.7 Assumptions behind a fractal process

A process {y(t)} is Brownian if it meets the following conditions:
For any time step At the increments Ay(t) = y(t+At) - y(t) are:
(i) gaussian

(ii) of mean 0, and

(itiy  with variance proportional to At

Note that on a random walk we assume movement in a straight line of fixed length
between each stage. The Brownian process follows a smaller scale random walk over this
time frame. A fractal process is a wider family where condition (iii) is replaced by

(iii")  with variance proportional to (At)?H

This relaxation gives rise to a fundamental change in our traditional approach to time
series. We normally accept that our data is dirty and we remove the trend, take out
cycles such as seasonal effects and eliminate as much “noise” as possible. This is sometimes
called “pre-whitening” - called such since white noise occurs in engineering systems when
H = 0.5. Incidentally, Mandelbrot describes condition (ii) as “vanishing... expectation” -
it is a long term expectation.

A fractal process is also stationary so it should be pre-whitened. But whereas in a pure
Brownian process successive increments Ay(t) and Ay(t+At ) are uncorrelated, in all
other fractal processes they are correlated. A fractal process is a possible model for some
time series which appear to have autocorrelation.

If H is more than 0.5 the process is called “persistent”. If it is less than 0.5 the series is
“anti-persistent”.

There is also a class of fractal processes which relax condition (i). The most important
one is to allow all stable paretian distributions (see 3.2.10 below). In these processes
condition (ii) is replaced by the condition that the distribution is stationary. This
possibility is ignored in the next section.

3.2.8 Estimating H, the Hurst Exponent

In 3.1.2 we gave H E Hurst’s contribution to the development of fractals. The Hurst
Exponent is a key measure of whether a process is brownian or a more general fractal
process. It indicates, loosely speaking, the probability of the joker being drawn from
Hurst’s pack of cards. There are several ways that it can be calculated.

The parameter H is simply (2 - the fractal dimension of the process). It measures
wiggliness and is used extensively in section 3.5. Some fairly trivial maths {1} shows that
it is related to the coefficient of correlation by the following formula:

2H=242p  (-0.5 <p<1)

This equation gives us the first way of estimating H. Calculate the correlation of
{Ay(t)} over various time steps. If it is fairly constant then y(t) might be a fractal process

with
H = log( 2+2p)/log 4
FOOTNOTES

{1}treat x1 and x2 as two consecutive points. If we double the time step then we observe (x1+x2).
Expand E(x1+x2)2 using condition (iii'), noting p = E(x1.x2)/E(x1)2.
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There are other ways of estimating H. Here we sketch out some alternativcs

1. The variance approach
Calculate the variance of Ay(t) over various time steps. Take logs of both series and
fit a linear regression line to this data. The slope of the linear regression is 2H.

2. Local variance
Another approach is to look at the stability of H locally. We calculate the variance on
one time step and then we double the step size. Using condition (iii") we find that:

H = {log E([y(t+2At) - y(t)]?) - log E([y(t+At) - y(t)]*)} /log 4

3. Line Crossing

Looking at the number of times that the random walk crosses the line zero is another
traditional approach. In a fractal process it yields the coefficient H since the number of
intervals L exceeding a length x, N(L>x) follows the rules:

N(L>x) = constant * x H-1
And again we can carry out a linear regression on the logs.

4. Power Spectrum

Fourier transforms offer some of the most powerful ways of testing fractals. For
astute readers it will be no surprise to find a power law at work again, in the power
spectrum. A power spectrum of a fractal process follows the rule

c(n) = n'1-2H, where c(n) is the amplitude at frequency n.

This rule is particularly useful to transform a stochastic process simulation into one for
a fractal process. A Fourier transform obeying this rule can be utilised to get the desired
rate of wiggliness for Monte Carlo runs (see Hastings and Sugihara, section 5.6).

5. Growth of range

This approach is considered the most robust. The range R(t) being the difference
between the maximum and minimum in that interval can be shown to scale on the
following rule:

R(t) = constant. (At)H

It is the discovery of this rule which started the whole thing off and its history is told in
section 3.1.2. Usually the range is rescaled by dividing by the standard deviation. These
plots are denoted R/'s statistics.

Since this approach is the most used in literature we go into more detail. The data is
increasingly subdivided into fewer groups by combining an equal number of consecutive
points. To minimise bias it is advisable to use a long series of points where the number of
points is highly divisible and only plot R/s for non-overlapping time frames divisible into
the total number of points. It can also be shown that this approach is unreliable when n is
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small. We recommend ignoring plots where n<5.

Define {x(t)} to be a time series of a = k.n time ordered differences {y(t+1) - y(t)},
k and n being positive integers. This may mean truncating the full series. The idea is to
choose a to get as many readings as possible of different scales. The advantages‘of
truncating is that end points discarded in some calculations do not distort results.

Consider a time series, in consecutive order, as x(1),............... ,Xx(n).

The sample mean is calculated as m = [x(1)+...... +x(n)]/n.

and the sample standard deviation s = VE(x(i) - m)2/n, summing over i.

The next stage is to normalise the data z(i) = x(i) - m, for all i.

Now calculate Y(i) = z(1)+...... z(i), for all i.

The range, R, is calculated by subtracting the minimum Y(i) from the maximum Y(j).
Finally divide R by s. Take the average of the results over the k observations.

Next recalculate for the next k".n"= a. This is the rescaled range that grows as n
increases, and fitting a line to the results gives an estimate of H.

6. Commentary

Finally a word of warning, When we have tried these approaches on a data set we have
been surprised at the disparity in answers. They need very long time series. And not long
in the traditional statistical sense of more data points. If a yearly series is unsatisfactory
moving to an hourly series for the same period does not help. It appears that one needs the
long time frame to observe several cycles in order to get good results. One then wonders if
the underlying situation might have changed in the intervening period.

3.2.9 Power Laws

The key measure of a fractal is its dimension. It gives us a handle on the scaling
characteristics. On regular fractals we have seen that this attribute - although we
concentrate on lengths the idea works on mass or area just as well - follows the law

N(s) = s2
For random fractals the probability distribution tends assymptotically to:
Pr(x>t) ~ t3, t>0

This is the hyperbolic function and is often referred to as a power law. Clearly this
density function has a discontinuity at t = 0, hence it is seen as a geometric interpretation.
Note that a power law gives a straight line when plotted on log-log graph paper. One
distribution that is geometrically similar is the stable paretian distribution.
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3.2.10 Stable Paretian Distributions

These distributions are sometimes called Levy distributions. Both Walter (1995) and
Finkelstein (1997) demonstrate some of the properties of this family of distributions. The
gaussian distribution is a particularly simple example of such a distribution. The
particular interest to risk modellers is the fat tails these distributions have.

For the purposes of this paper the following is important. The distribution has four
parameters:

B The characteristic exponent, which lies in the range 0 to 2. The gaussian
distribution has an exponent of 2. -

B The skewness parameter, which lies between -1 and +1. In most work the
parameter is set to zero.

B The scale parameter, a positive number. In the gaussian distribution this parameter

is half the variance; it modifies dispersion.

B The location parameter. This parameter does the job we normally associate with
the mean. However the mean is infinite for distributions where the characteristic
exponent is less than 1. In most situations the mode or median can be used.

Except in three cases (see Finkelstein) the distribution density function cannot be written
in a closed form, but the characteristic function can. It is complex and is best understood
by reading the preambles provided by Walter and Finkelstein.

If the characteristic exponent is less than 1 the mean of the density function is infinite,
but the mode and median are finite. The variance for all distributions except the gaussian
is infinite, but it is possible to use the range or quantiles (eg quartiles or deciles). Log
stable distributions are sisters to the log normal distribution - log x is distributed stable
paretian. All log-stable distributions apart from the gaussian have infinite mean.

The use of the term “stable” has a specific meaning, If two random variables X,Y have
the same density function then the sum (X+Y) transformed to a(X+Y)+b, with known a
and b, has the same distribution.

It would be possible to use this stability to test whether the law works on underlying
stocks constituting a market price index. Mandelbrot has used the fractal property of the
tails which tend to follow the fractal law: P(U>u) = (u/U)* . More usually the stability
is related to the change in the value of an index over time. The particular fractal process
that is being tested is that this stability under addition law works moving from, say, daily to
weekly to monthly to annual changes. However Longin (see section 3.4) is looking at the
Mandelbrot concept in the tails.
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3.3 The Forms of Fractals

“Some fractal sets are curves or surfaces, others are disconnected ‘dusts’, and yet others are so oddly

shaped that there are no good terms for them in either the sciences or the arts.”

B Mandelbrot (1 982)

The mathematics of fractals is quite a pleasing exercise if lateral mathematics happen to
hold a fascination for you. It also happens make use of ever increasing PC power and to
give results that can make a mathematician into an artist overnight. Such novelties are
almost certain to gain a large following and to give rise to a large volume of pictorially
pleasant output “of which no use can be made”, to borrow from Lebesgue’s quote from
Section 3.1.3.

While Lebesgue may be taken as being correct in the narrow sense, there are two very
good reasons why it is appropriate to display some of these pure forms at this juncture and
to present some basic algorithms which the eager student may wish to attempt in section 4.

Firstly, the potential for the application of fractal geometry to risk management depends
upon those risks displaying a naturally fractal shape, be that in their own manifestation or in
their relationship with other influences. If fractured, discontinuous, self similarity is present
then there ought to be a mathematical fractal model that will approximate to it and thus
allow further process work to take place. Displaying some basic fractal ‘shapes’ here is will
give the reader some concept of how distributions and relationships that are ‘natural fractals’
might appear. Mandelbrot (1982) stressed the same objective:

“Showing pretty pictures is not the main purpose in this Essay; they are an essential
tool, but only a tool”

Secondly, it is possible that the very range of images will spark interest amongst some
actuaries and actuarial students where words will fail. As we believe that diversity of input
is critical to the investigation of this subject it is therefore a justifiable act to carry these
images. It is worth stressing that many of the applications referred to in the sections that
follow have been motivated by a practitioner ‘seeing’ in pictorial images of mathematical
fractals some feature or features, that have been present in his or her real world.

Barnsley:
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Bifurcation Henon

Icons Julia4
Lorenz Man-o-war
Popcorn Crystal
Spiral Lyapunov
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3.4 Fractal Applications

It seemed a worthwhile exercise to run through the areas of application for fractals,
before discussing the sorts of applications that seem to justify actuarial investigation.

There are three reasons for this.  Firstly, it shows that there is a serious side to some
of the new wave of mathematics that is too easily dismissed by calendar and screen saver
images, and by the jargon that wraps around the subject. It is possible when faced with a
“fractalicious’ fractophilic (see glossary) to dismiss fractals as the mathematical equivalent
of Startrek.

Secondly, they indicate the sorts of problem shapes and complexities that lend
themselves to fractal analysis, which in turn hint at the areas within the financial and
demographic world that might benefit from the application.

Thirdly, they also indicate the sort of areas that might benefit from the actuarial
profession’s disciplines beyond the financial and demographic world. So, in no particular
order, our research indicates the use of fractals in the following fields:

1. Carbonblack Analysis

Carbonblack aggregates have been the centre of attention for a lot of fractal analysis
and practical development. Carbonblack is made by burning natural gas with a restricted
amount of oxygen, so that carbon is formed in the flame. Around two billion pounds of
carbonblack is produced in the US per year, of which around 75% is used by the rubber
industry. In the early 1980s some concern was expressed about the safety of carbonblack
as used in industry and thus much research was done into the nature of its fine particles.
It was found that using fractal geometry gave a great deal of analytical information about
the nature of the fine particles not available from traditional analysis.

The key problem with the particles has been that no matter how much you magnify the
particles there is always more ‘ruggedness’ present than was visible at the last, lower,
magnification. Given that the visible ruggedness is usually similar at each magnification it
would appear that the particles are natural fractals. Thus projecting that ruggedness
infinitesimally permits predictions about the particle’s reactions to microscopic changes in
environment.

This work has been pioneered by Laurentian University, from whence Kaye (1989) has
become a leading author on the commercial application of fractals.

2. Powder and Fine particle Metals

A related area has been the understanding of the likely reaction of powder metal
particles under different conditions, which is a large practical area of metallurgy research.
Observing reactions of particles with different fractal dimensions enables interpolation or
extrapolation of the likely optimum shape and dimension of the particles at infinitesimally
small sizes for the task in hand (eg paint spraying for maximum shine or strength).

3. Extracting Mineral Grains

It has been shown (Kaye, 1989) that the rock matrix holding mineral grains reacts
differently to the form of extraction used according to the fractal dimensions of fine
particles of both the ore and the rock. Significant savings in energy can be achieved by
applying the right process, and fairly accurate advice can be gained from fractal readings of
samples of the minerals to be extracted.
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4. Extraterrestrial Geology

Fractals have been used to describe some of the major differences in the structure of
lunar rocks as compared to their terrestrial counterparts. Freshly shattered pieces of rock
are more rugged than those that emerge from the crushing and grinding of the mining
industry, since attrition or erosion will round off any fractal structure in the newly
generated fragments. Uneroded freshly shattered rocks exist on the lunar surface and thus
some lunar fragments have indeed yielded a natural fractal surface.

5. Respirable Dusts

It is becoming clear that the ‘ruggedness’ of certain dust particles that may be inhaled is
a significant factor in how harmful they are. While their size and chemical composition
will determine whether they can get into the lung’s alveoli and then react locally to cause
damage, the shape seems to determine whether they can effectively ‘hook’ up and stay at
the destination as opposed to simply flying back out from whence they came. This is
termed the ‘lodgability factor’, and it is directly related to the fractal dimension of the
particle. Asbestos, nicotine, silica dust (cause of silicosis) and coal dust are all very
different chemically, but fractally similar. So what other particles are there in the air with
similar fractal dimensions? Do they have a part to play in any diseases as yet not connected
to them ?

6. Leaf Structure

Leaves display fractal properties and fractals are being used to measure the distortion in
leaf structure caused by biological or chemical attack. For many non-mathematicians it is
this sort of similarity which sparks the first interest, for it is relatively easy to generate a
leaf shape by means of a fractal algorithm.

This is, of course, the thin end of a very large wedge, for Mandelbrot concentrates a
significant amount of time demonstrating the many fractal patterns embodied within
nature. Clear trees emerge from algorithms as do rock formations and assorted
topological shapes. It should not be surprising then that, given the underlying theory, the
elements that make up these formations (particles from rocks and leaves from trees) also
display fractal natures.

7. Oncology and Epidemiology

Cancer and epidemic growth models were pioneered in their own right by Eden, but
recent work has shown these to display a fundamental fractal structure and can be
modelled as such. If fractals can help point the way to answering “How does a disease
spread through a randomly heterogeneous material ?” or “How does an epidemic spread
through a randomly heterogenous population ?”, then the focus it will give to practical
research will be of enormous value.

8. City Planning

As long ago as 1984 fractals were being used to describe cartographic features,
including the perimeters of cities and their growth. This is, of course, heavily related to
the local geography, but more recent studies have looked at the internal fractals of cities’
structures to see whether similarities in fractal dimensions are correlated to other
features, such as traffic congestion and crime.
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9. Geographic Phenomena

An example of the use of fractals here is in the description of island archipelagos;
which were observed to have similar properties to fragmentation fractal creations. Using
fractal dimensions on real island groups enables computer driven fragmentation models to
identify the potential fractal development of such fragmentations and thus give a range‘f of
possible histories for the geologists to investigate - and predict the future.

10. Fractal Twins

Did you know that the fractal dimensions of the surface of pyrolytic graphite (carbon)
and the surface of a cauliflower are just about identical, as are pictures of them ? Also that
stress cracks in some metals have the same fractal qualities as the Red Sea (and a picture of
the Red Sea from a satellite looks uncannily similar to its fractal twin)? There are a host of
these twins, and some triplets too. Not only that but these similarities have opened up
new lines of research into whether knowledge on one of the twins will help deepen the
understanding of the other in some way; metal cracks are easier to test and gauge
responses to than is the Red Sea (which is in a crack in the Earth’s crust of course).

As was indicated in 6. above, it is the visual similarity between clear fractal forms
(either already demonstrated naturally or those produced deterministically and presented
visually) that will spawn consideration of the use of fractals for analysis in otherwise
unrelated areas. Indeed it is some of these ‘twins’ that give rise to clear implications as to
their appropriateness for mapping risk patterns.

There are some common themes here. Variability, growth, sudden fragmentation,
interrelationships of large numbers of heterogeneous items, correlation and just plain
information. But what is not immediately apparent from this list is the fact that the
algorithms that drive fractal applications are easily embraced by PC applications. They also
enable you to analyse what you have got and to set algorithms running to try to emulate
the sort of structures that are facing you.
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3.5 Risk Applications

3.5.1 Investment

Background

Mandelbrot has written extensively on time series modelling of markets. Most of his
work on market prices pre-date his published developments of fractal geometry. The
investment work was in the 1960s as financial economics was being developed. It was
well known that the distribution of changes in stock market prices did not exactly follow a
normal distribution. There are too many near average changes and more importantly, for
risk managers, too many extreme changes. There was no simple way of incorporating this
fact in modelling and for most purposes the deviation was small compared with other
parameter fitting. The random walk simplification led to the big steps forward in stock
market modelling underpinning Black Scholes Option Pricing and the Capital Asset
Pricing Model. Mandelbrot’s ideas were very difficult to model since the mathematics
was intractable. Nevertheless they remain a way of explaining phenomena found widely in
stock prices. With the advent of high power PCs we see the actuarial profession widely
using Monte Carlo simulations for all kinds of investment risk investigations. Fractal
processes are complex, but may have a part to play.

All models are simplifications, and it is possible that for some applications the technical
advantages of the pure random walk model outweigh the disadvantages. Shyam Mehta
(1996) discusses some of these issues in a recent article in “The Actuary”. However as
more people have used fractal processes, longer time series have become available and
computer power has enabled more analysis, Mandelbrot’s ideas have become more viable.
This paper is not about investment modelling, but about actuarial applications of fractals.
So some specialists might find what follows a gross simplification.

Hurst published his work in the 1950s before fractals had been developed as a
geometric technique. His method does not depend on the process being normally
distributed. Before he discovered Hurst’s work, Mandelbrot had proposed that the stock
prices followed a family of curves called Stable Paretian or Levy (after the French
mathematician who formulated them). It is important to realise this since often papers
only refer to Mandelbrot’s 1960s papers. One chapter in “The fractal geometry of
nature” published in 1982 is devoted to market prices and this represents a summary.
Stable Levy curves will give a better fit to the distribution of stock price changes. The
point is that they have four parameters compared with the two in the gaussian
distribution. It is one of this family of distributions that Andrew Smith used to investigate
a fractal investment model. To quote Smith - “ For the fractal model, I have not been able
to achieve any significant improvements from dynamic trading” (para 3.6.3). Given the
jump process developed by Hurst this is a result we should expect from a fractal model.

Much of Mandelbrot’s early work concerned the Levy distributions. In his 1982 work
he remained unbowed. The stable Levy model explained the data. This proposal has
some disturbing issues. The best fit stable Levy distribution has infinite mean and
variance. To Mandelbrot that presents no problem - he suggests that this is little different
from “very large”. We have already seen the Koch snowflake, where we contended that
the perimeter was infinite, but the perimeter of our diagram is, by necessity, finite.
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The Fractal Market Hypothesis

Peters (1994) has developed these ideas into a theory which he calls the Fractal Market
Hypothesis (FMH). Much financial economics is based on the Efficient Market
Hypothesis (EMH). This assumes that current prices reflect all current information to the
point where the marginal benefits of acting on information equal the marginal costs
incurred by that action. There is an even chance that new information will raise or
reduce prices. The EMH becomes a game of chance and the central limit theorem can be
utilised.

In contrast, the FMH assumes that the market is made up of a range of investors with
different time horizons. Prices are stable when there are investors in the market with a
wide range of investment horizons. The investors supply liquidity. Short term traders
use technical information, while long term investors use fundamental data. Hence the
underlying trend in the market is reflective of changes in expected earnings. Short term
trends are more likely the result of crowd behaviour. There is no reason to believe that the
length of short term trends is related to the long term economic trend.

Comparing the FMH with the EMH. The FMH suggests that liquidity is important
whereas the EMH effectively assumes that it will always be provided. The FMH asserts
some particular differences in investors behaviour depending on their time horizon.
Under the FMH it is possible for the market to be unstable, when fundamental
information loses its value. In such situations the supply of liquidity alters. The FMH
says that the market is stable when it has no characteristic time scale or investment
horizon. Stable markets are fractal.

Peters shows that the Hurst exponent for the Dow Jones index, based on pre-whitened
daily price changes over 102 years is significantly more than the 0.5 implied by the
gaussian distribution. This repeated Mandelbrot’s findings on cotton prices. If the Hurst
exponent is greater than 0.5 then the time series is persistent. In the time series of price
changes each data point is correlated with the next. This correlation is seen on a wide
range of time scales - hourly, daily, quarterly, annually. It remains in the error terms
despite observers using various techniques to modify the model structure.

This persistency has shown up time and time again in investment price series. Usually
it is low, somewhere between 0.5 and 0.6. Its low enough for some commentators to
ignore, and that’s how we get stochastic models based on stationary gaussian distributed
random walks.

Peters investigations suggest that liquidity changes and prices jump on average every
four years. Above four years investors improve their expected return per unit sample
variance. However he finds that for currencies there is no such scaling limit. This may
because his time period is shorter, starting when the Bretton Woods agreement broke up
in the late 1960s.

Peters explanation is that the market follows a log stable Levy distribution and hence
the mean and variance of changes are infinite.

Economic Implications
Acceptance of a fractal investment model would change a lot of our preconception
about investment risk.

B The local sample means and variances would not be a good guides to long term
population statistics. Apart from the Normal Distribution, all Levy distributions
have infinite variance and some have infinite mean.
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B Variance would not be a good guide to volatility.

B We would use different measures of market location and dispersion ( median and
inter quartile range might replace mean and variance). We would still have tools to
control risk. Fractals explain bull and bear markets. They give us no insights into
when they end and by how much the change will be. In a mean reversion model
the more extreme yields get away from the norm the more likely we are to see a
correction in the next time frame and we can estimate and bound that change. In
fractal models we lose this benefit.

B A fractal model may give some credence to chartist techniques. Deviations from
moving averages over different time periods may pick out attitudes of investors with
different time horizons.

Differing schools of thought

As with most new sciences you have to sort out the quacks from the good doctors.
Much of the literature is written by fervent disciples of one approach or another. Fractals
and chaos have been used successfully in natural sciences and have been proposed in
economic problems not least in explaining share price movements. However social
sciences have a marked disadvantage against natural sciences: rarely can they carry out
controlled experiments. Physicists develop new tools to test theories. Brownian motion
explains the movement of pollen in liquids. Chaos explains why apparently random
behaviour can be reduced to a simple deterministic model. In natural science stochastic
and deterministic approaches are merging.

However economists often look to new techniques to solve perennial problems.
Classical economics has no reasonable explanation for the regular variation in prices.
Prices should be set so that supply and demand are in equilibrium - a traditional
deterministic approach that says nothing about how they are supposed to vary. Clearly
there is some stickiness in the market that prevents supply reacting immediately to
changes in demand and vice-versa. But it is a great leap forward to suggest that the
stickiness leads to a gaussian distribution of price changes.

Financial economics developed as economists discovered stochastic processes. The
Efficient Market Hypothesis says that current share prices reflect all public information.
Share prices change because new public information becomes available. Future price
changes cannot be inferred from past changes.

Recently Kemp (1997) has demonstrated that assumptions can be loosened in
derivatives models and the central tenants of the Black Scholes model still hold.

Actuaries have taken on board the idea of random walks for investigations into the risk
of ruin over the long term. However the profession has added to its existing
deterministic approach. The profession hypothecates, say, that in the long term
investments provide a real return; essentially deterministic. Then a random walk is
tagged on to explain volatility. Often these are built up into a simultaneous equation
model.  Our tests are not testing some hypothesis of future market behaviour, but
whether our models fit past experience.

This approach has the advantage of being pragmatic. It might be summarised as
proposing that the random walk is in the long term pulled back to a price that reflects
underlying value. Nothing about why it moves away from fundamental value. The
problem we wish to highlight is that we are in a difficult position to assess the possibility of
a fractal approach to actuarial analyses. Scientific testing involves forming a hypothesis
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and then trying to falsify the hypothesis. It is not sufficient to say that the error term in
our models is normally distributed, or becomes an ARCH process or whatever, without
saying why.

Kemp (1996) rejects the fractal approach to long term asset/liability modelling
quoting work carried out by Longin (1993). Longin found positive first order
autocorrelation in his analysis, which is one sign that a fractal process may be at work.
Kemp seems to have rejected including autocorrelation in his model since it would allow
a dynamic hedger to be able to predict future price movements and this would give any
strategy utilising this fact an in-built advantage.

Notwithstanding Kemnp’s concerns about models involving the Levy distributions, the
fractal approach would have several features suitable for this type of work. Indeed this is
what Smith found. Longin’s analysis showed that the Levy distribution did not fit
extreme movements in daily prices. Longin uses another new form of mathematics called
Extreme Value Theory (EVT). He has used very similar data to Peters, the S&P index and
predecessors from 1885 -1990. By looking at the extreme daily movements in each
calendar year, he rejects the idea that stock prices follow a Levy Distribution. He prefers
an ARCH approach.

Here is another new technique - EVT - that actuaries should be appraising. The theory
is almost an antithesis of chaos theory. It tests for unusual events that can be explained by
chance rather than a hidden deterministic model.

As a counterweight to the Longin work are papers by Walter (1995) showing a fractal
structure to some French stocks. Walter’s analysis is over a relatively short period and
only looks at patterns up to a period of 20 days. His estimate of the H exponent is similar
to those found in other studies. Longin only inspects the distribution of daily movements
and passes no comment on the scaling results found by Peters. Peters proposes a stable
levy distribution, but does not fit it, although he indicates the size of the characteristic
exponent at about 1.7. The characteristic exponent is of the order of 1/H.

Finkelstein (1997) has returned to the model proposed by the 1980 working party on
maturity guarantees. He fits Levy distributions to the data used by the working party.

His model is consistent with a Hurst exponent of about 0.57 on log-dividend yields.

Issues for the profession

The idea of throwing more and more sophisticated statistical techniques at the
problems of understanding the stock market is unconvincing, While they may prove that
the pure fractal model of Mandelbrot’s is not manifest in the data, they seem to ignore the
contributions that geometry can make to our understanding of the system. Actuarial
investment rules are based on the idea that in the long term there are some underlying
economic laws concerning value that should be reflected in stock prices. Economics is
complicated and may need non linear explanations. Geometric techniques can help us
identify non linear patterns in the data. We should be looking for the attractors hidden
inside our not-quite-normally distributed share price random walk.

Such work is beginning, Craighead (1994) has looked at US Treasury Interest Rates. He
demonstrates that the rates do not follow a random walk. As Peters has also shown there is
a weak persistent bias. He suggests that the market is nearly efficient and at most one could
predict the direction of interest rate changes and then only in the long term.

One of the problems with any economic time series is that the market price is affected
by outside influences. Larrain (1991) looked at T-Bill rates and used a range of factors to
estimate the fundamental value of the stocks. Only then did he look for non-linearities.
In an argument similar to Peters he suggests that usually in the short term the market is
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more heavily influenced by technical factors. However in the longer term, fundamental
value asserts itself. He does point out that at certain times the market suspends belief in
fundamental value. Some of the parameters fitted to his model are close to a region
where chaos should exist.

Larrain’s line of enquiry must be close to giving insights into the various models
actuaries are proposing for asset liability work. In the long term our premise is that
prices will become relatively close to fundamental value. (We may all have different views
on what exactly that might be!) At present most models assume that prices can move
away from fundamental value by following a random walk. It is quite possible that at least
in some periods, mathematical chaos best describes part of the random variation. Fitting
our models to past experience based on an unbiased random walk model is likely to be
underestimating the risk to mismatched client’s funds.

In actuarial terms an example might be the share dividend yield equation extracted
from the Maturity Guarantees Working Party Model (Ford et al 1980). One of the
equations, ignoring that it is in log form is:

Yield(t) = 4% + 0.6 (Yield(t-1) - 4%) + random component.

Here is an equation with that underlying actuarial tenant that there is a universal rule
that in the long term there is an economic relationship between price and income is
constant. It also adds a very fractal idea that whatever its current income/price ratio
there is an “attractor” at work. Global determinism, but the final term gives local
randomness. This model is an AR(1) model it is a simple autoregressive type or a mean-
reversion model.

However the model has some useful simplifications to fit our mathematical techniques.
The first technique is to use logarithms. This process keeps all the yields positive and
makes the variance relatively stable over time. In this particular model it maintains the log
transformation used in the related dividend equation. One disadvantage demonstrated by
Finkelstein (1997) is that apart from the gaussian distribution all log-Levy distributions
will have infinite mean. Using the yield has advantages in that the measure does not have
a trend caused by price inflation.

Another simplification is the use of an autoregressive model. All autoregressive models
of finite order are not fractal. In fact if a Hurst exponent is calculated it should show the
process looks anti-persistent. Now a fractal model may not be the most suitable, but a good
model should show the persistency that has been consistently observed.

This particular problem also exists in Peters work. He fitted an AR(1) model to log-
prices and then examined the residuals. He did this to minimise linear dependency and
also detrend the series. But it is an arbitrary method to overcome these issues.

The yield equation has been carried forward into “The Wilkie Model” where the
random component remains gaussian. The MGWP model has been updated by
Finkelstein by fitting a wider Levy distribution as the random component.

The issue is whether our training and other historical baggage is blinding us to new
insights. It may be that hidden in our pre- whitening of the data and the use of the
gaussian distribution we may be missing something chaotic within that error term.

Lee 1991 suggesteq that any positive auto correlation model would be inherently
unstable. But we know that over all time steps this correlation is in the data. And we
know that price movements and the variance in those price movements are more volatile
than most models we are using.
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3.5.2 Mortality

The bedrock of actuarial science is the life table. The Gompetz and Makeham curves
have served the science well. The mortality model is a good example of a deterministic
model (the curve) being fitted to a stochastic process (used to calculate the confidence
limits of q). As such there is little reason to believe that fractals can add value.

But its not as though new mathematics is not enveloping life tables. MacDonald
(1996) has shown how exposure techniques have developed and Renshaw (1991) has
shown how a software package - GLIM can be used to graduate experience.

However increasingly premium rates depend on wider factors than age. Werth (1995)
recently showed a wide range of statistics that could be used to price mortality. The
market for insurance coverages to older aged customers is widening. The rating of people
requiring immediate long term care has little to do with their current age.

In some circumstances we will need to resort to Neural Networks, Cluster Analysis or
CHAID to rate risk. And in these extremes there might just be a place for fractals.

Older lives are at risk in cold weather and to influenza epidemics. Their mortality is not
independent of each other and in such situations a fractal process can add value over a
pure stochastic process.

In reinsurance, a fractal model can give insights into stop loss and catastrophe excess
loss coverages. In this more risky end of mortality cover it is particularly useful to have
alternative models to test the appropriateness of the contingency margins added to
traditional techniques based on the generalised poisson distribution.

3.5.3 Morbidity

In CMIR 12 individual permanent health insurance claims relating to 1975-8 were
fitted to a multi-state model. This was a big step forward for the professional
understanding of such claims. Claims terminations were modelled by fitting a curve with
six parameters.

However Clark and Dullaway (1995) have reported on data up to 1990. They show
that claims inception and termination rates are unstable. In particular termination rates
have tended to fall.

It appears that we need something simpler than a six parameter curve to fit
termination rates. The claims termination rates do look fractal in shape. The next
diagram shows the fit between their crude deferred four week individual claim
termination rates. If the industry accepts that claims termination rates are unstable, then
a fractal fit appears a practical approach for monitoring claims rates. Furthermore there
is another plausible gain.
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There are well rehearsed reasons for why terminations can vary by deferred period, for
instance offices with differing underwriting and claims control can be active in different
markets. But experience in each deferred period is also influenced by the proportions of
claims by cause in that range. In CMIR 8 there is an analysis of claims by cause of iliness.
From this data we can calculate the exposure to claims for each cause and the recovery
rate. Using this information for each deferred period we can calculate the fractal
dimension for each cause. The results are set out in the next table,

category dimension
1 | Other Infective 1.11
2 | Neoplasms 0.24
3 | Endocrine & Metabollic 0.85
4 | Mental 0.62
5 | Nervous 0.92
6 | Circulatory _ 0.55
7 | Acute Respiratory 2.28
8 | Chronic Respiratory 0.92
9 | Digestive 0.70
10 | Genito-Urinary 0.84
11 | Muscuioskeletal 0.91
12 | TRA injuries 0.52
13 | Other injuries 0.70
14 | All other 0.92
All 0.84

Claims reserves could be set by age, the duration of claim from inception of illness and
the cause of illness. The fourteen groups above might be too many. However apparently
different causes seem to have the same dimension. Those with similar dimension could be
grouped together.

Another advantage is that the calculation of present values using dimensions is quite
straightforward.

3.5.4 Life Assurance

Sales Remuneration

This section outlines our first practical use of fractals. The aim was to cost a new sales
consultant structure where a substantial salary was paid for the first time. Previously
commission was the main component. This example is simplified to highlight the use of
fractals. The aim was to come up with a package of equal to the cost to the company of
the existing scheme.

On average the sales force produced 4 cases per month. Production was about £1000
per case, commission would be about £400 per case. In such work it is dangerous to
assume all consultants produce the same amount. So the first stage involves gathering
information on the sales force, to break the consultants down into reasonably homogeneous
groups. In this case we came up with 5 groups with the following career patterns.
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Now we move onto the next actuarial trick and smooth the curves. Given the paucity
of the data we assumed a sharp learning curve and then a levelling off. Giving the
following results.

Smoothed Curves
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The consultants in training are on a special scale and were treated separately. In
costing the package our inclination was to assume a poisson distribution using the long
term averages as the best estimate of the mean for each group.

Our solution would then come up with a salary plus bonus which left the cost to the
office unchanged. The office had proposed that bonus should be paid if a consultant
reached a monthly threshold.

But this approach ignores the culture of the organisation. The whole reason for the
change is to alter the culture and this is not reflected in this cost.

The only data that we have available is the “randomness” we have already smoothed out
of the curves. Looking back at these curves one can see that in fact they are quite jagged.
Carrying out some tests we found that the error term was anti- persistent. A more
classical approach may have fitted a Markov process with negative autocorrelation.
However this did not appear to fit the facts.

After discussion with our client we decided that the consultants were playing the rules
to their advantage. In order to receive an override commission, they had to produce
about 5 cases per month. If a consultant was well short there was a tendency to hold
back business to increase the chances of override the following month. If they were ahead
they would push things through. While this would tend to exhibit mean reverting
behaviour, anti-persistence best reflected the decisions that consultants made.

Our conclusions were that the threshold should be based on moving average
production and the consultant’s manager should be on a system that countered the
tendency. This was achieved by only counting sales from “qualifying” consultants in these
packages. We were then able to cost the package by mimicking an anti-persistent fractal
process and carrying out the costings. Anti-persistence was assumed to fall slightly.

Now the conclusions may appear to be pure common sense. We agree, the point is
that using fractals meant the maths supported the solution.

In passing we note that if a sales force is ranked by production, the probability that a
salesman exceeds a level tends to follow the fractal rules. The potential interest is that the
dimension is different for each sales force we have looked at.
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3.5.5 General Insurance

The whole of the Pacific Rim, including the wealth of Japan and much of California sits
earthquake fault lines. They sit on the edge of great moving plates which make up the
surface of our planet. The area is uninsurable against earthquakes since there is insufficient
worldwide insurance capacity to cover the sums at risk. Furthermore its still not clear
how to assess the risk of an earthquake in a particular area.

The mainstream theory is called the seismic gap hypothesis. The proposition is that after
a large earthquake the hazard is low since the quake releases most of the local stress. The
original hypothesis dates back to the late sixties. There have been modifications since then.

The original hypothesis was tested by seismologists Yan K Kagan and David D Jackson,
see Monastersky (1992). They found that the hypothesis simply did not work. Looking
back a decade later they found that it was just as likely that a new quake occurred in an
area of low risk as there was in a high risk area.

They put forward an alternative theory an equal hazard hypothesis. The analogy is
with that of a sand box. Here sand drops on a pile from a funnel at a constant rate. If
you observe the surface area of the pile as it grows, the sand does not drop evenly down
the sides. Pockets of pressure build up leading to avalanches of different seemingly
random sizes. This model is fractal. Any area of any size (short of scales of the order of
the entire surface area) is subject to similar pressures.

The battle still rages over the best model. Examination of long records of earthquakes
in Japan give unclear results. The problem is that until recently the measuring of the scale
of an earthquake was unreliable. What is clear is that the clustering of activity, which is
now well observed is important. In the seismic gap model the accumulation of quakes
will signal the release of stress and low regional hazard for a period. The equal hazard
theory suggests that we will never be able to predict when a cluster will cease.

As we go to press we see that Berkshire Hathaway, the company controlled by the
legendary investor Warren Buffet, has received a premium of $600m to provide large
capacity earthquake cover in California over the next four years. Its not clear whether the
firm could pay out if there were two “big ones”. The risk of the second event is
substantially different under the two models.

Now earthquake insurance may not be high on your list of potential new products.

But there is a real chance that fractals form the basis of mainstream non life contracts.
Hurst’s original model came from his work on flood control. Flooding is considered an
insurable risk. Furthermore weather systems are known to be chaotic in character.
Fractals may well help us model many property risks from storm damage to subsidence.

3.5.6 Catastrophe Risks

Insurance companies need to put a handle on extreme risks, the ones that risk
solvency. At the very least it allows them to understand the efficiency of their
reinsurance programs. And for reinsurers the comprehension is even more important. In
their case it is not possible to price some contracts without this knowledge. In many lines
of insurance 20% of events are responsible for 80% of the claims cost. For hurricane
insurance this rule is more like 10%-95%. A recent example of this type of risk
manifesting itself was in Mortgage Indemnity Insurance. And now it’s not just insurers
who have these issues. Banks writing long term off the shelf investment derivatives have
the potential of many years of profit with a few very big losses.
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It is in such areas that the standard stochastic process in isolation is likely to
substantially underestimate the risk probabilities. What we have to do is find several
models all with their own strengths and weaknesses and use them alongside each other to
see if we can get a quantum of the size of risk.

At present the hottest developments are in Extreme Value Theory. If events are
ordered in size, then at the highest extremes, the distribution of claims tends to follow
one of three distributions: Frechet, Gumbel or Weibull. With a large enough data set it is
possible to use these distributions to put a maximum and minimum value on the risk of
the “big one”. Longin, who was quoted in the investment section, used this technique.
There is a fractal alternative. The fractal approach would look at events over all scales,
even relatively small ones, and use this information to extrapolate into the payouts yet to
be observed.

It is these sorts of risks that actuaries can advise in wider fields. The Dutch
government is prepared to accept a flood surge that will break its sea defences once every
ten thousand years. Apparently they have to be 5m high; the highest recorded surge is
4m dating back to 1570. The British Government has commissioned statisticians from
Lancaster University to look at sea defences on the eastern coastline. Actuaries would be
in a unique position to produce such statistics and put the results in a wider cost benefit
perspective. If we are unhappy of moving into untested fields we could practice nearer
home with Mortgage Indemnity Insurance.
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3.6 Fractal Applications to Risk

Management

3.6.1 The staging post and the next journey

So we come towards the end of this leg of our journey into the nether regions of
Fractals. Its time to see if a “fractuary” is about to usurp our established position as

commercial mathematicians.

Along the way we have found more questions that may become the quest for the next

stage Of our journey.

Very few natural objects are smooth. Lightning does not travel in straight lines;
chickens are not spherical. s graduation soundly based on some definition of
fairness or does it derive from earlier limitations on actuarial mathematics?

Our tradition has been to use exponentials naturally as a first approximation; bound
up in the calculation of the compound interest. Should we be putting more weight

on testing whether power laws are better. Until recently the respiratory and
circulatory systems of the body were thought to scale exponentially, power laws
now look a better explanation.

Often we use functions that are integratable or differentiatable depending on our
needs, alternatively we use differences. Fractals are continuous non differentiatable
functions. Do our technical simplifications limit the value we can add?

Actuaries have long had the processes to handle jump models. The general
insurance industry usually accepts one year premium guarantees and in PHI it is
unfashionable to guarantee premiums rates. Are new techniques able to give
significantly improved insights into longer term rate guarantees?.

In the US , Risk Based Capital measures have been introduced in life insurance to
show solvency. These appear in part to be based on stable models and gaussian
distributions. Our confidence in this approach has been weakened. How do we
measure solvency in a world where there is a case for models with very large

variance?

The insurance cycle looks a prime candidate for explanation as a persistent fractal
process. The delay in gathering information from unsettled claims has similarities
with Egyptian flood cycles. Can we produce a model and does this give insights
into claims equalisation reserves (the “dams” so to speak).

Mortality experience has long been perceived as a stable model with an improving
trend. Given the recent experience with AIDS and more historical ( for us) plagues
and famines, should we consider mortality as a persistent fractal process? How would
this effect practical advice on premiums and solvency?
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B In many applications the standard random walk will remain the only practical tool.
Are there guidelines that can be laid down for when this is safe for a particular
application? Is it safe just to use the median or mode instead of the mean?

3.6.2 Fractals, New Mathematics and Actuaries

In this section we have given a brief introduction to fractal mathematics and now it’s is
time to return to the two questions we set in the introduction, viz.:

Do these new concepts offer any potential to improve the techniques
(processes) used in actuarial applications ?

and
Is the profession in a position to answer the first question, in relation
to any new mathematical concept, quickly ?

We have shown that there are potential applications across a wide range of fields.
However with so much unanswered we can only say that the ideas are of some use to the
profession and remain on the fence about how much more it will embed in our processes.

On the second question we remain confident that the profession can adapt. The
mathematics in these new areas is well within the capabilities of all Fellows. We have no
reason to believe that the syllabus will not give new actuaries skills in the new
mathematics as the techniques are proven.

There may be a gap in providing the infrastructure for mature actuaries to appraise
these new techniques. In this respect we humbly put forward one idea. The BA] and its
forerunners JIA and TFA have a long tradition of publishing discussion on papers of a
process or application presented at sessional meetings. While more fundamental papers
go through a scrutiny process they are not presented at sessional meetings, and there
would be limited demand for such discussions. But there is a place for written
contributions on the application and process such contributions could be used especially in
a wider field. This may be by way of preamble or responses published in later editions.
We cannot expect actuaries to be able to keep abreast of all new developments (the
profession now accepts some form of specialisation), but we should expect actuaries to be
alert to how new ideas could help their clients. New techniques should be in front of (not
behind) the profession. As such we submit this paper as a model.
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SECTION 4

The Small Print

The Henon Fractal

“There was a crooked man who walked a crooked mile
who found a crooked sixpence upon a crooked stile, he
bought a crooked cat that caught a crooked mouse and they
all lived together in a crooked little house.

A Fractal Nursery Rhyme
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4.1 Some Fractal Algorithms
- and friends

A sample series of mapping algorithms are given below for the would-be fractal
student, from whence any number of variants can be developed.

4.1.1 The Newton Map for the Cube Roots
of Unity

This is an attractor with three fixed points and if an iterated function system is used
starting with random values of x,and y, they will always tend to one of the three fixed
points. To gain an attractive picture simply colour the route in, in one of three colours in
accordance with the final fixed point (ie one colour for each of the three points):

Xptt — 2x, + x2-y,’
3 D
and
Yot+1 = 2y, - 22Xy,
3 D
where

D = 3(x,2 + ynd)

Note that any number of dimensions may be used in such iterations.

4,1.2 The Butterﬂy Effect

This shows how a little initial difference can produce major long term differences, but
that can yet be harnessed into algorithmic control;

Xpr1 = 83X (1-xy)
and
Yatr1 = s.yn.(l-yn)

If this is taken such that x, and y, are not the same (but very similar) the two
coordinates diverge when s approaches 4.

However if the average a,=(x, t y,)/2 is plotted as a, against a,,; a distinct
relationship shape emerges for different starting points of x, and y,, demonstrating that
the fractal picture is not always in the most obvious relationship.

4.1.3 Variations within an Iterated
Function System

Start with an equilateral triangle of unit length sides. Below are three rules;
1 Scale the triangle by 0.5.

2. Scale the triangle by 0.5 then translate by +0.5 in the x-direction

3. Scale the triangle by 0.5 then translate by +0.5 in the y-direction
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These rules can in themselves be used to produce a range of fractals. For example:

Apply rule 1 to each original visible triangle.
Apply rule 2 to each original visible triangle.
Apply rule 3 to each original visible triangle.

A0 TP

Combine the resultant triangles into one composite mapping, replacing the
original triangles.

e. Return to a. on all of the new triangles.
or

Start with a shading colour for each new triangle

a.  Apply rule 1 to each original visible triangle.
b.  Apply rule 2 to the triangle just produced.
c.  Apply rule 3 to the triangle just produced.
d. Change shading colour.

e. Return to a. for the last triangle.

or

Start with a shading colour for each new triangle

Apply rule 1 to each original visible triangle.
Apply rule 2 to the triangle just produced.
Apply rule 1 to the triangle just produced.
Apply rule 2 to each original visible triangle.
Apply rule 3 to the triangle just produced.
Change shading colour.

Return to a. for the last triangle.

R ™m0 a0 TP

etc

4.1.4 Ford Fractal Froth

Choose two integers, a and b. Draw a circle with radius 1/2b? and centred on the
point (a/b, 1/2b?). Do this for as many combinations of a and b that you like.

The circles never overlap (only touch) and are all tangential to the x-axis. If you do
enough circles the result is fractal.

4.1.5 The Carotid-Kundalini function

Plot the curves

y = cos(n.x.acos(x))

where (-1<x<0,n=1,2,3,4...)

Observe the fractal structure with gaps repeated at different size scales and with ever
increasing spacing as x reduces in size.
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4.2 Computer Programs

Its a long time since we used Basic so apologies to those of you regular programmers
who look with horror at the coding. Originally the programs were written to
demonstrate fractals to schoolchildren, not to publish.

Sierpinski’s Triangle

SCREEN 2

CLS

PRINT “Here is the basic triangle for the game.”

PRINT “When you want to play the game press any key”
LINE (300, 10)-(10, 180)

LINE (10, 180)-(600, 180)

LINE (600, 180)-(300, 10)

PRINT

INPUT “Press enter to continue”; v§

PRINT “Where do you want to start ?”

INPUT “Input the x coordinate”; x

INPUT “Input the y coordinate”; y

a: INPUT “How many points do you want plotted this time”; plots
IF plots < 1 THEN GOTO b

CLS
FOR i = 1TO plots
r = RND()

IF 3 *r < 1 THEN

X = (x + 300) / 2

y=@+10)/2

ELSE

y = (y+180) / 2

IF 3 *r < 2THEN

x=(x+10)/2

ELSE x = (x + 600) / 2

END IF

END IF

PSET (x, y)

NEXT i

GOTO a

REM you can end the program here if you wish
b: PRINT “We are now going to look at a small part of the triangle”
PRINT “The part inside the circle”

CIRCLE (230, 160), 85, 6

INPUT “Press enter to continue”; x$

CLS
FRACTALS ~ A Discussion of the role of Actuaries in the developing world of complexity .



PRINT “First we enlarge the circle”
PRINT “You will need more plots this time”
CIRCLE (300, 100), 230

INPUT “Press enter to continue”; x$

c: INPUT “How many points do you want plotted this time”; plots
IF plots < 1 THEN END

CLS
FOR i = 1TO plots
r = RND(i)

IF 3 *r < 1 THEN

x = (x +300) / 2

y=(y+10)/2

ELSE

y=(y+180) /2

IF 3 *r < 2THEN

x=(x+10)/2

ELSE x = (x + 600) / 2

END IF

END IF

IF (x - 230) *2 + (y - 160) * 2 < 85 * 85 THEN
PSET ((x - 230) * 230 / 85 + 300, (y - 160) * 230 / 85 + 100)
END IF

NEXT i

GOTO ¢

END

Koch Snowflake

REM Koch snowflake
DECLARE SUB a ()
DECLARE SUB b ()
DIM SHARED turns(800) AS STRING, oldturns(800) AS STRING
SCREEN 11, 1

col = 4

scale = 4

pi = 3.1415926
numturns = 3

s = 324 ‘4%3%3%3%3
direction = 4 * pi / 3
uinit = 240

vinit = 400
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CLS

PRINT “This program draws a snowflake”

PRINT : PRINT : PRINT “Press any key to move onto the next level of detail”
INPUT “”; x$

FOR i = 1 TO numturns STEP 1
turns(i) = “R”

NEXT i

CLS

CALL a
INPUT x$

FOR stage = 1 TO scale STEP 1
FOR i = 1 TO numturns STEP 1
oldturns(i) = turns(i)
NEXT i

CALLb

numturns = numturns * 4

s=s/3

CLS

CALL a
INPUT x$§
NEXT stage

SUB a
SHARED s, direction, pi, uinit, vinit, numturns, col
uold = uinit
vold = vinit
FOR i = 1 TO numturns STEP 1
u = uold + s * COS(direction)
v = vold + s * SIN(direction)
LINE (uold, vold)-(u, v), col
uold = u
vold = v
IF turns(i) = “I” THEN
direction = direction - pi / 3
ELSE
direction = direction + 2 * pi / 3
END IF
NEXT i
END SUB

SUB b
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SHARED numturns

ji=1

FOR i = 1 TO numturns STEP 1
turns(j) = “I”
j=i+
turns(j) = “R”
=i+
turns(j) = “L”
=i+t
turns(j) = oldturns(i)
j=j+1

NEXT i

END SUB

Henon Attractor

CLS
SCREEN 2
sl =225
f1=14
s2 =225
f2=.35

x = .4
y=.1

FOR i = 1TO 2000

x1=y+1-14*x*x

y=.3%x

IF s1 * (x1 + f1) < 640 AND x1 + f1 > OTHEN
[Fs2 *(y + f2) <350 AND y + 2 > OTHEN
PSET (sl * (x1 + f1),s2 * (y + {2))

END IF

END IF

x = x1

NEXT i
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4.3 Glossary

Actuary
ARCH process

AR(1) Model

Brownian Motion

Black Scholes Option Pricing

Capital Asset Pricing Model

Chaos Theory

CHAID

Cluster Analysis

Extreme Value Theory

Fourier Transform

Fractal

Fractal Dimension
Fractal Process
Fractilious
Fractophilic
Fractuary

A smooth operator

Autoregressive conditional heteroskedasticity, a
nonlinear stochastic process, where the variance
is time varying and conditional upon the past
variance. see Peters p 306

A stochastic process where the next observation
is more likely to move towards the mean see
Peters p 75

see 3.2.7., which follows Hastings and Sugihara.
Wilkie (JIA 114(1987) p 60) describes this
process as a Weiner Process pointing out that the
original description of Brownian Motion was in 3
dimensional space.

A solution to the problem of pricing options
under particular assumptions see Kemp 1997,
Appendix A.

An equilibrium- based asset-pricing model.....
The simplest version states that assets are priced
according to their relationship to the market
portfolio of all risky assets, as determined by the
securities’” beta. (Peters p 307)

The study of nonlinear dynamic systems,

see 2.3.1.

A method of analysing data by ranking a large
input set by the cross correlations with the
output set.

A method of dividing a data set into relatively
homogeneous groups, by looking at the distance
each data point is from the origin, each point
with n attributes positioned in n-space.

The study of the extreme values (the maximum
or minimum) of samples of independent random
variables, see Longin (1993)

The Fourier transform of spatial data describes
spatial periodicity.... The Fourier transform of a
function f describes f as a sum of multiples of
simple periodic functions, sines and cosines, at a
fundamental frequency and its harmonics.
(Hastings and Sugihara pp62-3)

see 3.2.2

see 3.2.5.

see 3.2.7.

A delicious fractal

Obsessed by fractals

Akin to an alchemist to chemists, someone who
studies discontinuities in mortality rates.
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Gaussian

GLIM
Hurst exponent
IES

Linear

Monte Carlo simulations

Natural fractal
Neural Networks

Power Laws

Random fractal

Self Similarity
Seriously tricky maths

Stable Levy Distribution

Stable Paretian Distribution

Stochastic Process

Strange Attractor

Surreal Numbers

A system or process where the error
term follows the gaussian distribution.
In other circumstances this-distribution
would be called the Normal
Distribution. We avoided this because
one point we wanted to avoid in this
paper was the suggestion that this
distribution was superior to any other
Stable Paretian Distribution

A software package used to fit
Generalised Linear Models

A measure of the bias in fractional
brownian motion.

Iterative Function System see 3.2.4
example 2

A system using curves which would pass
as graduated or smoothed by actuaries;
generally continuous and differentiable
A series of trials based on a stochastic
model

A random fractal observed in nature

A model loosely based on the brain, Has
the ability to learn and can be said to
retain memory.

see 3.2.9.

see 3.2.3.

see 3.2.3.

Techniques studied post “O” level
(GCSE) mathematics

see 3.2.10.

see Stable Levy Distribution

A collection of random variables ordered
in time. For a single outcome of the
process we have only one observation on
each random variable and these values
evolve in time according to probabilistic
laws. ‘(Chatfield p33)

Objects of attraction in the phase state of
nonlinear dynamic systems that are
difficult to define in Euclidean terms.
Mandelbrot says that these are all
fractals.

see 2.3,
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Topological dimension Traditional concept of dimension viz:
area grows by length squared and
volume by length cubed, as objects are
rescaled.

Wilkie Model An investment model proposed by AD
Wilkie, see BA] Vol 1 p777.
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