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THE GEOMETRIC, LOGARITHMIC AND DISCRETE PARETO
FORMS OF SERIES

BY P. G. MOORE, P H . D . , A.I.A.

University College, London

ALTHOUGH the Poisson distribution is by far the best known of the
one-parameter form of discrete distribution and has been widely applied in
practice, there are several other such distributions in existence. In this note
it is proposed to discuss three of these distributions, namely, the geometric,
logarithmic and discrete Pareto forms, and compare their properties. Some
illustrations of the use of the series will be made.

2. The geometric series takes the form

 (1)

where pr is the probability of just r successes or events. Thus each prob-
ability is a fixed multiple of the previous probability, and since ρ must be less
than unity for the sum of the pr's to be unity, it follows that every term is
smaller than the previous term. Hence the first term is always the largest,
giving a J-shaped distribution. Suppose that in a sample of Ν observations
there are nr observations having the value r, then the likelihood of the sample
arising is proportional to

whence

By differentiating (2) with respect to p and equating to zero we find that the
maximum-likelihood solution for ρ is given by the equation

( 2 )

where μ'1 is the first moment of the distribution of the nj. To find the variance
of the estimate we perform a second differentiation of (2) above with respect
to ρ (see, for example, Johnson & Tetley (1950), p. 129) leading to

(3)

(4)

The characteristic property of the geometric form of series is that the prob-
ability of there being at least r+1 events, given that there are at least r, is
exactly the same whatever the value of r. This may be easily demonstrated,
since the probability of there being at least r+1 events, given there are at least
r, is

independent of r.

Another property that should be noted is that since

i.e.
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there is a linear relationship between r and log pr and hence a graph of r
against log pr would be a straight line. This gives a quick method of seeing
in practice whether a given set of data may be graduated by a geometric
series, since first differences of log nr can be quickly calculated and should
be approximately constant.

The series has only infrequently been used in practical cases. For example,
the interval between two successive zeros in a table of random numbers, 0-9,
should follow a geometric series, since

probability that interval is of length
A similar type of situation obtains if we consider the runs of red or black on a
roulette wheel. Dufrenoy (1938) considered the distribution of the number of
papers published by biologists in any one year. He suggested that the
geometric series might give a satisfactory fit and tried it using a trial and
error value for p. His fit was only moderate, and the use of maximum likeli-
hood to estimate ρ does not greatly improve the fit.

3. The logarithmic series takes the form

(5)

and by making we obtain The likelihood of a

sample of Ν observations of which nr have the value r is therefore propor-
tional to

By taking logarithms and equating to zero the differential with respect to χ we
find

where μ'1 is the mean or first moment of the nr. Thus maximum likelihood leads
to the equating of the observed and theoretical first moments. In fitting an
observed set of data with this series it is necessary to solve (6) above for x.
This is apt to be troublesome and Table 1 is designed to enable this to be done
directly by linear interpolation. The table was constructed by first making a
table of μ'1 for a suitable range of values of χ and then inversely interpolating
in that table. Since p1 is equal to (1- x) μ'1 it can be found as soon as x has
been obtained and thus the expected frequencies may be written down.
Fisher, Corbett & Williams (1943) have given a table for obtaining χ in some-
what different form requiring the use of a table of logarithms as well. The
variance of the maximum-likelihood estimate of χ is given by

(7)

(6)

and in Table 2 some specimen values are given for various values of x. For
the logarithmic series the probability of there being at least r+1 events given
that there are at least r is

9-2
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after some simplification. As r increases the ratio r/r+s increases for fixed s,
and hence the denominator of the second term increases which implies that
the whole expression increases. Thus the logarithmic series differs from the
geometric series in that the probability of at least r+1 events occurring given
that at least r have occurred increases as r increases and does not remain
constant as before.

Table 1. μ1' against χ

Table 2. Variance of estimate of χ

The logarithmic distribution has been used to describe the number of
species represented in random collections of plants as well as for the distribu-
tion of the number of papers published by scientists (see, for example,
Williams (1944)).

4. The discrete form of Pareto's so-called law was first used by Seal (1947)
and can be written as

(8)

where ζ(β) is the Riemann Zeta function, since we must have that

in order to have the sum of the probabilities equal to unity. In Seal's paper of

x

1.08 0.1411 1.26
1.09 0.1564 1.27
1.10 0.1712 1.28
1.11 0.1855 1.29
1.12 0.1994 1.30
1.13 0.2130 1.31
1.14 0.2238 1.32
1.15 0.2395 1.33
1.16 0.2515 1.34
1.17 0.2637 1.35
1.18 0.2755 1.36
1.19 0.2870 1.37
1.20 0.2984 1.38
1.21 0.3090 1.39
1.22 0.3198 1.40
1.23 0.3300 1.41
1.24 0.3402 1.42
1.25 0.3499 1.43

x

0.3596
0.3688
0.3781
0.3869
0.3956
0.4041
0.4124
0.4205
0.4284
0.4361
0.4436
0.4510
0.4583
0.4653
0.4722
0.4789
0.4855
0.4920

x X X

1.44 0.4983 1.62 0.5926 1.80 0.6602
1.45 0.5045 1.63 0.5970 1.81 0.6633
1.46 0.5105 1.64 0.6012 1.82 0.6665
1.47 0.5164 1.65 0.6054 1.83 0.6696
1.48 0.5223 1.66 0.6095 1.84 0.6726
1.49 0.5280 1.67 0.6135 1.85 0.6755
1.50 0.5336 1.68 0.6175 1.86 0.6785
1.51 05391 1.69 0.6214 1.87 0.6814
1.52 0.5444 1.70 0.6252 1.88 0.6842
1.53 0.5497 1.71 0.6290 1.89 0.6870
1.54 0.5548 1.72 0.6327 1.90 0.6898
1.55 0.5599 1.73 0.6363 1.91 0.6925
1.56 0.5648 1.74 0.6400 1.92 0.6952
1.57 0.5697 1.75 0.6434 1.93 0.6979
1.58 0.5744 1.76 0.6469 1.94 0.7005
1.59 0.5791 1.77 0.6503 1.95 07030
1.60 0.5837 1.78 0.6536 1.96 0.7055
1.61 0.5882 1.79 0.6569 1.97 0.7080

X N Var (x)

0.14 0.217525
0.16 0.238982
0.18 0.258285
0.20       0.275453
0.22 0.290334
0.24 0.303189
0.26 0.314041

X

0.28
0.30
0.32
0.34
0.36
0.38
0.40

N Var (x) x N Var (x) X

0.322934 0.42 0.336132 0.56
0.329971 0.44 0.331780 0.58
0.335173 0.46 0.326077 0.60
0.338614 0.48 0.319106 0.62
0.340366 0.50 0.310933 0.64
0340471 0.52 0.301639 0.66
0.339056 0.54 0.291303 0.68

N Var (x)

0.280003
0.267808
0.254834
0.241152
0.226844
0.212034
0.196768
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1947 he fits the distribution to an observed series by taking the ratio p1/p2

which is equal to 2β as a method of estimating ß. In a further paper (Seal,
1952) he uses maximum-likelihood methods, which lead to the equation

By taking the second differential of the natural logarithm of the likelihood we
obtain for the variance of the estimate of β

(10)

(9)

Equation (9) can be solved numerically by means of a table of ζ'(β)/ζ(β)
which has been provided by Walther (1926). For the variance some values of
the function in (10) are tabulated in Table 3. Since no table of ζ"(β) has been

Table 3. Variance of estimate of β

β

2.5
3.0
3.5

Ν Var (β)

2.914
5.832

10.552

ß
4.0
4.5
5.0

Ν Var (β)

17.852
28.863
45.201

β

5.5
6.0

Ν Var (β)

69.178
104.060

found the values were obtained by numerical differentiation of a table of ζ(β).
It is thought that the table is accurate to the number of significant figures
that are given. An alternative method of estimating β (referred to by Seal
(1952)) would be to equate the first moments of the observed and theoretical
distributions. For (8) we find

(11)

and a table of (11) has been constructed by first calculating μ1' for various values
of β and then inversely interpolating in it to produce a table of β against μ1'.
This is shown as Table 4 and should enable β to be found directly given the
mean of the observed distribution. The range of values of μ1' shown should
cover any possible cases met with in practice. It will be noticed that β changes
much more rapidly with low values of μ1' than it does with higher values of μ1'.
Linear interpolation may be used for μ1' greater than 1.15, but second order
should be used below that figure.

Considering once again the probability of at least r+1 events occurring
given that at least r have occurred we find that

Since (1 + 1/r)-β increases as r increases, β being positive, we have that this
probability increases, that is to say, the occurrence of r events makes an (r + 1 )th
the more likely the larger the value of r.
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Table 4. β in terms of µ1'

5. These distributions may be compared from a number of points of view.
We note first of all that the ratio of p n + 1 /p n varies both in form and in its limit
as η tends to infinity:

Poisson
(for comparison)

Geometric

Logarithmic

Pareto

tends to ο (λ > ο)

i.e. constant for all η (p< 1)

tends to x (χ<1)

tends to 1 (β>1)

These comparisons show great differences. Whilst with the Poisson series
each term rapidly gets smaller than the previous one, with the geometric series
the ratio remains constant but always less than unity. Further, with the
logarithmic series the ratio slowly increases from \x to χ but is always less
than unity, whilst with the discrete Pareto form of series it increases from 2-β
to 1 in the limit. This seems to indicate that the length of the 'tail' increases
as we go from the Poisson series through the geometric and logarithmic series
to the Pareto form of series.

We next note that the probability of r+1 or more events given that there
are r events varies as follows when r increases :

Poisson Decreases Logarithmic Increases

Geometric Constant, equal to ρ Pareto Increases

The decrease for the Poisson is to be expected if we remember that the Poisson
distribution arises as the limiting form of the binomial distribution (q+p)n as

1’01
1'02
I .03
1.04
1'05
1.06
I '07
I.08
1’09
1’10
1'11
1'12
1.13
1’14
1’15
1.16
1’17
1.18
1.19
I'20

6.848 1'21 3’419 1.41
5’952 1'22 3,381 1.42
5.449 1.23 3’345 1'43
5.105 I .24 3.311 1.44
4.847 1'25 3.279 1.45
4.642 1.26 3.249 1.46
4’473 1 .27 3.220 1.47
4.331 1.28 3.193 1.48
4.208 1.29 3.167 1.49
4.100 1.30 3.143 1.50
4.006 1.31 3.119 1.51
3.921 1.32 3.097 1.52
3.844 1.33 3.075 1.53
3.775 1.34 3.054 1.54
3.711 1.35 3.034 1.55
3.653 1.36 3.015 1.56
3.599 1.37 2.997 1.57
3.549 1.38 2.980 1.58
3.503 1.39 2.963 1.59
3.459 1.40 2.946 1.60

2.93 1 1.61 2.702 1.81
2.915 1.62 2.693 1.82
2.901 I .63 2.685 1.83
2.887 1.64 2.677 .84
2.873 1.65 2.669 1.85
2.860 1.66 2.662 1.86
2.847 1.67 2.654 1.87
2.834 1.68 2.647 1.88
2.822 1.69 2.640 1.89
2.811 1.70 2.633 1.90
2.799 1.71 2.626 1.91
2.788 1.72 2.619 1’92
2’778 1.73 2.613 1.93
2.767 1.74 2.607 I.94
2.757 1.75 2.600 1.95
2.747 1.76 2.594 1.96
2.737 1.77 2.589 1.97
2.728 1.78 2.583 1.98
2.719 1.79 2.577 1.99
2.710 1.80 2.571 2'00

2.566
2.560
2.555
2.550
2.545
2.539
2.535
2.530
2.525
2.520
2.516
2.511
2.507
2.503
2'499
2.495
2.491
2.487
2.483
2.479

µ´1 ß 1µ´ 1µ´ 1µ´ 1µ´ß ß ß ß
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η becomes very large and p is small. The geometric series is apparently the
intermediate form between the Poisson on the one hand and the logarithmic
and Pareto series on the other. The Pareto is very much at the extreme. It
has a very long tail and the higher moments are often infinite. For example,
we find that

(12)

and thus unless β is greater than 3 the second moment becomes infinite. Of
course in practice this is overcome, since a certain amount of truncation at the
upper tail of the distribution brings about finite moments. This length of
'tail' must, however, affect the value of the first term, and all the earlier
terms, of any of the series. We note as well that the rate of reduction of the
terms differs most markedly, and whereas the ratio of succeeding terms remains
constant for a geometric distribution it decreases for the Pareto distribution as
is shown by the following figures:

Mean of distribution

Geometric series ratio of r to (r+1)th term
Pareto series ratio of 1st to 2nd term
Pareto series ratio of 10th to 11th term

1.2

6.0
11.0

1.4

3.5
7.7
1.3

1.6

2.7
6.5
1.3

1.8

2.2
5.9
1.3

6. We will now briefly illustrate these series by considering some examples.
First suppose that a series of articles are being made and the probability that
each article possesses some property A is constant and equal to p. It is clear
that the probability of a run of r articles occurring between two successive
articles possessing property A is qr-1p, where q=1 - p, and hence is a geometric
series. In the data given below p is equal to ½, since the property A was whether
the length of life of a bulb was above the median value or not. A sequence of
bulbs was analysed and the distribution of runs of those above or below the
median value was as follows :

Run of length

Observed number
Theoretical number

1

136
127

2

66
63.5

3

26
31.7

4

12
15.9

5

9
7.9

> S

5
7.9

Total

254
253.9

A test of goodness of fit is unnecessary in order to see that there is good
agreement between the observed and theoretical frequencies.

For the logarithmic series we will consider the following data concerning
the number of cars of different makes and types seen in a period of one hour
along an arterial road.

No. of times seen (f)

No. of types seen f times
Theoretical frequencies

1

90
85.0

2

19
23.4

3

9
8.6

4

1

3.6

5

1

1.6

6

3
0.7

> 6

1

1.1

Total

1 2 4
124

The mean of the observed distribution is 1.5321 and by linear interpolation
in Table 1 we find that x=0.5508. The theoretical frequencies can now be

1.4
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calculated and are given above. Without any formal test it can be seen that
there is fairly good agreement between observation and theory.

The discrete form of Pareto's law was used by Seal in his papers to graduate
the distribution of the duplicate policies on any one life held in an office, the
underlying theory being that if the incomes of persons insured are roughly in
the form of a Pareto curve the numbers of policies held may also be similarly
distributed.
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