The Actuarial Profession making Inancia, sense of the future	
Recent developments in mortality Richard Willets Willets Consulting	
Recent developments in mortality Patterns of aggregate mortality change	
 Underlying causes Heart disease Lung cancer Other cancers 	

Patterns of mortality change

Models fitted to *aggregate* mortality rates for the population of England & Wales show:

- ■The rate of improvement has varied by birth
- ■The rate of improvement *within* birth cohorts has *accelerated* over time

	_
	_
The Actuar ai Profession	

Patterns of mortality change

Throughout this presentation I will be referring to results generated by a model which splits mortality rate improvements into age, period & cohort elements, i.e.

Annual rate of improvement =

age component +

period component +

cohort component

The Actuarial Profession

Mortality change by cause of death

- •Heart disease improvements have become increasingly significant
- ■The relative importance of **lung cancer** improvements has reduced
- •Mortality improvements in **other cancers** are beginning to emerge as a contributory factor

The Actuar ai Profession

Increase in NHS prescriptions for selected treatments NHS prescriptions (millions per annum), England

	1904	1994	2004
Beta-blockers	11.8	14.0	26.4
Anti-hypertensive therapy	4.6	9.7	38.6
Lipid regulating drugs (incl. statins)	0.2	1.7	29.4
All prescriptions for circulatory disease	52.3	81.0	200.6

Source: Department of Health, 2005

The Actuarial Profession halong introducense of the follow

Some recent heart disease developments

- ■Wald & Law, 2003
 - A strategy to reduce cardiovascular mortality by 80%
- ■Health Development Agency (HDA), 2004
- Changes necessary to reduce heart disease mortality by 50%
- National Institute of Health & Clinical Excellence (NICE), 2006
 - Widening of prescription guidelines for statins
- ■The ASTEROID trial, JAMA, 2006
 - Intensive therapy with statins can reverse atherosclerosis
- ■Baigent et al, 2005, Manuel et al, 2006, etc...
 - Increasing debate on best strategy for reducing heart disease

The Actuar al Profession

Lung cancer improvements "...an almost perfect example of a cohort effect..." Health of Adult Britain, 1997 •The age, period, cohort model fitted to lung cancer mortality suggests that the pace of improvement within birth cohorts peaked around 1990-95 Trends in lung cancer mortality are sometimes used as an indirect indicator for decomposing aggregate mortality trends into 'smoking-attributable' and 'non-smokingattributable' elements See, for example, Peto, Lopez et al, 2004 Impact of smoking bans? Cigarette smoking prevalence is lowest at more advanced ages, e.g. only 8% of people in England aged 75+ smoke cigarettes ■Epidemiological studies show the benefit of giving-up cigarette smoking reduces significantly with advancing age e.g. Doll et al, 2004, suggest that a smoker aged 30 would gain approx ten years of life from giving-up smoking, but a smoker aged 60 would gain only three years •The potential impact is far more significant for younger generations Other cancers

Other cancer improvements

- Improvements mainly driven by medical advances
- •In some cases recorded *incidence* rates have increased, whereas *mortality* rates have reduced

The Actuar al Profession

Other cancer improvements

■"Cancer will be as controllable as diabetes by 2050."

Professor Gordon McVie

■"95% of cancers will be controllable by 2054"

Professor Karol Sikora

The Actuarial Profession 198 by The Children of Lee State

Recent developments in mortality

- ■The relative importance of cigarette smoking as a driving force of mortality improvement *has* diminished
- •However, this has *not* led to the [predicted] reduction in the aggregate pace of improvement
- •Medical advances are playing an increasingly important role in driving mortality change

The Actuar all Profession

Personal view

In most instances mortality projections which generate future improvements **far below** long-term average rates (e.g. the 'medium cohort' basis) are not suitable for generating "best-estimate" assumptions for EV or FRS17/IAS19 reporting.

The Actuarial Profession

The Actuarial Profession making francial sense of the future	
Recent developments in mortality	
Richard Willets Willets Consulting	