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ABSTRACT

The paper describes a mathematical model for investigating the behaviour of defined benefit

pension schemes in the presence of stochastic investment returns.

Interest is particularly focused on the efficacy of the various control variables at the disposal

of the actuary, including the choice of amortization period, the delay in fixing contributions,

the frequency of valuation and the choice of funding method. The paper closes with

suggestions for topics for further investigation.

This research work was performed under EC Contract SPES-CT91-0063
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1. INTRODUCTION

Defined benefit pension schemes, which are common in a number of countries including the

UK, USA, Canada and the Netherlands, are arrangements for a group of members where the

benefits promised in the event of various contingencies are defined by a formula while the

contributions (to be paid by the employer and possibly the member) are to be determined by

the actuary as part of the regular valuation process.

The fund associated with such a scheme can be regarded as a reservoir into which income

from contributions and investment earnings (including the proceeds of sales and maturities

and unrealised capital growth) flow and out of which benefit payments on the contingencies

of age retirement, disability, death and withdrawal and so on would be made.

The most financially significant benefit is age retirement. For this contingency, the benefit

would be in the form of a pension, payable while the member is alive. There may also be

a lump sum benefit payable at retirement and an entitlement to a reversionary pension payable

to a surviving spouse. The defined benefit formula for the basic annual pension to be

member would be normally of the form:

Annual Pension = K x (number of years of membership) x (earnings averaged

over the h years before retirement)

where K (the accrual rate) and h are specified in the scheme rules. In contrast, the annual

contribution formula would be of the form

Annual Contribution = c x (current pensionable earnings)

where c is not specified in the scheme rules but is determined by the "funding method" used

- 3 -



by the actuary at each valuation. The valuations take place at regular intervals and the

actuary values the prospective liabilities (i.e. benefit promises) allowing for the value of the

future contributions which are expected to be paid at the assumed rate c, and compares this

result with the value of the assets currently held in the fund. These calculations (and more

detailed analyses) are used to determine c, which is held fixed for the period up to the next

valuation.

This financing arrangement depends critically on the presence of regular valuations at which

assets, prospective liabilities and future contributions are compared. At each valuation, the

actuary is required to make detailed assumptions about the demographic and economic future

of the pension scheme. These assumptions may constitute "best estimates" of the various

parameters but are not long term predictions as the actuary will have the opportunity to

revise these estimates at the next valuation (say in one year's time) and at subsequent

valuations.

The methods and assumptions available to the actuary in these routine valuations are not

prescribed in UK, US or Canadian practice. In the event of a surplus or a deficiency being

revealed at the next valuation, the contribution rate would be adjusted for the future. The

financial status of the scheme would then be reviewed at the next valuation. In the UK, it

is common for these valuations to be annual, although legislation requires a valuation to be

performed at least every 3 1/2 years.

In recent experience, one of the principal sources of surplus or deficiency has been the rate

of investment return on pension scheme assets. In this paper, we focus on the effect of
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variability in the rate of investment return on the financing of pensions and review the work

that has been completed in recent years on the modelling of pension funds to represent the

effects of stochastic investment returns.

A mathematical model is used to represent the financial structure of a defined benefit pension

scheme, in particular the relationship between the contribution rate in year t, C(t) and the

fund level at time t, F(t). The model can be regarded as an extension to that originally

proposed by Trowbridge (1952). We focus on the effect of varying investment returns,

through the use of different stochastic representations, and consider the behaviour of the

moments EF(t), EC(t), Var F(t) and Var C(t) as t varies, and in particular as t tends to

infinity. We are also interested in the effect of various control variables at the disposal of

the actuary e.g. amortization period (for dealing with valuation surpluses and deficiencies),

delay in fixing contributions, frequency of valuation and the choice of funding method.

2. TYPES OF FUNDING METHOD

In common practice, there are a number of different types of pension funding methods used.

These can be categorised in a number of ways. Thus, in the UK, the split between accrued

benefit methods and projected benefit methods is widely recognised. We shall use a different

categorisation based on the mathematical structure of the fundamental equations. Therefore,

we shall consider individual and aggregate funding methods.

In pension funding, the normal cost is used to describe the (stable) level of contribution

which would apply if all the valuation assumptions made were to be borne out in actual
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experience. The actuarial liability is used to describe the mathematical reserve held (in a life

insurance sense): for some pension funding methods it can be thought of as the difference

between the present value of benefit promises expected to be paid out of the pension scheme

and the present value of normal contributions expected to be paid to the pension scheme.

With individual funding methods (e.g. Projected Unit Credit and Entry Age Normal), the

normal cost (NC) and the actuarial liability (AL) are calculated separately for each member

and then summed to give the totals for the population under consideration. With aggregate

funding methods (e.g. Aggregate and Attained Age Normal), there may not be explicit

determination of a normal cost or actuarial liability; instead the group of members is

considered as an entity, ab initio.

Let C(t) and F(t) be the overall contribution and fund level at time t. We consider the case

where F(t) is measured in terms of the market value of the underlying assets.

For an individual funding method,

(1)

where the summation is taken over all members and where NC(x,t) is the normal cost for a

member aged x at time t, NC(t) is the total normal cost at time t and ADJ(t) is an adjustment

to the contribution rate at time t represented by the liquidation of the unfunded liability at

time t, UL(t). UL(t) is defined by
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where the summation is taken over all members and where AL(x,t) is the actuarial liability

for a member aged x at time t and AL(t) is the total actuarial liability, in respect of all

members, at time t.

For an aggregate method, the overall contribution is directly related to the difference between

the present value of future benefits and the fund. Specifically,

(2)

where S(t) is the total salaries of active members at time t, PVB(t) is the present value of

future benefits (of all members including pensioners) at time t and PVS(t) is the present value

of future salaries (of active members) at time t. Here, the difference, PVB(t) - F(t), is spread

over the remaining period of membership of current members, effectively by an annuity

PVS(t)which allows for expected earnings progression and with expected present value PVS(t)/S(t)
S(t)

This paper considers the behaviour of C(t) and F(t) in the presence of stochastic investment

returns of a particular form, to be described below.

3. THE MATHEMATICAL MODEL

At any discrete time t (for integer values t=0, 1, 2 ...) a valuation is carried out to estimate

C(t) and F(t), based only on the scheme membership at time t. However, as t changes, we

do allow for new entrants to the membership so that the population remains stationary - see

assumptions below.
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In the mathematical discussion, we make the following assumptions.

1. All actuarial assumptions are consistently borne out by experience, except for

investment returns.

2. The population is stationary from the start. (We could alternatively assume that the

population is growing at a fixed, deterministic rate i.e. that the population is stable

in the sense of Keyfitz (1985)).

3. There is no inflation on salaries, and no promotional salary scale. (It would be

possible to incorporate a fixed promotional salary scale simply through a change of

notation). Inflation on salaries at a deterministic rate is incorporated by considering

interest rates that are "real" relative to salaries. In parallel we assume that benefits

in payment increase at the same rate as salaries. We therefore consider variables to

be in real terms. For simplicity, each active member's annual salary is set at 1 unit

at entry.

4. The interest rate assumption for valuation purposes is fixed, iv.

5. The "real" interest rate earned on the fund during the period, ( t , t+l) is i ( t+l) . The

corresponding "real" force of interest is assumed here to be constant over the interval

(t , t+l) and is written as 5(t+l). Thus, l+ i ( t+ l ) = exp (5(t+l)). i(t) is defined in

a manner consistent with the definition of F(t).

6. We define We assume that i=iv where iv is the

valuation rate of interest. This means that the valuation rate is correct "on average ".

This assumption is not essential mathematically but it is in agreement with classical

ideas on pension fund valuation.

7. It is assumed that the contribution income and benefit outgo occur at the start of each

period (or scheme year).
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8. The initial value of the fund (at time zero) is known, i.e. Prob [F(0) =F0] = 1 for some

Fo.

9. Valuations are carried out at annual intervals (this is relaxed in section 6).

Assumptions 1, 2, 3 and 4, imply that the following parameters are constant with respect to

time, t (after rescaling to allow for growth in line with salary inflation):

NC the total normal contribution

AL the total actuarial liability

B the overall benefit outgo (per unit of time)

S the total pensionable payroll

PVB the present value of future benefits (for active members and pensioners)

PVS the present value of future pensionable earnings.

Further, assumptions 1, 2, 4, 7 and 9 imply that the following equation of equilibrium holds:

(3)AL = (1+i) (AL + NC - B) or equivalently B = d.AL+NC

where the compound interest discount rate.

This equation of equilibrium can also be found in the earlier papers of Trowbridge (1952)

and Bowers et al (1976).

The paper adopts a discrete time approach. It is possible to use a continuous time

formulation, in which case, the mathematical approach is based on stochastic differential

equations.
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For individual funding methods, there are a number of choices for the ADJ(t) term. The

most commonly used are the spread method (UK) and the amortization of losses method

(Canada and USA).

Under the spread method, ADJ(t)=k. UL(t) (4)

where calculated at the valuation rate of interest. So the unfunded liability is

spread over M years, where M would be chosen by the actuary. It should be noted that this

definition of ADJ(t) uses the same fraction of the unfunded liability regardless of the sign of

the latter. So, surpluses and deficiencies would be treated in a comparable manner - this

would not always be the case in practice. Typical values of M would be 20-25 years,

corresponding approximately to the average remaining period of membership of current

members, k is the fraction of UL(t) that makes up ADJ(t) and can be thought of as a penalty

rate of interest that is being charged on the unfunded liability, UL(t).

For the amortization of losses method, we introduce the actuarial loss experienced during the

intervaluation period (t-1, t), l(t), which is defined as the difference between UL(t) and the

value of the unfunded liability if all the actuarial assumptions had been realized during the

year (t-l,t). Then ADJ(t) is defined as the total of the intervaluation losses arising during

the last m years (i.e. between t-m and t) divided by the expected present value of an annuity

for a term of m years calculated at the valuation rate of interest (i.e. spread over an m year

period). Thus,
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(5)

As Dufresne (1989) has shown, under these conditions, UL(t) satisfies a recurrence relation

UL(t) = (1+i) (UL(t+l) - ADJ(t-l)) + l(t)

which can be solved to give

(6)where

Then ] and

Here, m would be chosen by the actuary and would typically lie in the range 5-15 years.

4. STOCHASTIC INVESTMENT RETURNS

4.1 Independent and Identically Distributed i(t)

As a first model, we assume that the earned real rates of investment return, i(t) for t > 1, are

independent and identically distributed random variables, with i(t) > -1 with probability 1, and

with Ei(t)=i=iv and

Dufresne (1988, 1989) has described in detail the properties of

• individual funding methods: spread method for ADJ(t)

• aggregate funding methods
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• individual funding methods: amortization of losses method for ADJ(t).

For the spread method,

(7)

(8)and

C(t) = NC + k (AL- F(t))

F(t+1) = (l+i(t+l))(F(t) + C(r)-B)

Equation (7) includes a negative feedback component, whereby the current status, F(t), is

compared with a target (AL) and corrective action is taken to deal with any discrepancy.

Then, Dufresne (1988) shows that

(9)

where q = (l+i)(l-k) and r = (l+i)(NC+k.AL-B),

and (10)

where and I

Then, so if M > l , 0 < q < l and the following limits exist

and
using (3)

using (7)
(11)

If a < 1, then Dufresne (1988) shows that

and (12)

If a > 1, then both of these limiting variances would be infinite. The restriction that a < 1

implicitly places a restriction on the choice of M viz
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a < 1 is equivalent to where

This is equivalent to and provides a restriction on the

feasible values of M for convergence. Table 1 provides illustrative values of Mo for

different combinations of i and a. We note the extent to which M0 decreases as i and a each

increase.

Dufresne (1988) also considers expressions for the covariances of F and C in the limit and

deals separately with the special case M = l .

For the aggregate funding methods, equation (8) holds with

(7a)

(13)so that

where

Then 0<q'<l and we note the similarity between equations (9) and (13) and the definitions

of q and q'. Indeed, by defining N such that we can regard q and q' as
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being of the same form. Hence similar results to (11) and (12) apply in this case.

For the amortization of losses method, Dufresne (1989) shows that

and, using (5) and (6), we obtain a difference equation for l(t) viz

(14)

where the coefficients ß are defined by

(15)Then
and

for all

so that the C(t) form an uncorrelated sequence.

If then Dufresne (1989) shows that

say

(16)
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4.2 Autoregressive Rates of Return

In order to investigate the effects of autoregressive models for the earned real rate of return,

we follow the suggestion of Panjer and Bellhouse (1980) and consider the corresponding force

of interest and assume that it is constant over the interval of time (t , t+l) .

4.2.1 First Order Autoregressive Models

Now it is assumed that the (earned real) force of interest is given by the following stationary

(unconditional) autoregressive process in discrete time of order 1 (AR(1)):

(17)

where e(t) for t = 1 , 2, ... are independent and identically distributed normal random variables

each with mean 0 and variance y2.

This model suggests that interest rates earned in any year depend upon interest rates earned

in the previous year and some constant level. Box and Jenkins (1976) have shown that,

under the model represented by equation (17),
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The condition for this process to be stationary is that

It then follows that and

We first consider individual funding methods and the spread method for choosing ADJ(t).

It is convenient to re-parametrise equation (8) as

F(t+1) = (l+i(t+l)) (QF(t)+R)

where Q = l-k and R=NC-B+k.AL=AL(k-d).

Haberman (1992a) then shows that

(18)

where and

If then exists and the following approximation to the limit is derived

by Haberman (1992a):

For convergence, we require that Qc < 1. This is equivalent to requiring that
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For given , v and i, there is thus a maximum value of M for which convergence holds.

This provides an important restriction on the feasible values of the spread period, M. Table

2 presents values of this maximum feasible M i.e. (M1) for different combinations of i, p and

v. Negative values of <p do not lead to any infringement of Qc < 1 so values have been

tabulated only for φ0. We note that the extent to which M, decreases with increasing i,

and v.

Similarly, we can obtain expressions for EC(t) for finite t and in the limit as t-*oo.

It is possible also to consider second moments. Thus, Haberman (1922a) shows that

(20)

(21)where
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Then, exists if and and Haberman (1922a) obtains the

approximate result:

(22)

where

As noted above, for convergence, as t->oo, we require Q c < l and Q 2 cw<l . The

requirement that Q 2 cw<l is more stringent than Q c < l since w > c . This requirement is

equivalent to

Table 3 presents values of this maximum feasible spread period, M 2 < M 1 , for different

combinations of i, φ and v. Values of φ < -0.3 do not lead to any infringement of Q2cw < 1.

We note the extent to which M2 decreases with increasing i, <φ and v. Since the independent

and identically distributed model for. investment returns, used in section 4.1, corresponds to

φ=0, we would expect that the maximum feasible values for the spread period for

convergence of Var F(t) as t-*oo to correspond in Tables 1 and 3. Comparison indicates that

the values in Table 1 lie approximately midway between the values in Table 3 for <φ= ± 0 . 1 .
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For aggregate funding methods similar results can be obtained.

For individual funding methods with the amortization of losses method for choosing ADJ(t),

the discussion is complicated because of the presence of non-linear effects in the resulting

equations. It is convenient here to model i(t), rather than 5(t), as a stationary AR(1) process:

(23)

where we repeat that E(i(t)) = i, | φ \ < 1 and {e(t)} is a sequence of independent and

identically distributed normal random variables with mean 0 and variance a2.

Gerrard and Haberman (1992) demonstrate how equations (14) and (23) can be combined

through the use of generating functions to discuss the behaviour of E(l(t)) for finite t and, in

the limit, as t-»oo. Some progress is also made with E(l(t)2), and hence with Var (l(t)).

4.2.2 Second Order Autoregressive Models

Haberman (1992a) discusses briefly the more complicated case of stationary second order

autoregressive models for individual funding methods with the spread method. In this case,

equation (17) is replaced by

(24)

where e(t) for t = l , 2 , ... are independent, identically distributed normal random variables,

each with mean 0 and y2. In parallel to the results of section 4.2.1, we quote Box and

Jenkins (1976) who have shown that, for the above model,
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say

where and

and are the solutions of the characteristic equation:and

these results reduce to the earlier ones for the AR(1) model).

For stationarity, we now require

It is then possible to construct equations for the moments of F(t) and C(t) in finite time and

in the limit, as t-»«>, which correspond in format to those for the AR(1) case. The full

details are not pursued here.
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4.2.3 Conditional Antoregressive Models

A disadvantage of the models used in sections 4.2.1 and 4.2.2 is that the uncertainty about

5(t) is independent of t i.e. Var[5(t)] = u2, a constant. In reality, we would expect this level

of uncertainty to depend on t. A model which allows for this feature would be the

conditional AR(1) or AR(2) model considered by Bellhouse and Panjer (1981). In this case,

it is assumed that the returns of the past years (and the corresponding forces of interest) are

known, as initial conditions. We then believe that the asymptotic results derived in sections

4.2.1 and 4.2.2 would hold also for the conditional processes since, as t-*oo, the initial

values 50
 a nd 5.i would become increasingly insignificant.

5. OPTIMAL SPREAD PERIOD

In this section we focus on individual funding methods with the spread method, and we shall

consider the existence of an "optimal" spread period, M. (For the amortization of losses

method no such optimal choice of m exists).

In this section, we shall consider the relationship between Var F(t) and Var C(t) as M (or k)

varies, with t fixed. Rather than take a particular finite t, we shall consider the limiting

variances at t-*<» and indeed we shall consider these variances relative to the corresponding

expectations (i.e. the coefficient of variation). Our consideration of the case where t-*oo is

justified on the grounds that the results are mathematically tractable. We shall now introduce

some new notation.
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With a < l and 2 < M < oo (so d < k < 1), we define

and (25)

and we regard a and /3 as functions of k. We could equivalently regard them as functions

of M, given the 1-1 correspondence between k and M. However, it is more convenient to

consider a(k) and /3(k).

5.1 Independent and Identically Distributed i(t)

For the case of IID i(t), Dufresne (1988) has considered in detail the trade off between Var

F(t) and Var C(t) in the limit as t-*oo, as represented by a(k) and /?(k), and for finite t under

certain conditions. Thus, from (11) and (12), we have that

and

where Assuming that y > 1, Dufresne shows that
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and where

At k=k*, j8(k) takes a minimum value. The value of the spread period corresponding to k

will be denoted by M*.

Formally, if y > 1, then both Var F(oo) and Var C(oo) become infinite for some finite M=Mo

(when a becomes equal to 1) and there exists a value M* such that

• for M<M*, Var F(oo) increases and Var C(oo) decreases with M increasing

• for M>M* both Var F(oo) and Var C(oo) increase with M increasing.

If y = l, Var C(oo)-K) and Var F(oo)-»oo as M-*oo, although Var F(oo) does stay finite for

allM.

If y < 1, Var C(oo)-*0 as M-»oo and Var F(oo) has a finite limit as M-»oo.

The particular value of M* is determined by

(26)
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and

There is thus a trade off between variability in the fund, represented by a, and variability in

the contribution rate, represented by /3. This trade-off takes place but only up to M=M*.

Beyond this point, augmenting M causes both Var F and Var C to increase, With the

objective of minimizing variances, any choice of M > M* should be rejected, for clearly some

M<M* would reduce both Var F and Var C. If we regard M as being a parameter open to

the choice of the actuary, then the optimal choices for M would lie in the region 1 <M<M*.

Thus, we can describe this region as an "optimal" region.

Table 4 provides values of M as a function of i and a (to the nearest integer). In the UK,

it is common to choose M to correspond to the average remaining working lifetime of the

current membership - with an average age of membership of 40-45 and a normal retirement

age of 65 this would correspond to a choice of M in the range 20-25. We see from Table

3, that under particular combinations of i and a our model indicates that this choice is not

optimal. If i = .03 and <r=.20 then, for example, smaller values, namely those in the region

1 < M < 13, would be more satisfactory.

5.2 Autoregressive Rates of Return

We shall consider here only the case of stationary AR(1) processes as a description for 5(t).

Haberman (1992b) has explored the behaviour of the relative limiting values (as t-*oo) of Var
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F(t) and Var C(t) as functions of M (or equivalently as functions of k), by analysing the

properties of the approximate results represented by equations (19) and (22) and the

corresponding results for C(t). This mathematical discussion has been supported by

numerical investigations.

Haberman (1992a) has based the exploration on the exact equations (18) and (20) and the

results are reported here, subject to the constraints that Qc < 1 and Q*cw < 1 for convergence,

and with F0=0.

The numerical investigation uses the following assumptions:

Population: English Life Table No. 13 (Males) - Stationary

Entry Age: 30 (only)

Retirement Age: 65

Salary Scale: Constant

Retirement Benefits: Level life annuity of 2/3 of salary.

The parameter values used in the calculations are:

M integer values between 1 and 500 (in steps of 1 up to 10, then in steps of 5 up

to 100, then in steps of 10 up to 200, then in steps of 50), subject to Qc< 1

and Q2cw < 1 for convergence.
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Tables 5 and 6 show values of alh and $%, viewed as functions of M, for a range of values

of M and v with i = .01 and u=.O5 held fixed. Values for v?=0.9 are not given because of

the failure of the series to converge.

The tables indicate the following general features viz

(i) a(<p,M) increases with M (for fixed <p) and with <p (for fixed M)

(ii) 0(<p,M) increases with <p (for fixed M) and decreases with increasing M (for fixed <p)

except that for some values of <p (e.g. <p=QA) there is a minimum at some M*.

The corresponding values of a and /3 for different i and v yield the same general features

(details not shown). However, there are some exceptions which we discuss further in the

paragraphs below - the exceptions refer to the turning points of 0(<p,M) for fixed <p.

Haberman (1992a) has also investigated numerically the trade-off between Var F(t) and Var

C(t) as represented by their limiting values as t-»oo, i.e. as represented by a and &. When

values of a and (3 are plotted for combinations of i, v and <p, we find that three distinct

patterns emerge, unlike the situation when rates of return are independent, identically

distributed random variables (as in section 5.1 and Dufresne (1988) which corresponds

approximately to the case <p=0).

The three patterns in terms of profiles of j3(M) v a(M) are:
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particular attitude to the trade-off between variability in F and in C.

the profile is monotonically increasing so M = l is "optimal".TYPE C:

When <p takes values -0.9, -0.7, and -0.5, the patterns are of Type B and there is no optimal

region.

Table 7 corresponds to y?=-0.3, and shows the classification of a-/3 profiles and, where

appropriate, the optimal regions for M. Tables 8-11 similarly refer to <p=-0.1, 0.1, 0.3 and

0.5. (Tables for <p=0J and 0.9 are not reproduced here). Given the set of values of M for

which calculations have been performed, the optimal regions for M reported in Tables 7-11

are only approximations. Because we are interested only in general features, no attempts

have been made at this stage to estimate more precisely the turning points in the a-/8 graphs

(using, for example, numerical interpolation methods).

From Tables 8 and 9, corresponding to <p = ±0 .1 , we note that the implied optimal values of

M are consistent with those shown in Table 4 (from Dufresne (1988)) which would

correspond approximately to the case <p=0.

The pattern of optimal M values across Tables 7-11 mirrors that for the IID case. In general,

the optimal region decreases as i increases (for fixed v and <p) and as v increases (for fixed
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i and <p). Also, the optimal region decreases as <p increases from -1 to +1 (for fixed i and

<p); thus, an increase in the autoregressive parameter <p appears to have a similar effect on

the optimal region as an increase in the variance parameter v.

6. FREQUENCY OF VALUATIONS

A second control variable available to the actuary is the frequency with which valuations are

performed. In earlier sections, we have assumed that valuations are annual. Here, we shall

consider the case of valuations every 3 years (and then more generally every n years where

n is an integer). As noted in section 1, triennial valuations are common in the UK because

of legislative and cost considerations. We shall consider only the case of individual funding

methods with the spread choice for ADJ(t) and independent, identically distributed i(t). We

here introduce j(t) to be the real rate of investment return earned during the t'th (three year)

period.

In the triennial case, the equation of equilibrium (3) would become

AL = (l+j)(AL+NC'-B') (27)

where N C and B' now refer to 3 year rather than 1 year time periods and (1+j) = (1+i)3.

The link between the pairs NC and N C , B and B' comes from the following straightforward

compound interest relationships:

NC'=NC fl3i and B'=B a3l . (28)

Now equation (7) would become
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C(t) = NC'+k, (AL-F(t)), for t=0,l,2, ... (29)

where calculated at the real rate of interest j effective over a triennium and

corresponding to i effective per year. We note that in equation (29), t is measured in 3 year

time units (rather than annual units as in equation (7)).

As noted earlier, 1 +j =(1 +i)3

and so where

We assume here that the contributions are paid at the start of each triennium. In reality, they

would be paid annually; however, this feature introduces complexity into the mathematical

formulation. By effectively working in 3 year time units, we avoid such complications.

Haberman (1993a) derives equations that correspond directly with (11) and (12). Thus, if

M > 3 ,

(30)

And, providing that where

- 2 9 -
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(3D

We now extend the definitions of a and 0 in equations (25) so that ao(k) and /30(k) refer to

the annual case and a^k,) and ^(k,) refer to the triennial case. Then, Haberman (1993a)

demonstrates that an optimal spread period, Mj \ exists for the triennial case providing that

yi > 1. The corresponding value of kj is

Comparison of the resulting values of M* (annual case) and M," (triennial case) indicates that

M,* = M*+l.

Haberman (1993a) also compares the limiting variances in the annual and triennial cases

(equations (12) and (31)) and obtains ranges for the spread period for which the variances are

increased in the triennial case relative to the annual case. The existence of a spread period

M3 is demonstrated for which, in the triennial case, the relative limiting variances of both

F(t) and C(t) are increased for values of M in the range (1, M3). M3 and M,* are found to

be approximately equal, i.e. M3 = M,* = M*+1. This leads to the intuitively reasonable result

that, with triennial valuations and a sensible choice of the spread period (i.e. within the
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optimal range), the limiting variances of both F(t) and C(t) are increased relative to the case

where valuations are annual.

Haberman (1993a) also demonstrates how these results may be generalized to apply to

valuations avery n years, where n is an integer. Similar results to (30) and (31) can be

derived, for example, but expressed in terms of say, (l+i)2nand y". Again,

the existence of a range of spread periods is described for which, relative to the annual case,

the relative limiting variances of both F(t) and C(t) are increased.

7. DELAY IN FIXING CONTRIBUTIONS

We now introduce a new parameter into the formula for fixing the contribution rate, C(t).

We consider only individual funding methods, with the spread method choice for ADJ(t), and

aggregate funding methods. We allow for a time delay in the pension scheme's funding

process and use the fund level at time t-p in order to calculate C(t). So we would use

(32)

(33)

which replace equations (7) and (7a) respectively where p is a non negative integer. The

delay p may arise because of the time taken to prepare the financial accounts or to assemble

the valuation data and to complete the actuarial valuation exercise. Alternatively, we can

think of the parameter p (like the spread period M) as being a control variable at the disposal

of the actuary and which can be used to control the behaviour over time of C(t) or F(t).

-31 -

C(t) = NC + k(AL - F(t-p))

C(t) = (PVB - F(r-p)).S/PVS



7.1 Independent and Identically Distributed i(t)

In the case of independent and identically distributed i(t), Haberman (1992c) considers the

case p = 1, and obtains explicit formulae for E F(t) and E C(t) for finite t. In particular it can

be shown that

EF(t+l) = u EF(t) - uk EF(t-l)+r (34)

with The solution is then

E F(t) = a0 + a,x,' + ax,' (35)

where x, and x2 are roots of the polynomial

x2 - ux + uk = 0

and a; are determined by the initial conditions. He demonstrates that, if M ^ 2 and

«m-|>l ,

and

Using the method of generating functions, expressions for E(F(t)2) and E(C(t)2) and for the

covariances are also obtained and the following limiting values are obtained,

and
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providing that, for convergence, u and k satisfy certain complicated conditions (see Haberman

(1992c) for details).

The limiting variance of F(t) can be rewritten as

(37)

where As noted by Haberman (1993b), this means that a

comparison of the limiting variances for the cases p=0 (equation (12)) and p = l (equation

(37)) shows that the presence of a one year delay results in an increase in the limiting

variances of both F(t) and C(t). Haberman (1993b) also demonstrates that an optimal spread

period exists when p = l , providing that <r is not too "large" (i.e. under approximately

300%), and that the optimal spread period M2* is approximately equal to M*, the value when

p=0.

This argument has been successfully extended by Zimbidis and Haberman (1993) who have

considered non-negative values of the delay p in general as well as the specific values

p=2,3 , . . . and so on. They construct a general framework involving sets of generating

functions to obtain explicit formulae for E F(t) and EC(t) with t finite. Thus, it can be shown

that

EF(t+l) = u EF(t) - uk EF(t-p)+r.

Then, the solution is
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As an illustration, Zimbidis and Haberman (1993) show that,

for

- 3 4 -

where x,, x2, ..., xp+1 are the roots of the polynomial equation.

XT'*1 - wf + uk = 0

and the coefficients â  are determined by the initial conditions. Zimbidis and Haberman

(1993) also demonstrate that, under certain conditions,

and

Similarly, they address higher moments and shows for example that, under certain conditions

lim Var F(t) is one of the form of equation (37) with the function g being different for
f-»OO

different values of p. So far we have seen that g takes the following values:

for

(38)

for



and for

It is then possible to demonstrate that, if M > 1, go>g! >g 2 >g 3 so that the limiting variance

of F(t) increases as p increases. These results are intuitively reasonable, given our

understanding of the entropy of systems. When we introduce a time delay, which means that

we have lost (or do not have available) some information for the fund between times t-p and

t, we should expect the variance (or, in other words, the entropy) of the fund level and

contributions to be greater. These results confirm the findings of Balzer and Benjamin (1980)

who report that the longer are the delays in information in a system, the longer are the

resulting oscillations in that system. Zimbidis and Haberman (1993) also report on the

conditions for oscillations to exist in the first two moments of F(t) as C(t) as p varies.

7.2 Autoregressive Rates of Return

Haberman (1993c) has investigated the effect of a one year delay (p=l) in the presence of

a first order autoregressive representation of i(t), as in equation (23) reproduced below

(23)

Haberman (1993c) demonstrates how, through the use of generating functions, equations (23),

(32) and (33) can be combined (for the case p = l ) to consider the behaviour of E F(t) and

E C(t) for finite t and, in the limit as t-*oo, and also the corresponding behaviour of E (F(t)2)

and E(C(t)2), and hence of the variances.

i(t) = i+<p (i(t-l) - i)+e(t)



8. CONTRIBUTION RATE RISK

In this section, we take a different viewpoint and consider the different risks which confront

a defined benefit pension scheme.

Firstly, there is the "contribution rate risk". Here the sponsor of the scheme, the employer,

will be concerned that future investment performance is not such as to expose the pension

fund to the risk of significant, unanticipated rises in contribution rate. Traditionally, this risk

has been controlled by concentrating on real assets (e.g equities, property, indeed linked

bonds). However, the concern remains about the variability of the levels of the contribution

rate. Stability will also be a feature attractive to the finance manager and the shareholders

of the employing/sponsoring company.

Secondly, the trustees, sponsor, members and advising actuary will be concerned that the

pension fund can meet its liabilities. This is the "solvency risk".

Thirdly, the investment manager will be concerned about how his performance is measured

and hence about his own commercial viability.

Here, we consider only the first type of risk: the "contribution rate risk". We hope to

return to the "solvency risk " in later work.

- 3 6 -



With the assistance of the mathematical model described in section 3, we will consider the

methods for controlling the variability in the present value of future contributions. We shall

consider only the case of independent and identically distributed investment returns.

We begin with individual funding methods and the spread method for fixing ADJ(t) and no

delays in the contribution rate fixing process (i.e p=0). Valuations will be taken as annual.

We shall define the present value of future contributions at time 0 to be

(39)

where present values have been taken using the real valuation rate of interest /„, so

v=(l+ij~1. Although investment returns are stochastic, we shall calculate present values in

a deterministic manner which would be the approach in a conventional actuarial valuation.

Note also from assumption 6 (of section 3) that iv=i=Ei(t), so that the real valuation rate of

interest is correct "on average". We shall now assume that i>0 so that v<l (for

convergence).

Clearly we could similarly define G(t) at any t.

To measure the "contribution rate risk", we shall investigate the properties of the first two

moments of G and we shall consider the choice of parameters, in particular k and M, that

would lead to minimum values of risk.

We shall take M>1.
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Then, from equation (7)

from equation (9)

(40)

since and

This result is intuitive: the expected present value of contributions is equal to the present

value of the normal level of contributions plus the difference between Fo and AL=lim F(t).

Indeed, if then

then from equation (3).
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Then, the variance can be written as

since Dufresne (1986) has shown that Cov(C(t+u), C(t)) = qu Var C(t).

As in the previous sections, we shall assume that a<l.

From equations (7) and (10) we have that

(42)
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Haberman (1993d) has explored in detail two special cases for the choice of Fo viz

a) F0=ALand b) F0=0.

When F0=AL, Haberman demonstrates that

(43)

which is an increasing function of q. Thus, we minimise Var G(0) by choosing q=0 i.e.

k = l i.e. M = l . We note that for convergence we require a < 1 or q<(l+b)"1/4 = q,^, say.

Thus, if the initial size of the fund is equal to the stable value of the actuarial liability

(=E F(t)), the optimum choice of M is M = l. i.e. pay off the unfunded liability at each

valuation date without spreading payments into the future. Optimality is here determined by

the criterion: minimise the variance of the present value of future contributions.

When the initial level of the fund is zero, F0=0, Haberman shows that

(44)

If we seek to minimise Var G(0) = 7(q) say then we would be interested in solving 7'(q)=0

which leads to a cubic equation in q (not given here, but discussed in Haberman (1993d)).
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Numerical experiments indicate that there is one real solution, q", to this cubic equation. If

q*<qmax, then Var G(0) is minimised for q=q\ while if q'>qmax, then Var G(0) is minimised

for q=qmaK. Table 12 provides some illustrative numerical results. Here, it should be noted

that i is a real rate of investment return.

These theoretical results indicate that for low values of a, the optimal choice of M (hence q)

is to make M as large as possible. As a increases, the optimal set of values of M becomes

finite and decreases as a increases.

These conclusions differ somewhat from those of Dufresne (1986, 1988) as described in

section 5.1, where we have defined an optimal region for M to be (l.Af) where M* is the

value of M that minimizes

(The corresponding values are shown in Table 4). The two approaches are based on different

criteria viz

i/ minimizing the variance of the present value of future contributions

ii/ minimizing the ultimate (stable) level of the variance of the rate of future

contributions.
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In i/ we consider all future contributions weighted by a discounting factor dependent on the

valuation rate of interest. In ii/ we would consider only the ultimate level of contributions

rather than the intermediate pathway and here the value of Fo is immaterial.

The conflict between the results is illustrated by Tables 4 and 12, and is particularly apparent

at "low" values of σ for which criterion i/ would suggest choosing much higher values of M

than contained in the range (1,M*) advocated by criterion ii/. In practice, however, it is

unlikely that values of M greater than the average remaining membership period would be

used: for a group of male members with normal retirement age of 65 this would correspond

to a maximum practicable value for M of 20-30 for a mature scheme and of 35-40 for a

young scheme. So we should regard the values of M in Table 12 in terms of these practical

upper bounds. Thus, the differences between the two sets of results (theoretically and

practically) may be more apparent than real.

Haberman (1993d) has taken thus further by also considering aggregate funding methods as

well as individual and aggregate funding methods in the presence of a delay (p=O).

10. COMMENTS AND FURTHER DEVELOPMENTS

Varying levels of inflation and fluctuations in investment returns are problems with which the

actuary must contend on an almost daily basis. Unlike mortality and other decrements or

movements, for which deterministic and stochastic models are readily available, the

movements of these economic factors are more difficult to model. Representation by

identically distributed random variables or by simple stationary autoregressive models appear
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to be very appropriate for this purpose. An objective of this paper has been to show that

explicit formulae are available for studying mathematically the variability of contributions and

fund levels for a pension scheme. Practical implications for the choice of funding method

are then considered as a consequence, and the effect of the choice of control parameter

including spread period, valuation frequency and delay in fixing the contribution rate are

discussed.

A number of interesting potentially useful directions for future research that come from the

foregoing review are the following:

• use of moving average processes to represent i(t), the rate of investment return

• consideration of other descriptions for ADJ(t) used in practice

• consideration of the viewpoint of the scheme's sponsoring employer

• analysing further the effect of varying the control variables identified and the

interactions between them

• consideration of the introduction of dynamic (rather than fixed) valuation assumptions:

here it may be necessary to use simulation although control theory may be a

promising line of attack - as advocated by Benjamin (1989).

• continuing the approach of section 9 to recognise explicitly the "contribution rate "

and "solvency" risks. Thus, building on the earlier work of O'Brien (1986, 1987)

and Vanderbroek (1990), Haberman and Sung (1994) introduce an objective function

that allows simultaneous minimization of these two risks and leads to an optimal

funding strategy (and hence choice of the contribution rate) subject to given

constraints.
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TABLE 1
Maximum Length of Spread Period, Mo, for a < 1

i

σ

.05

.10

.15

.20

.25

.30

.01

223

112

66

42

30

22

.03

111

68

46

33

25

19

.05

78

51

37

28

21

17
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TABLE 2
Maximum Length of Spread period, M1, for Qc<l

0.1 0.3 0.5 0.7 0.9

i = l%

v = .O5

.10

.15

.20

.25

.30

.35

362

231

161

118

89

69

55

234

121

71

46

32

23

17

161

69

37

22

15

11

8

100

36

17

10

7

5

3

37

11

5

3

2

1

1

i = 3%

v = .05

.10

.15

.20

.25

.30

.35

158

112

86

69

57

47

39

113

70

47

34

25

19

15

86

47

28

19

13

10

7

61

28

15

9

6

4

3

28

10

5

3

2

1

1

i=5%

v=.05

.10

.15

.20

.25

.30

.35

106

78

62

51

43

36

31

79

52

37

28

21

17

13

62

36

24

16

12

9

7

46

23

13

9

6

4

3

24

9

4

3

2

1

1
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TABLE 3
Maximum Length of Spread period, M2, for (Q2cw < 1

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

i = l%

v = .05

.10

.15

.20

.25

.30

.35

467

331

254

202

165

136

114

262

142

88

58

41

30

23

188

87

48

30

20

14

11

135

55

28

17

11

8

6

96

34

16

10

6

4

3

57

18

8

5

3

2

2

20

5

2

1

1

1

1

i = 3%

v = .05

.10

.15

.20

.25

.30

.35

194

147

120

102

88

76

67

123

79

55

41

31

24

19

97

55

35

24

17

13

10

77

39

23

15

10

7

6

59

26

14

9

6

4

3

40

15

8

5

3

2

2

17

5

2

1

1

1

1

i=5%

v = .05

.10

.15

.20

.25

.30

.35

128

99

83

71

63

56

50

85

57

42

32

25

20

17

68

42

28

20

15

11

9

56

31

20

13

9

7

5

45

22

13

8

6

4

3

32

14

7

4

3

2

2

15

5

2

1

1

1

1
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TABLE 4
M* as a Function of i and σ

i

.05

.10

.15

.20

.25

-.01

-

-

158

41

22

0

401

101

45

26

17

.01

60

42

28

19

14

.03

23

20

16

13

10

.05

14

13

11

10

8

TABLE 5
RELATIVE STANDARD DEVIATIONS OF F(t) and C(t) AS t oo

ASSUMPTIONS AS IN NUMERICAL EXAMPLE OF SECTION 5.2

[i=0.01, v=0.05]

Spread
Period

M = l

5

10

20

30

40

50

60

80

& = -0.9

5.0%

3.3

3.7

4.6

5.4

6.1

6.8

7.5

8.8

(Var F(oo))1

|

-0.7

5.0%

4.4

5.5

7.4

9.1

10.5

11.9

13.3

15.9

EF(oo) |

-0.5

5.0%

5.5

7.2

9.9

12.3

14.4

16.4

18.4

22.2

-0.3

5.0%

6.6

8.9

12.5

15.6

18.4

21.1

23.7

28.9

-0.1

5.0%

7.8

10.7

15.4

19.3

23.0

26.5

30.0

37.2

= -0.9

170%

21.6

12.5

7.9

6.4

5.6

5.1

4.8

4.4

(Var C(oo))
|EC(oo) |

-0.7

170%

29.2

18.7

13.0

10.9

9.8

9.1

8.7

8.1

-0.5

170.%

36.7

24.6

17.6

15.0

13.6

12.8

12.3

11.7

-0.3

170%

44.6

30.7

22.5

19.4

17.8

16.9

16.4

15.9

-0.1

170%

53.4

37.8

28.3

24.7

23.0

22.1

21.7

21.8
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TABLE 6
RELATIVE STANDARD DEVIATIONS OF F(t) and C(t) AS t x

ASSUMPTIONS AS IN NUMERICAL EXAMPLE OF SECTION 5.2

[i=0.01. v=0.05]

Spread
Period

M = l

5

10

20

30

40

50

60

80

(Var F(oo))1/2

|E F(oo)|

&p=+0.1

5.0%

9.1

12.9

18.8

23.9

28.7

33.4

38.3

48.8

+ 0.3

5.0%

10.8

15.7

23.4

30.2

36.7

43.7

51.1

69.2

+ 0.5

5.0%

12.7

19.6

30.3

40.3

50.8

63.1

78.5

100

+ 0.7

5.0%

14.2

25.9

44.3

64.6

94.3

160

*

*

(Var C(oo))1/2

|EC(oo)|

&=+0.1

170%

63.9

46.5

35.7

31.8

30.2

29.6

29.8

31.6

+ 0.3

170%

77.0

58.4

46.5

42.8

42.0

42.8

45.0

53.5

+ 0.5

170. %

93.8

77.0

65.9

64.7

68.3

76.3

90.2

114

+ 0.7

170%

108

114

121

148

213

421

*

*

* not applicable as Q2cw > 1

TABLE 7
CATEGORY OF α-β PROFILE AND WHERE APPROPRIATE OPTIMAL

REGION FOR M, SPREAD PERIOD, &=-0.3

i
V

.05

.10

.15

.20

.25

-.01

B

B

B

B

B

.005

B

A( 1,400)

A(l,250)

A( 1,200)

A(l,150)

.01

B

A(l,250)

A( 1,200)

A(l,140)

A(l,120)

.03

A(l,30)

B

B

B

B

.05

A(l,20)

B

B

B

B
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TABLE 8
CATEGORY OF a-β PROFILE AND WHERE APPROPRIATE OPTIMAL

REGION FOR M, SPREAD PERIOD, &=-0.1

i
V

.05

.10

.15

.20

.25

-.01

B

B

B

A(l,l 10)

A(l,45)

.005

A(l,130)

A(l,90)

A(l,55)

A(l,35)

A(l,25)

.01

A(l,70)

A(l,60)

A(l,40)

A(l,30)

A(l,20)

.03

A(l,25)

A(l,25)

A(l,25)

A(l,20)

A(l,15)

.05

A(l,20)

A(l,20)

A(l,20)

A(l,15)

A(l,15)

TABLE 9
CATEGORY OF α-β PROFILE AND WHERE APPROPRIATE OPTIMAL

REGION FOR M, SPREAD PERIOD, &=0.1

i
V

.05

.10

.15

.20

.25

-.01

B

B

A(l,55)

A(l,20)

A(l,15)

.005

A(l,90)

A(l,40)

A(l,25)

A(l,15)

A(l,9)

.01

A(l,50)

A(l,30)

A(l,20)

A(l,10)

A(l,8)

.03

A(l,20)

A(l,15)

A(l,10)

A(l,8)

A(l,6)

.05

A(l,15)

A(l,10)

A(l,8)

A(l,5)

A(l,3)
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TABLE 10
CATEGORY OF α-β PROFILE AND WHERE APPROPRIATE OPTIMAL

REGION FOR M, SPREAD PERIOD,& =0.3

i
V

.05

.10

.15

.20

.25

-.01

B

A(l,80)

A(l,20)

A(l,7)

C

.005

A(l,60)

A(l,20)

A(l,9)

A(l,4)

C

.01

A(l,40)

A(l,20)

A(l,9)

A(l,3)

C

.03

A(l,15)

A(l,9)

A(l,5)

C

C

.05

A(l,10)

A(l,6)

C

c
c

TABLE 11
CATEGORY OF α-β PROFILE AND WHERE APPROPRIATE OPTIMAL

REGION FOR M, SPREAD PERIOD, &=0.5

i
V

.05

.10

.15

.20

.25

-.01

B

A(l,20)

C

C

C

.005

A(l,40)

A(l,10)

C

C

C

.01

A(l,30)

A(l,9)

C

C

C

.03

A(l,15)

A(l,4)

C

C

c

.05

A(l,8)

C

c
c
c
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TABLE 12:
VALUES OF M FOR WHICH Var G(0) IS A MINIMUM

0

.01

.05

.10

.15

.20

.25

.30

.35

i = l%

535

223

112

66

26*

3*

2*

1*

i=3%

217

110

67

45

32

24

18

10*

i = 5%

142

77

50

35

26

20

16

13

* denotes that q < qmax; otherwise q is chosen to be qmax.
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