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ABSTRACT 

This paper extends the theory of graduation by parametric formulae to include dynamic estimation 
methods. This is an application of the Kalman filter and allows the parameters of the curve fitted to 
vary with age. The amount of variation is determined by the amount of smoothing required, and the 
method can be regarded as a combination of curve fitting and sequential smoothing, each of which 
has been used separately for performing graduations. In practice, a dynamic straight line can always 
be used for the graduation and the method has a sensible logical interpretation. 
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1. INTRODUCTION 

The actuarial art of graduation often involves the application of linear and 
non-linear models. A summary of these models within the framework of 
generalised linear models is given by Renshaw (1991) and a comprehensive 
overview of current actuarial practice is given by Forfar et al. (1988). Both of 
these papers concentrate on the use of parametric modelling methods to obtain a 
reasonably close fit to actual experience, giving due weight to model parsimony 
and smoothness. In doing this, it is usual to fit a curve (a straight line, cubic, 
quartic, etc.) which is assumed to apply to the data over the whole range of ages 
considered. It is sometimes the case that a straight line produces an adequate fit 
(to the transformations of the death rate considered in this paper), but greater 
flexibility can be obtained by using higher order polynomials, non-linear 
regression functions or, within the context of generalised linear models, non- 
canonical link functions. 

This paper proposes a different method of obtaining greater flexibility than can 
be obtained by simply fitting a straight line. The technique proposed has greater 
heuristic appeal than fitting higher order polynomials, and the form of the 
flexibility used appears to be very natural in the context of graduation. It involves 
a sophisticated smoothing procedure (retaining the parametric form of the 
regression), which can also be related to more basic methods of smoothing which 
seem natural for graduation, and have been used in the past. When, for example, 
a quartic curve is used in a graduation, it is natural to question whether such a 
specific curve has any meaning for the statistics graduated, or whether it is more 
sensible to apply a combination of curve fitting (of low order) and sequential 
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154 Graduation by Dynamic Regression Methods 

smoothing. A straight line fit and a smoothing procedure both clearly have 
straightforward interpretations in graduation. The aim of this paper is to 
combine these two approaches, and obtain a sequential smoothing procedure 
which can be used in combination with a straight line regression model (applied 
to the transformation of the death statistics). 

Two examples will be used, which have been extracted from the CMI 
Committee (1976) (C.M.I. Report No. 2) and Forfar et al. (1988). These 
examples cover the graduation of both the probability of death qx, and the force 
of mortality µx, over a range of ages which are indexed by x. 

Section 2 reviews graduation theory and the use of gcneralised linear models. 
Section 3 extends the theory to dynamic generalised linear models and Section 4 
contains the examples. 

2. GRADUATION BY GENERALISED LINEAR MODELS 

In general terms, the aim of graduation is to produce a smooth table of death 
statistics from a set of raw data. For this type of graduation, the data comprise 
the exposures Rx, and the actual numbers of deaths Ax, for each age x. The 
exposure at age x, Rx, is the initial exposed to risk when graduating qx, and the 
central exposed to risk when graduating µx. These definitions are regarded as 
conventions throughout this paper. 

Two quantities are of interest: the probability of death at each age qx, and the 
force of mortality at each age µx. These quantities can be estimated separately at 
each age, the maximum likelihood estimates for each being: 

(2.1) 

where Rx, is interpreted as the initial and the central exposed to risk in each of 
these equations, respectively. 

For qx, the observed number of deaths Ax, is assumed to be binomially 
distributed with parameters Rx and qx. For µx, the distribution of A, is assumed 
to be Poisson with parameter Rxµx. Section 2 of Forfar et al. (1988) derives these 
estimates, which are, of course, trivial examples of maximum likelihood theory. 

Thus Ax/Rx can be thought of as the crude estimator of qx, and µx when each age 
is analysed individually. 

Clearly it would be unsatisfactory to present a table consisting of these crude 
estimates which would probably imply sharp changes in the death rates from age 
to age. If this were done some important information would have been ignored; 
this is that the actual values of qx and µx should change gradually and smoothly 
with age x. This leads to the use of smoothing methods to produce a continuous 
table of death rates, and, in particular, the use of regression methods. It is clear 
that linear regression cannot be applied, since the data are not normally 
distributed. Generalised linear models are designed to handle non-normal data, 
and can be used for graduation. The standard text on the theory of generalised 
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linear models is McCullagh & Nelder (1989), and Renshaw (1991) contains 
greater details on the application to graduation. A sketch of the general theory is 
now given. 

The likelihood, which will involve some sort of parametrised curve, is based on 
either the binomial distribution (for qx) or the Poisson distribution (for µx). 
Forfar et al. (1988) approach the maximum likelihood theory via what they term 
the ‘Gompertz–Makeham formula of type (r,s)’ and the ‘Logit Gompertz- 
Makeham formula of type (r,s)’. These are defined (respectively) as: 

GMr,s (x) = pol1(x) + exp {pol2(x)} (2.2) 

where pol1(x) and pol2(x) are polynomials of order r and s respectively, and 

(2.3) 

These definitions enable a certain amount of flexibility to be achieved in the 
graduations by using either GMr,s (x) or LGMr,s (x) and varying the values of r 
and s. Forfar et al. (1988) investigate the choice of the ‘best’ model of this type in 
great detail. A major consideration is the trade-off between model fit (which can 
be improved by adding parameters) and parisomony (which requires fewer 
parameters). 

It is natural to use an LGM formula for graduating qx and a GM formula for 
graduating µx, as can be seen by considering the likelihood in each case. 

To illustrate this, consider qx. 

(2.4) 

This can be viewed as a member of an exponential family (which is the basis of 
generalised linear models). 

Log(qx/(1 – qx)) is known as the natural parameter, and it is sensible to apply 
the regression curve to this, rather than to qx. One strong motivation for this 
choice can be appreciated by considering the range of values each function can 
take. Consider a regression curve, which is a function of age. This may be 
denoted, in vector notation, as F' θ , where F is a column vector containing the 
regressor variables and θ is a column vector containing the parameters. For 
example, the straight line ( α + β x) has: 
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It is clear that F' θ can take any value on the real line, depending on the values 
of the parameters α and β , and on the value of x. The probability of death qx, 
however, must take a value between 0 and 1, and it would clearly lead to 
inconsistencies to model qx by the regression function. 

(qx/(1 – qx)) can take any value on the positive half of the real line, and 
log (qx/1 – qx) can take any value on the real line. 

Thus, it appears sensible to model log (qx/(1 – qx)) by a regression function: 

log (qx/(1 – qx)) = F' θ . (2.5) 

The form of the regression function has to be determined and the parameters 
estimated. 

Equation (2.5) can be rearranged as: 

(2.6) 

Two things should be noted about this. First, the right hand side must lie between 
0 and 1, which is compatible with qx. Secondly, it is an LGM formula. Thus, it 
is sensible to model qx by: 

qx= LGM0,s (x). (2.7) 

This form of curve is often found to provide a good model for qx, and, in 
most cases, the first model fitted has s=2. Thus a straight line is fitted to 
log (qx/(1 – qx). If this does not provide a satisfactory fit, then a better model 
is sought by increasing s or introducing a non-zero value of r. 

In the dynamic regression method, the model LGM0,2(x) is, again, the starting 
point, and greater flexibility is acquired in ways other than increasing the order of 
the polynomials. 

For graduation of µx, it is log µx which is modelled by the regression function: 

log Rxµx = F' θ . (2.8) 

Readers with a knowledge of generalised linear models will recognise these 
models for qx and µx as the natural models to use in each case. Further 
investigation of the use of generalised linear models can be found in Renshaw 
(1991). It is possible to use a large number of other models within the framework 
of generalised linear models, and these arc explored in detail by Renshaw (1991). 

To summarise, the simplest parametric models which are considered arc 
straight lines applied to the appropriate functions of the mortality parameters. 
These models sometimes provide a satisfactory fit. They are applied to the data 
from the CMI Committee (1976) (CMI Report No. 2) on Male Pensioners, 1967– 
70. In other cases a straight line fit is clearly unsatisfactory, and higher order 
polynomials have to be considered. The example used in this paper, when this is 
the case, is taken from Forfar et al. (1988), and consists of data on male assured 
lives. These data sets form the examples in Section 4. 

It can be seen that graduation using parametric curves can be viewed as an 
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application of generalised linear models. These are an extension of standard 
linear regression models to cases in which the data do not have a normal 
distribution. The parameter vector, θ , is estimated using maximum likelihood 
methods, with the likelihood being defined by the modelling distribution. The 
quantity F' θ is known as the linear predictor and, in the theory of generalised 
linear models, is related to the expected value of the observed variable via the link 
function. The computer package GLIM (Baker & Nelder, 1978) has been 
designed for this purpose, and provides a convenient framework for graduating 
data using this type of model. 

The theory of generalised linear models in relation to graduation can be found 
in Renshaw (1991). The purpose of this paper is to extend the theory to dynamic 
generalised linear models, which arc the subject of the next section. 

3. DYNAMIC MODELS FOR GRADUATION 

In this section the theory of generalised linear models for graduation, which 
was outlined in the previous sections, will be extended to allow for dynamic 
variation in the parameter vector. The standard regression line can be extended 
so that the parameters are not constant. Consider, first, a simple example, the 
straight line regression for normally distributed data: 

(3.1) 

Note that the data are indexed here by i, with the regressor variable being x, 
since this is the familiar form for regression. For graduation, the index variable 
will be the age, x. 

The intercept α , and the gradient β , of the straight line are assumed to be 
constant for all i. Thus α and β do not depend on i. 

Suppose now that the observations and the regressors are ordered (as is the 
case for graduation, when the data arc naturally ordered with age). The 
parameters can be estimated by maximum likelihood estimation or, equivalently, 
by recursive maximum likelihood estimation. The recursive estimation method 
can be extended using the Kalman filter to allow the parameters to vary with i. 
There are two extreme cases which can easily be identified. The first, which has 
already been considered, is the ‘static’ regression method (which is the standard 
regression), in which the parameters are the same over the whole range of ages. 
The second is the case in which the parameters arc estimated separately at each 
age. In other words, there are separate parameters for each i. This would produce 
the crude mortality rates. Between these two extremes arc the cases when the 
parameters arc similar at adjacent ages, but not identical. This allows, for 
example, a graduation which is locally linear, but not globally linear, to be fitted. 
When the fitted curve of this type is viewed over a small number of adjacent ages 
it appears to be straight. However, when the whole graduated curve is viewed, it 
is clear that the fitted line is not straight. 

As is well known, some data are well graduated using a straight line, but in 
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many cases a straight line fit is unsatisfactory. Two methods of overcoming this 
are either to use a higher order polynomial, or a non-linear function instead of a 
straight line, or to abandon a parametric curve and use a smoothing operation. 
The method in this paper is a combination of the two methods. The parametric 
curve is retained (usually as a straight line), and some smoothing is introduced. 
Thus, the parametric curve is estimated at each age, and a sophisticated 
smoothing procedure is used to relate adjacent ages. 

The smoothing procedure uses the Kalman filter, which can be approached via 
Bayes theorem, and is usually applied when the data can be assumed to be 
normally distributed. The Kalman filter for normally distributed data is now 
summarised, and an indication of its extension to non-normally distributed data 
is given. The purpose of this paper is to illustrate the use of dynamic regression 
methods, rather than to re-derive them in great detail. The interested reader will 
find many derivations of the Kalman filter and its extensions in the papers listed 
among the references. 

A fundamental and essential part of the present examination syllabus of the 
Institute of Actuaries is the derivation of the posterior distribution of the mean of 
a normal distribution, given an observed datum and the prior distribution. This 
forms part of the Kalman filter and the result is stated below. 

Suppose: and 

Then the posterior distribution of θ , given an observed value of Y, y is: 

(3.2) 

where: 

Of course, the usual situation is to have a sample of size n. The usual 
prior-posterior analysis has to be reformulated so that the data can be analysed 
recursively. Suppose (i – 1) observations have been analysed and the distribu- 
tion of the mean, which is to be used as the prior distribution for the ith 
observation, is: 

0 ~ N(ai,Pi). (3.3) 

The conditional distribution of the ith observation is: 

The posterior distribution of θ , given yi, is: 

(3.4) 

(3.5) 

where: and 
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This posterior distribution can be used to formulate a prior distribution for 
the (i + 1)th observation. There is considerable flexibility in this step, and it is 
the important ingredient in the Kalman filter. If the new prior distribution is the 
same as the previous posterior distribution, then the procedure is exactly as 
usual, and a recursive version of Bayes theorem for a sample of size n results. 

i.e. ai + 1 = mi Pi + 1 = Ci. (3.6) 

This is equivalent to assuming that θ does not vary with i. Considerably more 
flexibility can be achieved by allowing θ to vary with i. Thus a suffix i must be 
attached to θ , and the recursion completed by defining the conditional 
distribution of θ i + 1 given θ i. This distribution is normal with mean h θ i. h is 
inserted to allow known changes in the mean to be modelled; often h will be unity. 
There is an increase in the variance to allow dynamic variation of the parameters 
from i to (i + 1). If there were no increase in the variance, recursive Bayes 
estimation would be obtained (as before). 

Thus, the prior distribution for processing the (i + 1)th datum is obtained 
from the posterior distribution from the ith datum as follows: 

ai+1 = hmi Pi+1 = h² Ci/b². (3.7) 

h can be taken to be unity at present: its purpose will become clearer later. 
b (0 b 1) is known as the discount factor. If b = 1, there is no stochastic 

variation in the parameters and the static regression model is obtained. If b = 0, 
it can be seen that the variance of each prior distribution is infinite. Thus no 
information is passed from point to point, and the model is estimated separately 
at each point. A value of b between 0 and 1 gives a smoothed model. 

The recursion is now complete and the next observation can be processed. 
Usually the parameter is not a scalar, but a vector. In this case Pi is a 

variance-covariance matrix, h is a matrix and the discount factors are contained 
in a matrix. 

In the applications in this paper the data are not normally distributed. In this 
case the Kalman filter has to be extended. Linear Bayes estimation is used, in a 
similar way as in Credibility theory, to obtain the recursive estimation equations 
which are given below. Further details of the derivation of these equations can be 
found in West et al. (1985) and Durbin (1990). The relevant recursions for the 
Poisson and binomial models are simply stated here, and no derivations arc 
given. 

For the data to be used in the graduation, the index is age x. Thus i is now 
replaced by x in the recursions. Recall that a parametric curve is fitted to the 
appropriate function of the mortality parameter at each age. At age x, this curve 
can be written as F' θ x, where θ x is the parameter vector. 

The prior distribution of θ x, given all the information up to age (x – 1), has 
mean ax and covariance matrix Px. 

Let µx = F' ax and vx = F' Px F. 
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The posterior distribution of θ x, given the data up to the age x, has mean mx 
and covariance matrix Cx, where: 

(1) for the Poisson distribution: 

(3.8) 

(3.9) 

(2) for the binomial distribution: 

(3.10) 

(3.11) 

For both models, the prior distribution of θ x+1 for the next age has mean ax+1 
and covariance matrix Px+1 where: 

ax+1 = H mx and (3.12) 

P x+1 = B H Cx H' B. (3.13) 

His a matrix which can be used to model known changes in the parameters, and 
B is a diagonal matrix containing the discount factors. The diagonal elements of 
B are the inverses of the discount factors. 

This completes the forward recursion. The data are processed recursively, and 
a final estimate of the parameter vector is obtained. For graduation an estimate 
of the parameter vector at each age (using all the available information, not just 
information up to each age) is required. Thus, it is necessary to apply another 
recursive procedure to go back through the data and obtain an estimate of the 
parameter vector at each age, using all the data and not just at lower ages. The 
forwards recursion gives an estimate of the mortality parameter at age x, using 
the data from ages 1 to x only. The backwards recursion gives the estimate using 
the data from all of the ages. This is the estimate which can be compared with the 
static regression estimates obtained by Renshaw (1991) and Forfar et al. (1988). 
The details of the second recursion are given below. 

Suppose there are N ages for which data are available. Denote the mean and 
covariance matrix of the estimate of the parameter vector using all N observed 
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ages by mNx and PNx. Thus the final recursion gives mNx and PNx for the final age 
only. From this the other estimates may be obtained (recursively) from: 

(3.14) 

(3.15) 

The process is initialised by using a vague prior distribution for the first 
observation. In order to ensure convergence to a sensible result, it was found that 
the initial parameter vector should be chosen close to the maximum likelihood 
estimate (i.e. the estimate obtained using the static regression method of 
Renshaw [1991] and Forfar et al. [1988] for a straight line fit). The vague prior 
distribution is obtained by setting the initial covariance matrix of the parameter 
vector to be diagonal, with large entries in the diagonal elements. This means that 
there is no information assumed known before the graduation begins; the choice 
of the initial parameter vector is merely to ensure convergence and does not 
imply any prior knowledge. 

4. EXAMPLES 

Two examples arc now given. The first illustrates the dynamic estimation 
method in the case in which, in a conventional analysis, a straight line has been 
found to provide a satisfactory fit. In this case the discount factors are chosen 
close to 1, so that the model assumes that the line will be almost constant. This 
example illustrates the use of dynamic estimation when graduating the 
probability of death. The second example provides a case in which a straight line 
fit is unsatisfactory (when a static model is applied), and higher order terms have 
to be included. The dynamic straight line approach, in which the parameters are 
allowed to vary with age, provides a satisfactory fit. 
The data for these examples are taken from the following sources: 

(i) CMI Committee (1976) (C.M.I. Report No. 2). Graduation of the 
probability of death for Male Pensioners, 1967–70. 

(ii) Forfar et al. (1988) Graduation of the force of mortality for Male Assured 
Lives for Duration 0. 

The form of the dynamic linear predictor which has been fitted in each of these 
examples is: 

g (µx) = (level)x (4.1) 

where: (level)x = (level)x – 1 + (growth)x–1 ( + error) (4.2) 

(growth)x = (growth)x–1 ( + error). (4.3) 

Thus the linear predictor consists of a single quantity, the ‘level’ at age x. The 
level at age x is related to the level at the previous age by adding the ‘growth’. 
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This, it can be seen, is equivalent to fitting a straight line, in which the value 
increases by the gradient from age to age. 

The growth is the same as the gradient of the straight line, and the intercept can 
be calculated from the level and growth at each age. The relationships are given in 
each example. 

(i) Example 1. Male Pensioners, 1967–70 (C.M.I. Report No. 2) (1976) 
The conventional analysis, using maximum likelihood estimation, can be 

found on page 76 of the C.M.I. Report. The model fitted is an LGM(0,2) and is 
given by the following formula: 

(4.4) 

The number of decimal places quoted appears rather optimistic in the light of 
the data and the estimation, and fewer are quoted in Tables 4.1–4.3. 

In the dynamic estimation method, the straight line fitted is: 

(4.5) 

where the parameters, α x and β x, are allowed to vary with x. The amount of 
dynamic variation allowed is restricted by choosing both discount factors to be 
0·995. If they were both taken as 1, the parameters would be constant. By 
choosing values very slightly less than 1, the lines are constrained to be almost 
straight, but some variation is allowed if the evidence from the data is very 
strong. 

Equations (4.1)–(4.3) can be compared with equation (4.5) to give the 
following relationships between the parameters: 

α x = (level)x + (70 – x) (growth)x (4.6) 

β x = 50 (growth)x. (4.7) 

Table 4.1 shows the results of this graduation. In this table, A, is actual deaths, 
and the quantity (Ax – Ex)2/Ex is required for the calculation of the x2 test 
statistic (with some regrouping where the expected number of deaths is low). 

It can be seen that the parameters of the dynamic straight line are close to those 
of the static model throughout most of the ages considered. The only significant 
departures are in the early ages, and it should be noted that here the data are 
rather sparse. 

The value of the x2 test statistic is 65·04, compared with 72·74 for the straight 
line fitted in the CMI Report. Thus, it can be seen that the dynamic graduation 
method gives a satisfactory fit. 



Age 
x 

50·5 
51·5 
52·5 
53·5 
54·5 
55·5 
56·5 
51·5 
58·5 
59·5 
60·5 
61·5 
62·5 
63·5 
64·5 
65·5 
66·5 
67·5 
68·5 
69·5 
70·5 
71·5 
72·5 
73·5 
74·5 
75·5 
76·5 
77·5 
78·5 
79·5 
80·5 
81·5 
82·5 
83·5 
84·5 
85·5 
86·5 
87·5 
88·5 
89·5 
90·5 
91·5 
92·5 
93·5 
94·5 
95·5 
96·5 
97·5 
98·5 
99·5 
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Table 4.1. Dynamic Graduation of qx for Male Pensioners, 1967–70 

Level Growth 

– 4·5858 0·1074 
–4·5132 0·1074 
–4·3991 0·1110 
–4·3250 0·0925 
–4·2434 0·0885 
–4·1559 0·0883 
–4·0839 0·0842 
–4·0076 0·0829 
–3·9346 0·0814 
–3·8536 0·0819 
–3·7705 0·0827 
–3·6867 0·0833 
–3·6038 0·0834 
–3·5199 0·0837 
–3·4346 0·0841 
–3·3495 0·0844 
–3·2658 0·0841 
–3·1822 0·0840 
–3·0986 0·0839 
–3·0147 0·0839 
–2·9306 0·0840 
–2·8464 0·0841 
–2·7622 0·0841 
–2·6778 0·0841 
–2·5934 0·0842 
–2·5088 0·0842 
–2·4243 0·0843 
–2·3398 0·0843 
–2·2554 0·0843 
–2·1709 0·0843 
–2·0865 0·0843 
–2·0021 0·0843 
–1·9176 0·0844 
–1·8333 0·0844 
–1·7489 0·0844 
–1·6645 0·0844 
–1·5802 0·0844 
–1·4959 0·0843 
–1·4116 0·0843 
–1·3273 0·0843 
–1·2430 0·0843 
–1·1586 0·0843 
–1·0742 0·0843 
–0·9899 0·0843 
–0·9055 0·0844 
–0·8211 0·0844 
–0·7367 0·0844 
–0·6523 0·0844 
–0·5679 0·0844 
–0·4836 0·0844 

Graduated 

qx 
0·0101 
0·0108 
0·0121 
0·0131 
0·0142 
0·0154 
0·0166 
0·0179 
0·0192 
0·0208 
0·0225 
0·0244 
0·0265 
0·0288 
0·0312 
0·0339 
0·0368 
0·0398 
0·0432 
0·0468 
0·0507 
0·0549 
0·0594 
0·0643 
0·0696 
0·0752 
0·0813 
0·0879 
0·0949 
0·1024 
0·1104 
0·1190 
0·1281 
0·1379 
0·1482 
0·1592 
0·1708 
0·1830 
0·1960 
0·2096 
0·2239 
0·2389 
0·2546 
0·2709 
0·2879 
0·3055 
0·3237 
0·3425 
0·3617 
0·3814 

Expected 
deaths 

Ex (Ax–Ex)2/Ex 

6·279 0·827 

8·730 1·594 

6·061 1·426 
19·507 0·114 
46·620 0·041 
62·827 0·975 
81·619 0·235 

105·907 3·091 
1287·770 5·251 
3057·388 12·232 
3370·503 1·647 
3413·458 1·001 
3305·724 1·580 
3135·664 1·578 
2925·508 0·707 
2706·207 0·010 
2522·645 1·087 
2360·665 1·205 
2221·924 5·257 
2094·505 1·218 
1944·609 0·392 
1784·364 0·280 
1606·085 0·001 
1412·004 0·071 
1243·667 2·230 
1070·281 0·441 
892·577 0·571 
141·084 0·001 
593·871 0·199 
478·115 4·257 
369·712 0·161 
279·678 0·143 
209·206 2·270 
153·223 0·116 
117·109 3·047 
78·246 0·097 
55·884 0·468 
35·222 0·648 
22·746 0·024 
14·513 2·923 
7·608 1·711 
5·480 3·662 

5·123 0·246 

α x β x 
–2·491 5·372 
–2·527 5·368 
–2·456 5·552 
–2·199 4·623 
–2·812 4·423 
–2·875 4·417 
–2·947 4·212 
–2·972 4·144 
–2·999 4·069 
–2·993 4·097 
–2·985 4·134 
–2·979 4·163 
–2·978 4·170 
–2·976 4·184 
–2·972 4·207 
–2·970 4·218 
–2·971 4·205 
–2·972 4·198 
–2·973 4·194 
–2·973 4·196 
–2·973 4·199 
–2·972 4·203 
–2·972 4·205 
–2·972 4·207 
– 2·972 4·210 
– 2·972 4·212 
– 2·972 4·214 
– 2·972 4·215 
– 2·972 4·216 
– 2·972 4·217 
– 2·972 4·217 
– 2·972 4·217 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·217 
– 2·972 4·217 
– 2·972 4·217 
– 2·972 4·217 
– 2·972 4·217 
– 2·972 4·217 
– 2·912 4·217 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
– 2·972 4·218 
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(ii) Example 2. Male Assured Lives, Permanent, Duration 0, Forfar et al. (1968) 
The second example uses the data for Example 3 of Forfar et al. (1988), which 

begins on page 101. Table 17.4 on page 116 graduates µx, using the function 
GM (2,2). Clearly a straight line fit is unsatisfactory, and the discount factors in 
the dynamic estimation method have to be chosen to be less than 1. 

The parameters are not expected to change radically from age to age, and so 
large discount factors are appropriate, although less than in the first example. 
Values of 0·95 were chosen after some experimentation. It is clear that the fit can 
be improved by reducing the discount factors, but the smoothness of the fitted 
line is forsaken. This can be seen to be similar to the assessment of parsimony and 

Table 4.2. Dynamic Graduation of µx for Male Assured lives, Duration 0 

Expected 
deaths 

Ex 
Age 

x 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

Level Growth 

–10·014 0·008 
–9·845 –0·002 
–9·564 0·003 
–9·134 0·029 
–8·482 0·079 
–1·587 0·145 
–7·468 0·076 
–7·396 0·049 

Graduated 

qx 
0·00004 
0·00005 
0·00007 
0·00011 
0·00021 
0·00051 
0·00057 
0·00061 
0·00064 
0·00061 
0·00058 
0·00055 
0·00053 
0·00051 
0·00049 
0·00047 
0·00046 
0·00045 
0·00044 
0·00044 
0·00045 
0·00046 
0·00048 
0·00051 
0·00054 
0·00057 
0·00061 
0·00066 
0·00071 
0·00077 
0·00084 
0·00092 
0·00102 
0·00111 

(Ax – Ex)2/Ex α x β x 
–9·5402 0·3947 

–7·360 0·028 
–7·395 –0·005 
–7·452 –0·023 
–7·498 –0·026 
–7·542 –0·026 
–7·579 –0·024 
–7·620 –0·024 
–7·664 –0·023 
–7·693 –0·020 
–7·713 –0·016 
–7·731 –0·013 
–7·722 –0·007 
–7·710 –0·001 
–7·684 0·005 
–7·642 0·012 
–7·588 0·019 
–7·529 0·025 
–7·464 0·031 
–7·394 0·037 
–1·324 0·041 
–7·253 0·046 
–7·170 0·050 
–7·081 0·055 
–6·990 0·059 
–6·891 0·063 
–6·800 0·066 

20·4242 0·2877 

19·5401 2·1356 
23·2344 1·9701 
25·1314 0·1389 
27·2175 0·5257 
29·5709 0·1995 
30·6860 1·2992 
30·7973 1·6845 
30·1245 0·1498 
29·7375 0·0183 
28·8037 0·6113 
28·4203 4·5891 
28·5310 0·0756 
29·9036 0·8041 
31·9363 1·9722 
34·1706 1·1143 
36·2895 0·1444 
36·4670 0·1669 
36·5833 0·0685 
36·0501 0·2414 
35·5435 0·1698 
34·3916 2·0476 
34·3780 0·1645 
35·5744 0·0051 
36·2286 1·0708 
37·3447 3·6376 
39·2448 2·6744 

–9·9665 –0·1028 
–9·3622 0·1742 
–7·4715 1·4580 
–4·0603 3·9477 

0·4135 7·2730 
–3·3833 3·7821 
–4·7998 2·4491 
–5·9135 1·3910 
–7·6746 –0·2742 
–8·5874 –1·1356 
–8·7563 –1·2840 
–8·7943 –1·3046 
–8·7272 –1·2209 
–8·7076 –1·1822 
–8·7139 –1·1669 
–8·5902 –1·0192 
–8·4167 –0·8186 
–8·2757 –0·6486 
–7·9910 –0·3279 
–7·7473 –0·0472 
–7·4807 0·2604 
–7·1830 0·6036 
–6·8854 0·9495 
–6·6175 1·2658 
–6·3713 1·5611 
–6·1464 1·8352 
–5·9559 2·0732 
–5·7901 2·2851 
–5·6089 2·5171 
–5·4363 2·7411 
–5·2815 2·9457 
–5·1241 3·1553 
–5·0118 3·3108 
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Table 4.2 (cont.) 

Age 
x 

44 
45 

46 
41 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
17 
78 
79 
80 
81 

82 
83 
84 
85 
86 
87 
88 

100 

Level Growth 

–6·698 0·070 
–6·599 0·073 
–6·494 0·076 
–6·387 0·078 
–6·283 0·081 
–6·181 0·082 
–6·083 0·084 
–5·993 0·084 
–5·903 0·085 
–5·806 0·086 
–5·710 0·087 
–5·614 0·087 
–5·520 0·088 
–5·434 0·088 
–5·343 0·088 
–5·250 0·088 
–5·163 0·088 
–5·082 0·088 
–4·998 0·088 
–4·913 0·088 
–4·826 0·088 
–4·738 0·088 
–4·645 0·088 
–4·550 0·088 
–4·452 0·089 
–4·349 0·090 
–4·248 0·090 
–4·150 0·091 
–4·051 0·091 
–3·962 0·091 
–3·868 0·091 
–3·770 0·091 
–3·677 0·091 
–3·585 0·091 
–3·491 0·091 
–3·411 0·091 
–3·330 0·091 
–3·248 0·090 
–3·165 0·090 
–3·081 0·090 
–2·998 0·090 
–2·915 0·089 
–2·833 0·089 
–2·751 0·089 
–2·667 0·089 
–1·734 0·086 

Graduated 

qx 

0·00123 
0·00136 
0·00151 
0·00168 
0·00186 
0·00206 
0·00228 
0·00249 
0·00272 
0·00300 
0·00330 
0·00363 
0·00399 
0·00435 
0·00476 
0·00522 
0·00569 
0·00617 
0·00670 
0·00730 
0·00795 
0·00868 
0·00951 
0·01046 
0·01152 
0·01276 
0·01410 
0·01552 
0·01710 
0·01866 
0·02048 

Expected 
deaths 

Ex 

40·8759 
43·4433 
43·3954 
44·6929 
46·2458 
49·4725 
54·3231 
52·4568 
47·9765 
48·2639 
49·0290 
53·3410 
45·4429 
33·3260 
27·4524 
26·2625 
27·1073 
20·2606 
14·5247 
12·6592 
13·8925 
24·9461 
20·5235 
12·8168 
9·9691 
9·3016 
8·6434 
7·3083 
6·5070 
6·0565 
5·2418 

0·02253 
0·02466 

8·1698 

0·02699 
0·02956 
0·03195 
0·03455 
0·03741 
0·04052 
0·04389 5·7246 
0·04753 
0·05141 
0·05558 
0·06004 
0·06493 
0·15007 

(Ax – Ex)2/Ex 

0·6423 
1·2753 
0·0449 
0·6302 
0·3048 
1·4699 
3·9654 
0·1233 
3·5099 
0·0112 
0·1800 
0·0516 
7·5780 
2·0801 
0·7221 
4·3901 
2·9173 
0·5247 
0·8554 
0·0343 
0·2578 
0·6242 
0·3103 
0·0521 
1·5802 
0·7828 
1·3035 
0·0130 
6·4792 
1·5425 
0·2942 

0·9804 

0·2841 

a x b x 
–4·8864 3·4843 
–4·7857 3·6276 
–4·6815 3·7767 
–4·5867 3·9143 
–4·5119 4·0257 
–4·4512 4·1179 
–4·4095 4·1836 
–4·3903 4·2166 
–4·3756 4·2433 
–4·3475 4·2913 
–4·3230 4·3337 
–4·3043 4·3668 
–4·2894 4·3935 
–4·2926 4·3886 
–4·2878 4·3983 
–4·2785 4·4163 
–4·2805 4·4129 
–4·2908 4·3929 
–4·2974 4·3808 
–4·2997 4·3715 
–4·3012 4·3764 
–4·2999 4·3814 
–4·2936 4·3979 
–4·2846 4·4208 
–4·2746 4·4461 
–4·2592 4·4845 
–4·2477 4·5137 
–4·2408 4·5312 
–4·2334 4·5502 
–4·2350 4·5452 
–4·2320 4·5527 
–4·2269 4·5661 
–4·2256 4·5683 
–4·2247 4·5694 
–4·2230 4·5729 
–4·2301 4·5494 
–4·2361 4·5290 
–4·2407 4·5132 
–4·2445 4·4995 
–4·2479 4·4875 
–4·2.510 4·4758 
–4·2543 4·4637 
–4·2514 4·4521 
–4·2605 4·4405 
–4·2628 4·4319 
–4·3012 4·2786 
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Table 4.3. Comparison of Dynamic and Static Gradua- 
tion of µx for Male Assured Lives, Duration 0 

Age 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

Ax 

0 
0 
0 
0 
0 
1 
3 

14 
26 
30 
21 
31 
32 
37 
38 

28 
29 
33 
17 
30 
25 
24 
28 
34 
34 
35 
39 
38 
26 
32 
36 
30 
49 
29 
46 
36 

42 
50 
50 
58 
69 
55 
35 
49 
52 
55 
64 
25 

Dynamic Model 

Ex Ax – Ex 

0·01 –0·01 
0·01 –0·01 
0·02 –0·02 
0·06 –0·06 
0·14 –0·14 
0·63 0·37 
3·13 –0·73 

15·08 –1·08 
19·54 6·46 
23·23 6·17 
25·13 1·87 
27·22 3·78 
29·57 2·43 
30·69 6·31 
30·80 7·20 
30·12 –2·12 
29·74 –0·74 
28·80 4·20 
28·42 –11·42 
28·53 1·47 
29·90 –4·90 
31·94 –7·94 
34·17 –6·17 
36·29 –2·29 
36·47 –2·41 
36·58 –1·58 
36·05 2·95 
35·54 2·46 
34·39 –8·39 
34·38 –2·38 
35·57 0·43 
36·23 –6·23 
37·34 11·66 
39·24 –10·24 
40·88 5·12 
43·44 –7·44 
43·40 –1·40 
44·69 5·31 
46·25 3·75 
49·47 8·53 
54·32 14·68 
52·46 2·54 
47·98 –12·98 
48·26 0·74 
49·03 2·97 
53·34 1·66 
45·44 18·56 
33·33 –8·33 

Static Model 

Ex Ax–Ex 

0·25 – 0·25 
0·25 – 0·25 
0·31 – 0·31 
0·59 – 0·59 
0·63 – 0·63 
1·10 – 0·10 
5·44 – 2·44 

19·18 – 5·18 
22·48 3·52 
25·94 4·06 
27·83 –0·83 
29·60 1·40 
31·56 0·44 
32·01 4·99 
31·61 6·39 
30·68 –2·68 
29·83 –0·83 
28·40 4·60 
27·79 –10·79 
27·24 2·76 
28·15 –3·15 
29·65 –5·65 
31·23 – 3·23 
32·73 1·21 
32·71 1·29 
32·85 2·15 
32·60 6·40 
32·64 5·36 
32·26 – 6·26 
32·75 – 0·75 
34·36 1·64 
35·51 –5·51 
36·91 12·09 
39·45 –10·45 
41·40 4·60 
44·43 –8·43 
44·50 –2·50 
45·82 4·18 
47·49 2·51 
50·91 7·09 
56·20 12·80 
54·88 0·12 
50·73 –15·73 
51·14 –2·14 
51·98 0·02 
56·56 –1·56 
48·17 15·83 
35·57 –10·57 
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Age 

58 
59 
60 
61 
62 
63 
64 
65 

66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

79 
80 
81 
82 
83 
84 
85 
86 

87 
88 

100 

Ax 

23 
37 
36 
17 
11 
12 
12 
21 
18 
12 
6 

12 
12 
7 

13 
3 
4 
8 
3 
1 
6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 4.3 (cont.) 

Dynamic Model Static Model 

Ex 

27·45 
26·26 
27·11 
20·26 
14·52 
12·66 
13·89 
24·95 
20·52 
12·82 
9·97 
9·30 
864 
7·31 
6·51 
6·06 
524 
5·47 
2·70 
1·37 
1·40 
0·75 
0·78 
0·39 
0·26 
0·13 
0·05 
0·10 
0·06 
0·18 
0·10 
0·15 

Ax–Ex 

–4·45 
10·74 
8·89 

–3·26 
–3·52 
–0·66 
–1·89 
–3·95 
–2·52 
–0·82 
–3·97 

2·70 
3·36 

–0·31 
6·49 

–3·06 
–1·24 

2·53 
0·30 

–0·37 
4·60 

–0·75 
–0·78 
–0·39 
–0·26 
–0·13 
–0·05 
–0·10 
–0·06 
–0·18 
–0·10 
–0·15 

Ex 

29·34 
21·99 
28·95 
21·78 
15·67 
13·66 
14·97 
26·76 
21·81 
13·44 
10·29 
9·39 
8·54 
7·09 
6·19 
5·70 
4·85 
4·97 
2·41 
1·20 
1·21 
0·65 
0·67 
0·33 
0·22 
0·11 
0·04 
0·08 
0·05 
0·15 
0·08 
0·12 

Ax–Ex 

–6·34 
9·01 
7·05 

–4·78 
–4·67 
–1·66 
–2·97 
–5·76 
–3·81 
–1·44 
–4·29 

2·61 
3·46 

–0·09 
6·81 

–2·70 
–0·85 

3·03 
0·59 

–0·20 
4·79 

–0·65 
–0·67 
–0·33 
–0·22 
–0·11 
–0·04 
–0·08 
–0·05 
–0·15 
–0·08 
–0·12 

the use of an information criterion, as is discussed further in the final section. The 
choice of discount factors produces a fit approximately as good as that obtained 
by Forfar et al. (1988). Table 4.2 shows the results of the dynamic graduation. 

Table 4.2 can be compared with the table on pages 116–17 of Forfar et al. 
(1988). The value of the x2 test statistic (after regrouping to ensure all expected 
numbers of deaths are greater than 5) is 73.8, compared with 71·14 that they 
obtained. Thus the fits are almost equally as good on this basis. It can be seen by 
observation that the graduated values are quite similar to those in Forfar et al. 
(1988), and thus the non-parametric tests they used would also yield similar 
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results. The smoothness and the tightness of the fit can be adjusted easily for the 
dynamic regression procedure by altering the discount factors. 

The gradient of the dynamic straight line is roughly constant after about age 
SO, and it is negative between ages 20 and 30. For the early ages, the parameters 
are rather erratic due to the sparsity of the data. 

Table 4.3 compares the dynamic graduation results with the static version in 
Forfar et al. (1988). 

It is clear that the dynamic graduation method, with the discount factors 
relatively large (but nevertheless not equal to 1) gives a satisfactory fit. There is 
thus quite a lot of smoothing in this graduation. 

Only the x2 test statistic has been quoted in these examples. Further details of 
the graduation tests may be found in the original papers. It is possible to obtain 
better fits by altering the discount factors. In this case, the size of the x2 test static 
can be controlled, to a certain extent, by the graduator. A further discussion of 
this is given in the next section. 

5. COMMENTS AND CONCLUSIONS 

In practical applications, it may be necessary to extend a graduated mortality 
table to ages outside the range of the data. This is one advantage of using a 
mathematical formula, although such a formula does not necessarily produce 
‘sensible’ projections. One way of dealing with the problem, using the dynamic 
regression method, is simply to project a straight line using the parameters 
derived for the lowest or highest age, as appropriate. This might well produce 
reasonable results for the higher ages, but one cannot be sure that a sensible 
projection will be found. Previous smoothing procedures applied to graduation 
include the Whittaker–Henderson method, described in Benjamin & Pollard 
(1980) and that derived by Copas & Haberman (1983). The dynamic regression 
method shares with these methods the element of sequential smoothing, but it 
also contains the basic foundation of parametric curve fitting. It can be regarded 
as a combination of these two procedures. The amount of smoothing is governed 
by the discount factors, and is at present decided entirely by the modeller. 
However, the data obviously influence the choice, though not in an automatic 
way such as is implicit in the use of Akaike’s information criterion, AIC (for 
example). The author of this paper is investigating the possibility that the 
information criteria can be extended in order to be of use in this situation. Other 
authors have suggested using a criterion similar to AIC, but with an arbitrary 
choice of weighting for the goodness of fit and the number of parameters. The 
choice of the weighting by the modeller replaces the choice of the amount of 
smoothing, and the procedure is again not automatically determined by the data. 
The Whittaker–Henderson method makes explicit the trade-off between smooth- 
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ness and goodness of fit. The Whittaker–Henderson formula penalises the least- 
squares criterion by adding a term which depends on the smoothness of the 
curve. Using the notation of Section 11.71 of Benjamin & Pollard, the function to 
be minimised becomes: 

(4.8) 

where are the fitted values, and are the crude values. 
The first term in equation (4.8) is the least-squares quantity, and the second 

term, which involves the third differences of the fitted values, measures the 
smoothness of the fitted curve. Thus, the first term can be decreased by choosing 
fitted values close to the crude values, resulting in a less smooth fit, and the 
second term can be decreased by departing from the crude values in order to 
make the fit as smooth as possible. Minimising Q results in a compromise 
between the two terms, and hence between fit and smoothness. The relative 
importance of the two terms in equation (4.8) is determined by the choice of K. 
This has to be chosen subjectively by the graduator, and the similarity between 
the choice of K and the choice of the discount factors is clear. 

Copas & Haberman (1983) apply non-parametric methods using a kernel 
function. The simplest example of a kernel function given by Copas & Haberman 
(1983) is: 

Functions of this type can be used for graduation, and the degree of smoothing 
is controlled by h. When h is small the closeness of the fit takes precedence, and as 
h becomes larger, the smoothness increases. Again, the value of h has to be 
chosen by the graduator. In the words of Copas & Haberman, “the choice of h 
. . . is basically a subjective one, involving a compromise between reflecting 
important features of the data and yet not over-reacting to spurious chance 
fluctuations”. 

In the end, it seems sufficient to choose the discount factors by observation, 
with values in the region (0.9,1.0) appearing sensible. It would be more elegant to 
have a theoretical version of AIC available for this purpose. 

This paper has combined the parametric curve-fitting method of graduation 
with a method based on smoothing. As was noted by Copas & Haberman (1983), 
“the degree to which the estimated curve responds to features of the data can be 
controlled in a continuous fashion. By contrast, the smoothness of parametric 
methods can only be regulated in discrete steps”. 
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