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1. INTRODUCTION 

In the course of work undertaken as members of the Executive Committee of 
the Continuous Mortality Investigation Bureau in the preparation of graduated 
tables of mortality for the experiences of 1979–82, we have had occasion to 
make use of and develop a number of statistical techniques with which actuaries 
may not be familiar. and which are not fully discussed in the current textbook 
by Benjamin & Pollard (1980). though some of them have been referred to in 
previous papers by the CMI Committee (1974, 1976). We therefore felt that it 
would be useful to the profession if we were to present these methods com- 
prehensively in one paper. We do this with the permission of the other members 
of the CMI Committee, who do not. however, take responsibility for what 
follows, whether good or bad. 

This paper describes theoretical methods. The accompanying report, ‘The 
Graduation of the 1979–82 Experiences’, published by the CMI Committee, 
describes the results of applying these theoretical methods to the actual mortal- 
ity experiences gathered by the CMI Bureau, and a certain amount of cross- 
referencing has been inevitable. mostly from the report to this paper. 

In Section 2 of the paper we discuss the estimation of various measures of 
mortality for single ages. based on the data available to the CMI Committee. 
This is material familiar to actuaries, but discussion of it in a formal way sets 
the scene for what follows. In Section 3 we briefly comment on the reasons for 
graduation, and the preliminary calculations that are useful before embarking on 
a graduation procedure. In Section 4 we describe a family of related formulae that 
have been found useful for graduation, and which we use frequently in practice. 
In Section 5 we describe an alternative family, based on splines, that has been 
found useful in other circumstances. In Section 6 we discuss the various criteria 
that can be used for finding the ‘best’ parameters, among them the maximum 
likelihood and minimum parameters. In Section 7 we refer briefly to the 
numerical methods that can be used to find the optimal parameters for a 
particular criterion. 

In Section 8 we introduce the ‘information matrix’ from which an estimate of 
the variance-covariance matrix of the parameters can be found. In Section 9 we 
discuss the tests that can be applied to a single graduation; some of these are well 
known, others new. In Section 10 we discuss how one may choose between 
different graduations, based on different members of one family of formulae. In 
Section 11 we describe how confidence intervals for the estimated rates of 
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mortality can be obtained, using, in general, simulation methods. In Section 12 
we show how to reassess the data and the preferred graduation together. In 
Section 13 we consider how one may compare two different experiences, both 
before and after they have been graduated. In Section 14 we show how to 
construct a complete mortality table on the basis of the graduated rates of 
mortality, whatever these rates may be – qx, µx or mx. 

In Sections 15 to 17 we discuss fully certain examples of these graduation 
methods as applied to particular experiences chosen from the CMI data. These 
are particular examples of the data discussed further in the accompanying 
report. 

In our methodology we have attempted to reconcile the traditional methods 
used by actuaries for many years on both sides of the Atlantic with the more 
modern work of statisticians in the fields of survival data and life testing. Books 
describing the latter methods include Mann, Schafer & Singpurwalla (1974) 
Kalbfleisch & Prentice (1980). Elandt-Johnson & Johnson (1980) and Cox & 
Oakes (1984). Hogg & Klugman (1984) consider the problem of fitting distri- 
butions to data from general insurance: they apply the same sort of method- 
ology to this closely related problem. A recent book in the former line of 
development is London (1984). which applies statistical methods to Whittaker 
graduation methods (of which summation formulae are a special case). In our 
view, graduation by mathematical formula has so many advantages over Whit- 
taker methods that we prefer our method in all cases; at least we have not come 
across cases where we have found that a mathematical formula of some kind 
was not suitable. 

A certain amount of mathematical material is presented for completeness. in 
the Appendices. 

2. ESTIMATION OF MORTALITY RATES FOR SINGLE AGES FROM THE 

DATA 

2.1 The CMI Data 
We first review the form of data available in investigations undertaken on the 

lines of the CMI ones. Each investigation carried out by the CMI Bureau is for 
a particular class of business, for example those purchasing immediate annuities 
from a life office. It is assumed that the mortality experience of the lives in one 
investigation is homogeneous, except for variation by age, and possibly by 
duration. The experience of the two sexes is always kept separate. It has always 
been found that the experience of the two sexes is very different. Each investiga- 
tion is carried out for a particular number of calendar years. The results are 
reported to contributing offices for each calendar year, and they are then 
grouped into four-yearly periods for fuller reporting in CMI Reports and for 
possible graduation or preparation of standard tables. 

A census of the in-force is carried out at 1 January and 31 December of each 
calendar year of the investigation, the census for 31 December of one year being 
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identical with that for 1 January of the following year for any one office. Since 
the number of contributing offices may vary from year to year, the totals for 31 
December and 1 January may differ. Within a particular class of business the 
number of lives or policies (and in some cases also pound amounts) in force is 
counted, subdivided by age in integral years at the nearest birthday of the life 
assured, annuitant or pensioner, and (in most investigations) by curtate dura- 
tion (in years since entry). In some cases offices are not able to classify by nearest 
age, and use an approximation thereto. which may require that the numbers at 
neighbouring ages on some other age definition are averaged to give an estimate 
of the numbers at each nearest age. 

During the course of each year the number of deaths by lives, policies or 
amounts as appropriate is recorded by the contributing offices, subdivided by 
age nearest birthday at death (and not by an approximation thereto), and 
(where necessary) also by curtate duration at death. 

2.2 Central and Initial Exposed to Risk 
This form of collection of data allows an estimate to be made of the exact 

period of exposure to risk of the lives concerned. An exact calculation of this 
period of exposure would count those days when each life concerned was at risk 
of entering the count of deaths if he had died on that day, that is, an exact day 
count. Such a day count is not available, but the periodic censuses can be treated 
as giving an exact value for the count of the in-force on the day of the census, 
and the trapezium rule can be used to obtain an approximate integration over 
the period of investigation. If more frequent censuses were available, say quar- 
terly or monthly, then a more accurate estimate of the exact exposure could be 
made by using the trapezium rule over the shorter periods between censuses. The 
trapezium rule simply averages the in-force at the ends of each year (quarter, 
month) in order to estimate the integral over the period. In some circumstances 
a more elaborate method such as Simpson’s rule might be justifiable, but this has 
never seemed necessary for the CMI data. 

The exposure to risk calculated in this way gives what is called a central 
exposed to risk. If the period of exposure for each death is continued up to the 
time when that life would otherwise have left the investigation, and this total 
extra exposure is added to the central exposed to risk, the initial exposed to risk 
is obtained. It is usual to estimate this extra period of exposure by adding half 
the number of relevant deaths, and this is done for the CMI data. In other 
circumstances a different fraction may be appropriate, or it may be possible to 
calculate the period of extra exposure exactly. These two forms of exposed to 
risk are consistent with two different hypotheses about the nature of the mortal- 
ity process and lead to estimates of alternative types of death-rate-the force of 
mortality, µ, and the probability of death, q. Both have their justification and 
their uses. 

Division of the number of deaths at a particular age and duration within one 
investigation by the corresponding central exposed to risk leads to an estimate 
of µ (or of the central death-rate, m), and division of the number of deaths by 
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the initial exposed to risk leads to an estimate of q, in each case for an 
appropriate age and duration. We denote the number of deaths recorded in a 
particular investigation at age x and duration d by A x,d, or where duration is not 
relevant by A,, or where there is no ambiguity just by A. We denote the 
corresponding central exposed to risk by or or where there is no 
ambiguity just by Rc, and the corresponding initial exposed to risk by 
or Ri. In some cases we refer to either Rc or Ri just as R. 

We can denote by or or just by µ* the estimate derived as A/Rc, and 
by or or just by q* the estimate derived as A/Ri. We discuss the justifica- 
tion for these estimators below. The estimators µ* and q* can be described as 
crude rates. It will be explained below that in each case, under certain assump- 
tions, the crude rate would be a satisfactory estimate of the corresponding true 
rate, if no information about the rates at neighbouring ages were available. 

2.3 Estimation of q 
We first consider the derivation of q*, the estimator for q. If it is assumed that 

R persons enter observation at exact age x and exact duration d, and continue 
under observation until they survive to exact age x + 1 and exact duration 
d + 1 or die sooner, that the probability of death within the year for each of 
them is q, and that the death or survival of each is independent of the death or 
survival of each of the others, then the appropriate probability model is one of 
independent Bernoulli trials. The random variable, K, which represents the 
number of deaths that occur in the year, is binomially distributed with par- 
ameters R and q, and the probability of k deaths is 

(2.3.1) 

The expected number of deaths is E[K] = Rq, and the variance of the number 
of deaths is Var[K] = Rq(1 – q). Provided the expected number of deaths is 
reasonably large, in practice bigger than about 5, then K is approximately 
normally distributed with mean Rq and variance Rq(1 – q). 

If the value of q is unknown, but it is observed that A of the R persons do die 
and hence R – A of them survive, then the maximum likelihood estimator of 
q is q* = A/R. This same estimator is obtained by equating moments 
(actual = expected). The variance of q* is q(1 – q)/R. Deriving this simple 
result may remind the reader how maximum likelihood estimators are derived. 

If the probability of death is q, then the probability that A deaths occur is 

(2.3.2) 

The first factor of this expression does not depend on q, so we can describe 
the likelihood of A deaths as a function of q, L(q), where 

L(q) = qA(1 – q)R–A (2.3.3) 
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The natural logarithm of L(q) is 

L*(q) = log L(q) = A log (q) + (R – A) log (1 – q). (2.3.4) 

The value of q that maximizes L(q) is the same as that which maximizes L*(q). 
It can be found by differentiating L* with respect to q and equating to zero the 
derivative 

(2.3.5) 

This is zero when q = A/R, so that the maximum likelihood estimator of q 
is 

(2.3.6) 

The expected value of q* is 

and the variance of q* is 

(2.3.7) 

Alternatively the variance of q* can be derived (at least asymptotically as R 
increases) from the reciprocal of minus the expected value of the second deriva- 
tive of L*(q) with respect to q. This is a special case of a more general result 
applicable where there are several parameters (see Section 8 below). Minus the 
second derivative of L*(q) in this case is 

(2.3.8) 

The expected value of this, when we put E[A] = Rq, is 

(2.3.9) 

The reciprocal of this is q(1 – q)/R, which indeed equals Var [q*], as above. 
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We do not know the true value of q, so in either case we substitute the maximum 
likelihood estimate, q* = A/R. The variance of q* can therefore be estimated 
as 

(2.3.10) 

and from this confidence intervals for q* can be derived (see §2.6). Note that the 
result in this case is exact. In general this derivation is only asymptotically 
correct, that is the result approaches the correct answer as the sample size 
increases. Note also that in the above derivation, R represented the initial 
exposed to risk, Ri. 

2.4 Estimation of µ 
We now consider the derivation of µ*, the estimator for µ. We assume that a 

group of persons is observed between ages x and x + 1 and durations d and 
d + 1, for various periods within this region, so that person i enters observation 
at age x + t1 and leaves it either by death or survival at age x + ui, but always 
within the region (x, x + 1), (d, d + 1). We assume first that the force of 
mortality µ is constant for all persons within this region, and that the death or 
survival of each is independent. If the total time that the persons are under 
observation is 

(2.4.1) 

then the random variable, K, representing the number of deaths that occurs in 
the period of observation, has a Poisson distribution with mean and variance 
both equal to Rµ (see Sverdrup, 1965). If the expected number of deaths is 
reasonably large, in practice bigger than about 5, then K is approximately 
normally distributed with mean Rµ and variance Rµ. 

and the contribution to the likelihood of one person, j, who dies is 

We can derive the likelihood in two ways. At this point we assume that the 
force of mortality, µy, is a function of the attained age y, but not of the duration 
within the interval (d, d + 1). From the usual actuarial principles we see that 
the contribution to the likelihood of one person, i, who survives is 

(2.4.2) 

(2.4.3) 

We now revert to the assumption that µx is constant for all ages within the 
interval (x, x + 1) and equals µ. The contribution to the likelihood of one 
person, i, who survives is 

(2.4.4) 
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and the contribution to the likelihood of one person, j, who dies is 

(2.4.5) 

The total likelihood, L(µ), is the product of the individual contributions to the 
likelihood. Thus 

(2.4.6) 

where the first term gives the product of the contributions from all those who 
survive, and the second term gives the product of the contributions of those who 
die. Therefore 

(2.4.7) 

Alternatively, from the fact that K has a Poisson distribution, the probability 
of A deaths is 

If we ignore terms that do not include µ, we get the likelihood 

as above. The logarithm of the likelihood is 

and its derivative is 

(2.4.8) 

(2.4.9) 

(2.4.10) 

which equals zero when 

(2.4.11) 

(2.4.12) 

Hence the maximum likelihood estimator is 

The expected value of µ* is 

and the variance of µ* is 

(2.4.13) 

(2.4.14) 
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(2.4.15) 

Alternatively (at least asymptotically as R increases) the variance of µ* can 
be derived (using the same method as before) from the reciprocal of minus the 
expected value of the second derivative of L*(µ) with respect to µ. This is 

(2.4.16) 

The expected value of this, if we put E[A] = Rµ, is 

(2.4.17) 

The reciprocal of this is µ/R which indeed equals Var[µ*]. In this case the 
result is exact. We do not know the true value of µ, so we substitute the 
maximum likelihood estimate, µ * = A/R, to get an estimate of the variance of 
µ* as 

(2.4.18) 

Note the resemblance of this formula to the variance for q*, given by equation 
(2.3.10). In the formula for q* the exposed to risk, R, is the number of persons 
who started the year of observation, which corresponds to an initial exposed to 
risk, Ri. In the formula for µ* the exposed to risk, R, is the total period of 
observation lived by those observed, which corresponds to the central exposed 
to risk, Rc. 

2.5 The Traditional Actuarial Approach 
The circumstances in which these derivations are applicable are wider than we 

have described above. The traditional actuarial assumption, mentioned briefly 
by Benjamin & Pollard (1970) and described much more fully by Batten (1978) 
and Greville (1978), is that the binomial formula for the derivation of q* 
remains applicable when the exposure is calculated, not only when a particular 
number of lives, R, is observed for a full year each (or until previous death), but 
also when the total exposure is made up from a number of shorter periods of 
exposure, i.e. the central exposure, to which is added an estimate of the out- 
standing fraction of a year for the deaths, giving R in total. The Balducci 
hypothesis that, for 

(2.5.1) 
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is adduced to justify the procedure. (The Balducci hypothesis is equivalent to the 
assumption that, for the reciprocal of lx + t is a linear function of t.) 

This procedure has been used by the CMI Committee in all its previous 
graduations, explicitly so in its 1974 and 1976 papers. However, Hoem (1980 
and 1984) has questioned the validity of q* = A/Ri as a maximum likelihood 
estimator in the presence of random withdrawals, and the Balducci assumption, 
which implies that the force of mortality is falling over each year of age, is an 
uncomfortable one. Roberts (1987) has pointed out that the possible bias in the 
estimation of q by this method is almost always larger than that of the estima- 
tion of µ on the Poisson model. This possible bias is larger if the force of 
mortality is changing rapidly over the year of age. Scott (1986) has observed 
that, if the total exposure is made up from a number of fractional periods of a 
year, rather than a number of whole years, the variance of the actual number 
of deaths is increased, and the variance of the estimator q* also increases. It is 
very likely that this is the case in practice, as individuals effect policies through- 
out their years of age and throughout the calendar year. 

The Poisson model has been shown by Sverdrup (1965) to hold. also for 
multiple forces of decrement. It is useful also when the underlying force of 
mortality is a function of two variables, such as age and duration since entry, 
but can be assumed to be constant over some region (x, x + 1), (d, d + 1). 
Scott (1982) has shown that the Poisson model also holds when the force of 
mortality varies within the year of age, provided that the numbers of lives 
exposed to risk remain constant (i.e. each person who dies or withdraws is 
immediately replaced by another person at exactly the same age). In this case the 
estimator A/R gives an estimate, not of a constant µ, but of 

(2.5.2) 

which is not very different from 

(2.5.3) 

provided that l does not change rapidly over the year of age (x, x + 1). 

2.6 Confidence Intervals 
The true values of q or µ are unknown and q* or µ* are the corresponding 

maximum likelihood estimates. Confidence intervals for these estimates can be 
obtained in the usual manner, either roughly on the basis of an appropriate 
normal approximation or accurately with due allowance for the true underlying 
distribution. If A, the actual number of deaths, is sufficiently large, the simplest 
normal approximation is generally satisfactory. However, when A is very small 
or very large (relative to R the exposed to risk) the simplest normal approxima- 
tion can produce anomalous results—for example, in the case of a confidence 
interval for q an upper limit which is greater than 1 or a lower limit which is 
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negative, or, in the case of a confidence interval for µ, a negative lower limit. In 
such a situation it is clearly necessary either to use a better approximation or to 
derive the confidence interval accurately, having due regard to the true under- 
lying distribution. In the final paragraph of this section we discuss briefly the 
question as to when it is desirable to work with accurate confidence intervals. 
For completeness, however, we first describe in greater detail both the ap- 
proximations to and the derivation of the accurate confidence intervals for q and 
µ (see Kendall & Stuart, 1979 or Larson, 1982). 

Suppose that a is given (0 < < ½) and that we seek a 100(1–2 ) per cent 
confidence interval for q or µ. In relation to the standard normal distribution let 
z be the abscissa which gives probability a in the upper tail ‘above z ’. (For 
example, if we wish a 95% confidence interval, we put = 0.025 and 
z = 1.960.) 

Let R be the exposed to risk corresponding to A, the actual number of deaths. 
(Note that R is the initial or central exposure as appropriate.) We consider in 
turn confidence intervals for (a) q with initial exposures (b) µ and (c) q with 
central exposures. 

(a) Confidence intervals for q (with initial exposure to risk) 

In this first case (see §2.3 above) the distribution for A is binomial. Our 
estimator for q is q * = A/R, which has expected value q. If now we 
assume that the observed crude rate of mortality is one value from a 
normal distribution for which the variance is given exactly by equation 
(2.3.10), then the appropriate confidence interval for the mean of the 
distribution is 

i.e. (2.6.1) 

It should be noted, however, that the upper limit of this interval is 
greater than 1 when 

and that the lower limit is negative when 

Crucial to the derivation of the above confidence interval is the assump- 
tion of a normal distribution with known variance. Moreover, in general 
the assumed variance will not be the correct value. An alternative 
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approach (used by the CMI Committee, 1974) which avoids any inac- 
curate assumption concerning the variance and depends solely on a 
normal approximation, is provided by the fact that, for z > 0, the two- 
sided inequality 

is equivalent to the single inequality 

Recall now that the distribution of A has expected value Rq and 
variance Rq(1 – q). Accordingly, if we assume that A has a normal 
(rather than binomial) distribution, the appropriate confidence interval 
for q is 

(2.6.2) 

The lower limit of this interval is never negative and is zero only when 
A = 0. The upper limit of this interval is never greater than 1 and equals 
1 only when A = R. 

Both the intervals (2.6.1) and (2.6.2) are approximate. An accurate 
confidence interval is readily provided by well-known properties of the 
binomial distribution. For this interval, if A = 0 the lower limit is 0; if 
A > 0, the lower limit is the unique value of q (between 0 and 1) for which 

or, equivalently, (2.6.3) 

If A = R, the upper limit of the interval is 1; if A < R, the upper limit 
is the unique root (between 0 and 1) of the equation 
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or, equivalently (2.6.4) 

The roots of these equations can readily be found by one of the 
methods of successive approximation, such as the secant method. (We 
have found that useful starting values for this method are q* and 
q* ± k[q*(1 – q*)/R]1/2, where say.) 

(b) Confidence intervals for µ (with central exposure to risk) 
In this second case (see §2.4 above) the distribution of A is Poisson. Our 
estimator for µ is µ* = A/R, which has expected value µ. If we assume that 
the observed crude rate of mortality is one value from a normal distribu- 
tion for which the variance is given exactly by equation (2.4.18), then the 
appropriate confidence interval for µ is 

i.e. (2.6.5) 

Note that, if A < the lower limit of this interval is negative. As with 
the corresponding confidence interval for q (i.e. equation (2.6.1) above), 
this approximation depends on the assumption of a normal distribution 
with known variance (which will in general be incorrect). To avoid this 
second assumption we observe that, for z > 0, the two-sided inequality 

(2.6.6) 

is equivalent to the single inequality 

Accordingly, if we assume that A has a normal (rather than Poisson) 
distribution with mean and variance both equal to = Rµ, the appro- 
priate confidence interval for I is given by equation (2.6.6) above (with 

Since the resulting confidence interval for µ is 

(2.6.7) 
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The lower limit of this interval is never negative and is zero only when 
A = 0. 

An accurate confidence interval for is easily found from the true 
distribution. If A = 0, the lower limit is 0; if A > 0, the lower limit is the 
unique positive root of the equation 

or equivalently, (2.6.8) 

The upper limit is the unique positive root of the equation 

or equivalently, (2.6.9) 

Substituting = Rµ in the equations (2.6.8) and (2.6.9) above, we 
immediately obtain an accurate confidence interval for µ. (Again the 
secant method may be used to solve these equations.) 

(c) Confidence intervals for q (with central exposure to risk) 
In §6.5 below we show how with central exposures we may proceed 
directly to a formula graduation of qx. The Poisson model remains 
appropriate, the parameter of the distribution being –R log (1 – q). 
Accordingly in this situation we can obtain confidence intervals for q by 
using the results in (b) above and simply replacing µ by – log (1 – q) i.e. 
by calculating the value of q corresponding to a lower or upper limit for 
µ from the equation 

q = 1 – e–µ 

In each of the above cases it is of interest to consider when it is 
preferable to determine a confidence interval accurately, rather than by a 
normal approximation. We have investigated the accuracy of the 
approximate method for different values of and for various values of R 
and A (in the case of q) and of A (in the case of µ). We do not report in 
detail on our investigations. Since the confidence intervals are only a 
guide, very great accuracy is not required. In general practical rules are as 
follows: in relation to a confidence interval for q, approximation (2.6.1) 
will suffice provided that A is not too extreme-say if both A and R – A 
are greater than 10; in relation to a confidence interval for µ, approxima- 
tion (2.6.7) will suffice provided that A is not too small-say if A is greater 
than 10. However, since the relevant calculations are simple for a com- 
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puter, we have generally used the exact method for A 60, but this is 
probably unnecessarily precise in most cases. 

3. GRADUATION: THE ESTIMATION OF RATES FOR A 

NUMBER OF AGES 

3.1 Justification for graduation 
So far we have discussed the estimates of q or µ for only one age. In an actual 

experience we usually observe data for a number of consecutive ages at integer 
intervals, so we have two sequences {Rx}, a sequence of exposed to risk, and 
{A,}, a sequence of numbers of deaths, both described as being ‘at age x’. It is 
usual (and convenient) to index these by an integer variable, x. This is not an 
essential practice, but its adoption means that the quotient Ax/Rx is often the 
crude death rate (q, µ or m), not at exact age x (x + ½ for µ), but at some other 
age x + b (x + b + ½ for µ). In determining b the reader will recognise the 
problems associated with classifying deaths by age nearest birthday at time of 
death, age last birthday at the 1st January prior to death, etc. In the case of the 
CMI studies, in which deaths are always classified by age nearest birthday at 
time of death, the value of b is – ½. Thus, when one refers to the crude rate of 
mortality at nearest age x, Ax/Rix gives an estimate of qx–1/2, and Ax/Rcx gives an 
estimate of µx, or of mx–1/2. 

When crude mortality rates for a number of consecutive ages are observed it 
is usual to find that they appear to run fairly smoothly, at least if the numbers 
of deaths at each age are largish. The justification for graduating the experience 
is the assumption that the true mortality rates at each age can be represented 
by a reasonably simple and smooth mathematical function. Simplicity can be 
defined as requiring fairly few parameters and smoothness can be defined as 
having relatively small successive differences when the interval of differencing is 
taken as one year, as discussed for example by Barnett (1986). Before a math- 
ematical graduation is carried out it is desirable to display the crude data 
graphically. Since mortality rates typically rise exponentially with age over the 
main adult age range it is convenient to plot the crude rates with a vertical 
logarithmic scale having four cycles, e.g. from .0001 to 1.0. For each age x the 
confidence interval (qlx, qhx) described in §2.6 can be plotted around the crude 
rate q*x, if q is the function under consideration, or (µlx, µhx) can be plotted around 
the crude rate µ*x, if µ is the chosen function. The confidence intervals form 
gates, within which most of the graduated rates need to fall if the graduation is 
to be considered satisfactory. 

3.2 Duplicates 
We have assumed so far that there are no duplicates in the investigation, that 

is, the investigation records either independent lives or policies such that no 
person holds more than one policy. In practice it is common for individuals to 
hold more than one policy and hence to appear more than once in the count of 
exposed to risk or of deaths. This is even more pronounced if the investigation 
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records pound amounts (of sum assured, annuity, etc), since each individual 
contributes a considerable number of pounds. The adjustments to be made for 
duplicates will be discussed in §6.2 below, where it will be shown that the 
presence of duplicates does not bias the crude rates, but does affect the calcula- 
tion of their confidence intervals. The effect is that the variance of q* or µ*, 
which enters into the calculation of (ql, qh) or (µl, µh), needs to be multiplied by 
an appropriate variance ratio, which is at least as big as the average number of 
policies per life, or pounds per life, as appropriate, and equals this average only 
if the number of policies or pounds is the same for all lives. 

A practical way of allowing for duplicates is to divide the actual deaths and 
the exposed to risk at each age by the appropriate variance ratio before carrying 
out any further calculations. As will be shown in §6.2 the existence of duplicates 
does not change the expected value of the number of deaths, but does alter the 
variance. If each value of A, is replaced by Ax/rx and each value of Rx is replaced 
by Rx/rx, where rx is the appropriate variance ratio, then most of the calculations 
can proceed as if there had been no duplicates. (This point is discussed further 
in §6.2 below). The appropriate variance ratios may be those based on the actual 
experience, age by age, or on some other experience that may be considered to 
have a similar pattern of duplicates. In the latter case, there is no justification 
for assuming that irregularities in the ratios from age to age are carried forward 
from one experience to another, and it is therefore desirable to smooth the 
variance ratios before applying them. For this purpose, however, an elaborate 
graduation method may not be justified. 

4. A FAMILY OF RELATED FORMULAE 

4.1 Graduation by mathematical formula is, of course, a well-known tech- 
nique. In appropriate circumstances the power of modern computers makes it 
a very valuable tool—even with formulae of some complexity. The celebrated 
laws due to Gompertz and Makeham, namely 

and 

(4.1.1) 

(4.1.2) 

are among the earliest examples of formulae adopted for graduation purposes. 
More recently, the assured lives Table A1967-70, the a(90) Table for annuitants, 
the PA(90) Table for pensioners and the FA1975-78 Table for female assured 
lives have all been constructed on the basis of graduations by formula. For- 
mulae used include 

(4.1.3) 

(suggested by Barnett—see CMI Committee, 1974) and 
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(4.1.4) 

(due to Wilkie—see CMI Committee, 1976), where pol(x) denotes an appro- 
priate polynomial in x of low degree, often linear or quadratic. 

The right-hand sides of each of the above equations may be considered to be 
particular examples of a more general expression. Suppose that r and s are 
non-negative integers, not both zero, and that = ( 1, 2, . . . , r+s) is a vector 
of ‘coefficients’. 

Define 

(4.1.5) 

with the convention that, if r = 0, the right-hand side of equation (4.1.5) is to 
be interpreted as consisting solely of the exponential term 

and that, if s = 0, it is to be considered as comprising only the polynomial term 

We adopt this convention throughout this paper. We may also write 

where pol1 (x) and Pol2(x) are polynomials in x of orders r and s respectively. 
(The order of a polynomial equals 1 plus its degree.) We call the 
‘Gompertz–Makeham formula of type (r, s)‘—or simply the ‘GM(r, s) formula’. 

It is trivial to verify that the right-hand sides of equations (4.1.1), (4.1.2), 
(4.1.3), and (4.1.4) are of the form with (r, s) = (0, 2), (1, 2), (2, 2) and 
(0, n)—for some positive integer n—respectively. 

Note also that, if qx is defined by equation (4.1.3), then 

while equation (4.1.4) implies that 

for some positive integer n. Accordingly, for a given coefficient vector 
it is convenient to define the ‘Logit Gompertz–Make- 

ham formula of type (r, s)’—or simply ‘the LGM(r, s) formula’—by the equa- 
tion 
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(4.1.6) 

Three types of death rate which arise naturally in different investigations are 
qx, µx, and mx. Our remarks above indicate that, with a suitable coefficient 
vector a, a formula of the type 

may frequently produce a satisfactory graduation--often with very small values 
of r and s. 

According to circumstances a Gompertz–Makeham (GM) formula or a Logit 
Gompertz—Makeham (LGM) formula may be the more appropriate. The 
range of each is of some relevance. The possible range of µ is from zero to 
infinity, whereas the possible range of q is from zero to 1. Provided that the 
exponential part (of order s) of a GM formula sufficiently swamps any negative 
element in the first polynomial (of order r), the possible range of values given 
by such a formula may be from zero to infinity, so that this formula is poten- 
tially more suitable for µ than for q. The possible range of a corresponding 
LGM formula is from zero to 1, so that this formula may be more suitable for 
q than for µ. These are not, however, absolute rules. 

4.2 Orthogonal polynomials 
In its general form the GM(r, S) formula contains two polynomials-(only 

one, if either r or s is zero). In equation (4.1.5) above these polynomials are 
defined (by the coefficient vector a) naturally in terms of successive powers of 
x, i.e. {1, x, x2, x3, . . .}. This might be considered as the ‘obvious’ basis for 
polynomials. In certain situations, however, it may be more appropriate to use 
an alternative basis. Any sequence of polynomials {p0(x), p1(x), p2(x), . . .}, in 
which pi(x) (i = 0, 1, 2, . . .) is of degree i, provides a basis for the set of 
polynomials. 

For example, consider the first type of Chebycheff polynomials {Ci(x)}, 
defined by the equations 

(4.2.1) 

and the recurrence relation 

(4.2.2) 

Thus 

etc. (see Conte & de Boor, 1980). If p(x) is any given polynomial of order n (i.e. 
of degree n – 1), then p(x) is uniquely expressible in the form 
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(For example, if n = 4 and p(x) = 1 + x + x2 + x3, then It 
is this uniqueness property which characterises a basis. 

The idea of an orthogonal basis arises naturally in the problem of fitting a 
curve to a given set of data. Given m ‘data’ points {((xj, yj), j = 1, . . . , m} and 
a set of positive weights {w1, . . . , wm} we may for example try to find fn(x), the 
polynomial of order n which best fits the data, in the sense that the value of 

(4.2.3) 

is minimised. 
If the ‘natural’ basis {1, x, x2, . . . xn–1} is used to define fn(x), we write 

Similarly we may also find fn+1 (x), the best-fitting polynomial of order n + 1. 
This will be 

Note that in the last equation the coefficient vector is 
whereas in the previous equation it is In general the 

values of may be very different from the values of 
Thus, when the natural basis is used, the consequence of increasing by one the 
degree of the best-fitting polynomial is therefore not immediately obvious from 
consideration of the value of the ‘additional’ coefficient alone. 

It is, however, possible to choose an ‘orthogonal’ basis (which in this par- 
ticular situation will depend on {(xi, wi), i = 1, . . . , m} such that the best- 
fitting polynomial of order n + 1 is obtained from the best-fitting polynomial 
of order n simply by adding a multiple say) of the (n + 1)th basis function. 
In this situation the magnitude of the additional coefficient may well be capable 
of a simple interpretation and it is perhaps of interest to describe briefly the 
appropriate orthogonal basis. 

For a given set of data points {(xj), j = 1, . . . , m} and positive weights 

(w1, . . . , wm) the basis of orthogonal polynomials, {pi(x), i = 0, 1, 2, . . .} 
(with pi(x) of degree i), must be chosen so that 

(4.2.4) 

where er is some specified non-zero real number (usually I). (It is readily verified 
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that equation (4.2.4) does indeed define a unique set of polynomials (see, for 
example, Conte & de Boor, 1980).) 

Having constructed our sequence of orthogonal polynomials, we define fn(x), 
the best-fitting polynomial of order n, as 

(4.2.5) 

the coefficients being chosen to minimise the expression (4.2.3) above. This 
means that the coefficients must be chosen to minimize 

(4.2.6) 

The appropriate coefficient vector a is easily obtained by noting that, at the 
minimum point, all the partial derivatives are zero. 
For k = 1, . . . , n we therefore have 

i.e. 

Interchanging the order of summation in the right-hand side of this last 
equation, we obtain 

by equation (4.2.4) above. 
Hence 

(4.2.7) 

The value of the ‘additional’ coefficient may be capable of a relatively 
simple interpretation. 

The ‘continuous’ form of orthogonal polynomials, in relation to a particular 

which does not depend on n. This means that, if defines 
the best-fitting polynomial of order n and defines the 
best-fitting polynomial of order n + 1, then 
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real interval [a, b] and given positive ‘weight function’ w(x), is obtained by 
constructing a sequence of polynomials {pi(x), i = 0, 1, 2, . . .} such that 

(4.2.8) 

where, as before, er is some non-zero real number. (This corresponds to equation 
(4.2.4) above.) 

In relation to the interval [ – 1, 1] the Chebycheff polynomials described 
above are orthogonal with weight function w(x) = [1 – x2]–1/2. In relation to 
the same interval when w(x) 1, we obtain the Legendre polynomials {Li(x)}, 
defined by the initial values 

(4.2.9) 

and the recurrence relation 

(4.2.10) 

There exist other well-known sets of polynomials orthogonal, each for a 
specified weight function w(x), over the interval [–1, 1]. 

4.3 Age scaling 
It is sometimes convenient to express our Gompertz–Makeham or Logit 

Gompertz–Makeham (r, S) formula in terms of a particular set of orthogonal 
polynomials. In this case some form of age scaling is usually required. The 
polynomials are expressed in powers not of x, but oft = (x – u)/v, where u and 
v are suitably chosen. We may choose u and v so that over the range of ages in 
question the range of t is 0 to 1 or – 1 to 1, or at least approximately so. For 
example, in a pensioners’ investigation over the age-range 60 to 110 (say) we 
might let t = (x – 85)/25. Age 60 then corresponds to t = – 1 and age 110 to 
t = 1. 

We can bring together the above ideas as follows. Suppose that {pi(x), i = 0, 

1, 2, . . . } is a given basis of polynomials and that u and v are specified. For a 
given coefficient vector we define 

(4.3.1) 

where, as before, the convention is adopted that, if r = 0, the first term on the 
right-hand side of the equation is omitted and that the second term is omitted 
when s = 0. 

Following the discussion in §4.1 above, we may also define 
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(4.3.2) 

To the casual reader the notation of these last two equations may appear 
somewhat daunting! Although the full notation is necessary for total precision, 
fortunately it is seldom necessary to use it completely. Provided that the set of 
basis polynomials {p1(x)} and the values of u and v are clearly understood, we 
may revert to our earlier notation. (Such would be the situation, for example, 
if we use the Chebycheff polynomials described above and the variable 
t = (x – 70)/50, as in §15.) 

In this case the left-hand sides of equations (4.3.1) and (4.3.2) may be replaced 
by the simpler notations and respectively. Further simpli- 
fication may be possible. For example, if we are discussing the class of formula 
for which r = 1 and s = 2 and the only item not clearly specified is the 
coefficient vector x, we may use the shorter notation GM,(x) and LGM α (x) 
respectively. 

5. SPLINES AS AN ALTERNATIVE FORMULA 

5.1 In the previous section we have restricted our discussion to the classes of 
GM(r, s) and LGM(r. s) formulae. In §6 below we indicate how these formulae 
may be used in curve-fitting. It is important, however, to realise that the remarks 
in §6 apply in a completely general context and not simply in relation to these 
two classes of formulae. In certain situations different formulae may be appro- 
priate. For example. one might consider an equation of the kind 

with 

qx or µx or mx = fx(x) 

(5.1.1) 

(as used in the a(55) mortality table for annuitants) or 

fx(x) = (5.1.2) 

(as used in the A1949-52 mortality table for assured lives). Other formulae have 
proved useful in practical situations (see, for example, Heligman & Pollard, 
1980). 

An alternative tool is provided by the use of splines. These have formed the 
basis of graduation for the last two sets of national life tables and can be useful 
in a wide variety of practical situations (see McCutcheon, 1981, 1984, and 1987). 
Splines are just as much mathematical formulae as any of the examples des- 
cribed above. Since, however, actuaries may be less familiar with the use of 
splines, in our next paragraph we describe very briefly their salient features. For 
a more detailed discussion the reader should refer to de Boor, (1978). 
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5.2 Splines 

On Graduation by Mathematical Formula 

A spline is a piecewise polynomial function for which the maximum possible 
number of derivatives exist. More precisely, suppose that 
a = x0 < x1 < . . . < xm+1 = b. A spline s of degree k, defined on the interval 
[a, b] with internal “knots” x1, x2, . . . , xm, is a function such that on each 
subinterval [xi, xi+1] (i = 0, 1, . . ., m) s(x) is given by a polynomial in x of 
degree k (or less). Moreover, the (m + 1) polynomials which define s fit together 
in such a manner that s is differentiable (k – 1) times at each of the internal 
knots. 

It is this last condition which distinguishes splines from other piecewise 
polynomial functions. 

Let n = m + k + 1. It is easily seen that, for specified internal knot posi- 
tions {x1, x2, . . ., xm}, n ‘coefficients’ (or parameters) are needed to define a 
spline s of degree k (see McCutcheon, 1981). (The spline is simply a linear 
combination of appropriate ‘basis’ functions.) We may therefore write 

s(x) = fx(x) (5.2.1) 

where is the vector of coefficients defining the spline. In the 
above discussion, which relates to a spline with predetermined knot positions, 
fx(x) is linear in each of the coefficients By considering the knot 
positions themselves to be further ‘coefficients’, we can define the most general 
m-knot spline of degree k on the interval [a, b]. In this case we let 
n = m + (m + k + 1) = 2m + k + 1 and put 

s(x) = g α (x) (5.2.2) 

where, as before, is the defining coefficient vector. Now, 
however, the coefficients must all lie in the interval (a, b) and 
specify the positions of the knots, while then determine the 
spline in relation to these knots (duly ordered) by an appropriate basis. Multiple 
knots may occur. 

This latter situation gives rise to the technique of ‘variable-knot’ spline 
graduation, described by McCutcheon (1984). It is important to realise that, 
although in this case g α (x) is non-linear in (the knot positions), 
there is no difference in principle between more traditional formulae (such as 
those described above) and splines. In all cases the curve-fitting formula is 
defined by an appropriate coefficient vector a. 

In practice cubic splines (for which k = 3) are often a useful tool. 

6. CRITERIA FOR OPTIMISATION 

6.1 In this section we consider alternative methods of obtaining graduations 
by formula for q-type, p-type, and m-type crude rates of mortality. The prin- 
cipal methods which we describe in some detail are (1) maximum likelihood and 
(ii) minimum x2. One advantage of maximum likelihood methods is that they 
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lead naturally to estimates for the variance-covariance matrix of the underlying 
parameters—i.e. the coefficients of the particular formula which we are using. 
(See §8 below.) As the volume of data increases, the distribution of maximum 
likelihood estimators tends to the normal distribution. Asymptotically such 
estimators are unbiased and of minimum variance. 

If computing power is limited, or if one is dependent on certain of the 
available packages, it may be simpler to graduate by the minimum x2 method. 
In this case, having obtained the coefficients of the best graduation, by falling 
back on certain asymptotic properties, we may often estimate the appropriate 
variance–covariance matrix quite simply by considering the likelihood function 
—without the need to maximize it. This is discussed in §8 below. 

It is worth noting that, by making reasonable approximations, in all cases 
with sufficient data we can reduce the maximization of the likelihood to an 
equivalent minimum x2 calculation. This is discussed below. 

For graduation of each of q, µ, and m, we consider first the appropriate 
likelihood and x2 functions. In §7 we refer briefly to possible ways of carrying 
out the necessary calculations. 

For reference purposes in the Appendices we give further details of some of 
the calculations which may be required, such as the calculation of certain first 
and second partial derivatives. 

In most practical situations, maximum likelihood and minimum x2 lead to 
very similar graduations, although the resulting coefficient vectors are generally 
different for the two solutions. This is illustrated by examples later in this paper 
(see §15 below). 

Suppose, then, that we are given an appropriate function fx=(x) with n coef- 
ficients We discuss below how this function can be used to 
graduate the three kinds of mortality rate. (In the practical examples in §15 
below we shall let 

or 

where r + s = n and r and s are suitably chosen. At present, however, it is 
sufficient to consider a completely general situation.) 

6.2 Graduation of q-type rates (using initial exposures) 
Let 

(6.2.1) 

The notation qx or qx( ) thus denotes the rate of mortality at exact age x. The 
latter form, qx( ), serves simply to remind us that qx depends on a. 

We assume first that there are no duplicates and that the available exposures 
{Rx} are in initial form. In this simplest situation a binomial model usually 
provides the basis for further analysis, independence of the data being assumed 
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at distinct ages. We therefore assume that 

(6.2.2) 

the notation B(N, q) being used to denote a binomial distribution with par- 
ameters N and q. (It should, however, be noted that even for this simple model 
some form of approximation may be implicit in our assumptions, as discussed 
in §2.5.) 

(a) Maximum likelihood 
If the values of Rx and A, are known for n x m and Ax/Rx is the 
crude rate of mortality at exact age x + b, the likelihood function (when 
there are no duplicates) is 

(6.2.3) 

Maximizing L is equivalent to maximizing the logarithm of L. According- 
ly we consider 

L1( ) = log L ( ) 

(6.2.4) 

The value of a is determined to maximize L1( ). In paragraph (c) below 
we describe how allowance may be made for duplicates. 

(b) Minimum x2 
In the absence of duplicates the number of deaths ‘at age x’ has mean 
Rxqx+b( ) and variance Rxqx+b( )[1 - qx+b( )]. In this situation we define 
the ‘relative deviation’ at age x to be 

(6.2.5) 

and let 

(6.2.6) 

In calculating X2( ) for an investigation based on policies allowance must 
be made for duplicates. This is easily done by defining the ‘variance ratio’ 
at age x to be 

(6.2.7) 

where (i = 1, 2, . . .) denotes the proportion of policyholders at age x 
who have i policies. (Thus = 1). When there are duplicates the 

variance of the number of claims at age x is increased by the factor rx, so 
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that the appropriate definition of X2( ) becomes 
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(6.2.8) 

We then choose to minimize X2( ). (See Seal (1943), Daw (1946), Beard 
& Perks (1949), Daw (1951) and CMI Committee (1957) for the derivation 
of this result and for further discussion of the effect of duplicates in a 
mortality experience.) 

The following remarks relating to the treatment of duplicates are 
perhaps of interest. 

Let A be a random variable representing the number of deaths at age 
x (so that the observed value of A is A,). We have already commented that 
in the absence of duplicates 

(6.2.9) 

and 

(6.2.10) 

while, if there are duplicates, the value of E[A] is unchanged but 

(6.2.11) 

In this latter case let 

and 

Then 

and 

(6.2.12) 

(6.2.13) 

(6.2.14) 

(6.2.15) 

These last two equations are in precisely the same form as equations 
(6.2.9) and (6.2.10) above, with A’ and R'x replacing A and Rx respectively. 
If, therefore, before proceeding to the graduation we divide both the 
number of actual deaths and the exposure at each age by the appropriate 
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variance ratio, we obtain an empirical procedure whereby the presence of 
duplicates may be ignored. 

At this stage it is of interest to note that in practice the alternative 
procedures of maximizing the likelihood and minimizing X2 generally 
produce very similar graduations. This can be expected on theoretical 
grounds, as was observed by N.L. Johnson in his remarks in the discuss- 
ion of Barnett (1951). One reason for this is illustrated by the following 
discussion (see Van der Waerden, 1969). 

Note first that, if t is small, then 

log(1 – t) + t – ½t2 (6.2.16) 

We consider the terms in the log-likelihood L1( ) (equation 6.2.4 above). 
In the discussion below cx, dx, ex etc. denote expressions which, although 
depending on Ax and Rx, do not depend on qx+b = qx+b( ). 

Now 

Therefore 

by (6.2.16) above, if Rxqx+b Ax. 
Thus for an acceptable graduation 

(6.2.17) 

Similarly 
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Therefore 

if Rxqx+b Ax (again by equation (6.2.16) above). 
Thus, for an acceptable graduation, 

(6.2.18) 

By adding equations (6.2.17) and (6.2.18), we obtain (since the terms 
Rxqx+b cancel each other) 

(6.2.19) 

if Ax Rxqx+b. 
Hence, summing over all ages, we obtain 
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(by equation (62.19)) 

(6.2.20) 

where h = does not depend on a. Thus we see that maximizing 
L1( ) is equivalent to maximizing –½X2( ), which itself is equivalent to 
minimizing X2( ). 

(c) Maximum likelihood approximations and allowance for duplicates 
Recall that, when there are duplicates, the distribution for A, has mean 
Rxqx+b( ) and variance rxRxqx+b( )[1 – qx+b( )], where rx is given by 
equation (6.2.7) above. (When there are no duplicates, rx = 1.) If we use 
the normal approximation for the distribution function for A,, the likeli- 
hood function becomes 

(6.2.21) 

This last equation implies that 

Omitting the terms which do not depend on a, we see that the function to 
be maximized is 

(6.2.22) 

Empirical investigations indicate that in many situations the logarith- 
mic term on the right-hand side of this last equation is much less sensitive 
to changes in the vector a than the other term-at least in the neighbour- 
hood of the optimal solution. This means that a good approximation to 
the optimal solution can often be obtained by omitting the logarithmic 
term and maximising 
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(6.2.23) 

where X2( ) is given by equation (6.2.8) above. This indicates why minimiz- 
ing X2 produces a solution which is usually close to that obtained by 
maximizing the likelihood. Note that, by using either of the approxima- 
tions L2( ) andL3( ), we may obtain maximum likelihood estimates, even 
in the situation when there are duplicates. These approximations are 
alternatives to the earlier empirical method of allowing for duplicates, 
whereby exposures and deaths are ‘scaled down’ (by division by the 
variance ratio at each age). 

In §6.5 below we indicate how we may obtain q-type rates when the 
available exposures are in ‘central’ form. 

6.3 Graduation of p-type rates (using central exposures) 
Here we let 

where, as before, (x) is a given function. Note that Rx(n x m) now 
denotes the central exposure between exact age x + b and exact age x + b + 1 
and A, is the corresponding number of actual deaths. 

For practical purposes a Poisson distribution provides a suitable model for 
the distribution of A, (see Sverdrup, 1965). In this situation we therefore assume 
that 

(6.3.1) 

the notation P( ) being used to denote a Poisson distribution with parameter 
Letting 

we see that the Poisson parameter for the distribution of A, is simply Rxg (x), 
which (at least in principle) is a known function. In practice, however, exact 
integration of the function (x) may be difficult and approximate integration 
time-consuming. Accordingly, when estimating the vector a, it is more con- 
venient to approximate the integral in this last expression by the value of the 
integrand at the mid-point of the range of integration. Thus for practical pur- 
poses we assume that the distribution for A, is Poisson with parameter 

(6.3.2) 

If exact integration of (x) is easily carried out, we may, of course, replace 

by 

(6.3.3) 
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For the remainder of this section, however, we shall assume that the Poisson 
parameter is given by equation (6.3.2). (It is a simple matter to adopt the 
alternative expression (6.3.3) when this can be readily calculated.) 

(a) Maximum likelihood 
When there are no duplicates the likelihood function is 

(6.3.4) 

Since 

and Ax and Rx do not depend on , maximizing L( ) is equivalent to 
maximizing 

(6.3.5) 

In (c) below we describe one way of allowing for duplicates. 

(b) Minimum X2 
Since equals both the mean and variance of the distribution for Ax, the 
relative deviation at age x (when there are no duplicates) is 

and, accordingly, we define 

(6.3.6) 

In the absence of duplicates is chosen to minimize this last expression. 
When there are duplicates, Ax is the number of policies which become 

claims at age x during the observation period and Rx is the central 
exposure based on policies. In this case we may write 

(6.3.7) 

where is the number of policyholders who die at age x and have i 
policies. (Note that relate to completely distinct groups of 
lives and are therefore the values of independent random variables.) 
Similarly we may write 

(6.3.8) 

where Tix is the central exposure based on lives, arising from those cases for 
which the policyholder has i policies. 
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Note now that the distribution for is Poisson with parameter 

(6.3.9) 

(This is exactly analogous to the expression (6.3.2) above.) 

Clearly 

(Poisson distribution and equation (6.3.9) above) 

(6.3.10) 

Thus. for an investigation based on policies. the existence of duplicates 
does not change the expected value of the number of claims. The variance, 
however, is altered. This is so, since 

(since . . . . are independent) 

(Poisson distribution and equation (6.3.9) above) 

where 

(by equation (6.3.8) above) 

(6.3.11) 

(6.3.12) 

Provided that mortality and lapse rates do not depend on the number 
of policies held (and in most practical situations this may be a reasonable 
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assumption), Tix will be proportional to fix, the proportion of policyholders 
at age x who have i policies. 

In this situation equation (6.3.12) then implies that 

(6.3.13) 

as before. 
When allowance is made for duplicates is therefore chosen to mini- 

mize 

(6.3.14) 

(c) Maximum likelihood approximations and allowance for duplicates 
As for q-type rates, with the known mean and variance we may use the 
normal density function to approximate the likelihood. In this case the 
function to be maximized is 

(6.3.15) 

where and rx are given by expressions (6.3.2) and (6.3.13) above. 
Note that 

Omitting the terms which do not depend on a, we see that the function 
to be maximized is 

Empirical experiments indicate that the value of the logarithmic term on 
the right-hand side of this last equation is much less sensitive to changes 
in a than the other term-at least near the optimal solution. This means 
that a good approximation to the optimal solution can usually be found 
by maximizing 

(6.3.17) 

where X2( ) is defined by equation (6.3.14) above. 
As in §6.2 above (for q-type rates), these approximations allow maxi- 
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mum likelihood methods to be used in a graduation of µ-type rates when 
there are duplicates. As before, this last equation indicates why minimizing 
X2( ) is likely to lead to a similar graduation to that obtained by the 
method of maximum likelihood. 

6.4 Graduation of m-type rates (using central exposures) 
Here we let 

where (x) is the given function to be used for the graduation. 
The situation is essentially identical to that of the previous section, Rx again 

being the central exposure at age x. The Poisson model remains appropriate. 
As before, if there are no duplicates, the Poisson parameter for the distribution 

of Ax is 

In a graduation of m-type rates we assume that 

(6.4.1) 

For practical purposes this is a reasonable approximation, which differs only 
slightly from the correct expression for mx+b, namely 

The approximation (6.4.1) having been made, we may now repeat the discuss- 
ion of the previous section—simply replacing µx+b+1/2( ) by mx+b( ) throughout. 
For completeness it is convenient to record the results corresponding to those 
of §6.3. 

(a) Maximum likelihood 
In the absence of duplicates the function to be maximized is 

(b) Minimum X2 

(6.4.2) 

Let rx be defined by equation (6.3.13) above. The function to be minimized 
is 

(6.4.3) 

(c) Maximum likelihood approximations and allowance for duplicates 
Using the normal approximation and allowing for duplicates, we may 
maximize either 
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(6.4.4) 

or 

(6.4.5) 

Remark In combination the approximations used in §§6.3 and 6.4 imply that 

For almost all practical purposes this is a reasonable approximation. Its use 
means that formula graduations for µ-type or m-type rates are equivalent 
procedures. Each arises naturally from the other simply by an age adjustment 
of 1/2. 

6.5 Graduation of q-type rates fusing central exposures) 
Although it is perhaps more natural with central exposures to consider a 

formula graduation for µx or mx, as we have remarked in §6.2 above it is 
perfectly feasible to proceed directly to a graduation of q-type rates in this case. 
We indicate below how this may be done, using the Poisson model of §§6.3 and 
6.4 above. 

Suppose then that we have available central exposures and that 

where (x) is the given function to be used in the graduation. 
Note that 

(6.5.1) 

so the parameter for the Poisson distribution of A, (see equation (6.3.1) above) 
is 

Rx being the central exposure at age x. 
We may therefore repeat our previous discussion, simply replacing µx+b+12( ) 

by – log (1 – qx+b( )) throughout. Again for completeness, it is convenient, to 
record the results corresponding to those of §6.3. 

(a) Maximum likelihood 
In the absence of duplicates the function to be maximized is 

(6.5.2) 
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(b) Minimum X2 
Let rx be defined by equation (6.3.13) above. 

The function to be minimized is 

(6.5.3) 

(c) Maximum likelihood approximations and allowance for duplicates 
Using the normal approximation and allowing for duplicates, we may 
maximize either 

or 

(6.5.4) 

(6.5.5) 

where X2( ) is given by equation (6.5.3) above. 

7. METHODS OF OPTIMISATION 

In Section 6 we have described in some detail the models underlying a 
graduation by formula in a variety of situations, either by maximum likelihood 
or by minimum X2. In each case we require to locate the point, , at which a 
function of several variables (i.e. minus the log-likelihood or X2) takes its 
minimum value. In certain situations the problem may involve constraints. For 
example, if the graduating function (x) is being fitted to q-type rates, then the 
optimal point must be such that 0 < (x) < 1 for all x in the relevant 
age-range. If the graduation is by splines, there is the constraint that the 
knot-positions must lie within the appropriate interval. 

Except in cases too simple to be of use in practice, without some form of 
computer to assist our calculations we are unlikely to solve this problem. 
However, given even only limited computing power, we are generally able to 
make substantial progress—usually by locating one or more points at which the 
relevant function has a local minimum. The empirical procedure then adopted 
is to find as many local minima as possible, starting from widely different initial 
points, and to pick the lowest of these (subject to any constraints) as our 
solution . In the majority of applications this is an acceptable procedure, but 
one cannot eliminate completely the possibility that there may exist a ‘lower’ 
point. In a few limited situations (depending, for example, on the functional 
form being used as the graduation formula) further analysis may confirm our 
point as a global minimum, but in most cases such confirmation will not be 
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possible. Moreover, at present little is known about finding global minima in 
general. 

The most suitable computer method for any particular computational 
procedure may depend on a balance between various desirable and possibly 
conflicting objectives—speed of running, memory requirements, ready avail- 
ability, and ease of use, amongst others. If computer library facilities are 
available, appropriate routines will be readily to hand. Otherwise one must write 
one’s own routines, or use routines prepared, tested, and published by others. 
Fortunately a variety of such routines exists. For example, in Press et al. (1986) 
the reader will find several routines in both the FORTRAN and PASCAL 
languages. 

It is inappropriate to discuss in detail here computer routines for the mini- 
mization of a function of several variables. It is, however, perhaps worth 
pointing out that such routines fall into two distinct categories—those which 
require the calculation of first partial derivatives and those which do not. 
Routines which require derivatives are somewhat more powerful than those 
requiring only function values. On the other hand the increased power of such 
routines may not always compensate for the additional calculation of deriva- 
tives. Methods which do not require the calculation of derivatives, such as the 
downhill simplex method of Nelder & Mead (1965), can be used in a wider 
variety of circumstances and may give equally satisfactory results. For maxi- 
mum likelihood methods the relevant partial derivatives (if required) are easily 
obtained from the calculations in Appendix 1. 

The interested reader may consult Conte & de Boor (1980) and Press et al. 
(1986) for further details. 

8. THE INFORMATION MATRIX AND THE VARIANCE-COVARIANCE 

MATRIX FOR THE PARAMETERS TO BE ESTIMATED 

8.1 Suppose now that our curve-fitting exercise is being done by a maximum 
likelihood method. The properties of maximum likelihood estimators are 
described in detail in most statistics textbooks. (The interested reader may refer, 
for example, to Kendall & Stuart (1979) for a discussion of the topic.) In this 
section, therefore, we give only an outline of some of the basic ideas, with 
particular reference to the situation described in §6 above. 

Suppose then that we observe a population for which the rate of mortality at 
exact age x (i.e. qx, µx, or mx depending upon the available data and the model 
we are using) is given by a function (x). Suppose further that the functional 
form of (x) is known, but that the values of the coefficients in the formula are 
not. The vector a (which we sometimes call the ‘true’ vector to distinguish it 
from estimates) is thus unknown. 

Let L*(a) be the appropriate log-likelihood function as defined in §6. If there 
are no duplicates, then normally we will let 

(8.1.1) 
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where L1( ) is given by equation (6.2.4), (6.3.5), (6.4.2), or (6.5.2) as appro- 
priate. If there are duplicates or if for some other reason it is more convenient 
to adopt one of the approximations for the likelihood, we will let 

or 

(8.1.2) 

(8.1.3) 

where L2( ) and L3( ) are the appropriate alternative approximations described 
in §§6.2-6.5 above. 

Let be the vector which maximizes L*( ). Then is taken as our ‘best’ 
estimate for the coefficients in the formula for the death rate. Since the definition 
of L*( ) involves the data set {Ax}, the value of depends on the numbers of 
deaths which occur at each age. Thus should be considered as one particular 
value from a random distribution—i.e. a different set of values {A,) would lead 
to a different value of 

The important point about the estimator is that asymptotically it is unbiased 
and of minimum variance. In particular, as the exposures increase, the expected 
value of tends to (the true but unknown coefficient vector). We may therefore 
write 

(8.1.4) 

the limit being considered as the smallest exposure to risk tends to infinity. One 
cannot specify precisely the speed of convergence to the limit. Empirical experi- 
ments, however, show that in most large scale investigations the speed of 
convergence (combined with the minimum variance property) is such that does 
indeed provide an acceptable estimate for 

8.2 In addition to estimating the coefficient vector we will find it extremely 
valuable to know (at least to a reasonable degree of accuracy) the corresponding 
variance-covariance matrix for the estimator . This matrix will, for example, 
enable us to compare different experiences (for which we have graduations) and 
to ascertain whether or not there is a significant difference between them. (See 
§11 below.) One of the attractive features of maximum-likelihood estimators is 
that, at least asymptotically, they enable us to determine the corresponding 
variance-covariance matrix. The starting point for our calculations is the matrix 
H*( ). This has (i, j)th entry, H*ij( ), equal to minus the second partial derivative 
of L*( ) with respect to and evaluated at the (unknown) point a. Thus 

(8.2.1) 

Note that the entries of H*( ) are random variables, which in general will 
depend on the outcome actually observed—in our case on the numbers of deaths 
at each age. In Appendix 1 we derive the value of H*ij( ) for each of the models 
described above. 
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The information matrix H( ) is defined to be the expected value of H*( ). 
Thus 

(8.2.2) 

Standard properties of maximum likelihood estimators show that asymptoti- 
cally 

(8.2.3) 

where Cov( ) denotes the variance-covariance matrix for 
By combining these last equations we immediately obtain the well-known 

asymptotic result 

(8.24) 

One difficulty with this last equation is that it requires the matrix of second 
partial derivatives to be evaluated at the unknown point . In practice this is not 
a serious problem, as generally provides a good estimate for and, according- 
ly, by evaluating the right-hand side of equation (8.2.4) at we generally obtain 
an acceptable approximation to Cov( ). In this case the variance-covariance 
matrix is estimated simply as 

(8.2.5) 

Alternatively, one may not take expected values and simply work with actual 
values (at the point ). This gives as estimate for the variance-covariance matrix 

(8.2.6) 

In general these two estimates of Cov( ) are distinct. For most practical pur- 
poses, however, either estimate may be used. 

One advantage of using the expected value is that in the asymptotic limit in 
certain cases the second order partial derivatives vanish, leaving only products 
of first derivatives. For these cases the entries of Cov( ) can be found simply in 
terms of the first partial derivatives of L*( ). This has advantages from the 
computational viewpoint. This point is discussed further in Appendix 1, where 
we give detailed calculations for the information matrix in all cases. 

In §8.3 we summarise the results from Appendix 1. 
8.3 For completeness we give below the information matrix (corresponding 

to the use of or for the log-likelihood) for each of the models 
(q, µ, or m) previously discussed. For k = 1, 2, 3 let Hk( ) be the information 
matrix when L*( ) = Lk( ). Thus Hk( ) has (i, j)th entry 

(8.3.1) 

The corresponding estimate for Cov( ) (see equation (8.2.5) above) is 
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(8.3.2) 

For notational simplification, when giving the values of the information matrix 
for each of the models described in §6, we write R, r, q, µ, and m to denote Rx, 

and respectively. 
For each model, in the definition of the information matrix given below the 

summation is over the range of ages appropriate to the definition of L*( ). 
(a) q-type rates (initial exposures - see §6.2) 

(i) (8.3.3) 

(Appendix 1 equation (8).) 

(ii) (8.3.4) 

(Appendix 1 equation (16).) 

(iii) 

(8.3.5) 

(Appendix 1 equation (21).) 
(b) µ-type rates (central exposures – see §6.3) 

(i) 

(Appendix 1 equation (27).) 

(ii) 

(Appendix 1 equation (32).) 

(iii) 

(Appendix 1 equation (37)) 
(c) m-type rates (central exposures - see §6.4) 

(8.3.6) 

(8.3.7) 

(8.3.8) 

(i) (8.3.9) 

(Appendix 1 equation (38).) 
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(ii) 

(Appendix 1 equation (39).) 

(iii) 

(Appendix 1 equation (40).) 
(d) q-type rates (central exposures - see §6.5) 

(8.3.10) 

(8.3.11) 

(i) (8.3.12) 

(Appendix 1 equation (47).) 

(ii) 

(8.3.13) 

(Appendix 1 equation (49).) 

(iii) 

(8.3.14) 

(Appendix 1 equation (51).) 

9. TESTS OF A GRADUATION 

9.1 Deviations and relative deviations 
Once we have chosen a particular functional form, (x) to represent qx, µx or 

mx, as appropriate, and found those values of the parameters (i.e. the vector ) 
that maximise the likelihood or minimise X2, as desired, we wish to test the 
resulting graduation to see whether we can accept it as a reasonable represen- 
tation of the mortality experience of the investigation. At this point we define, 
as usual, for each integer observed age, x, the expected number of deaths, Ex, 
and the corresponding variance of the number of deaths, Vx, as follows. Where 
there are duplicates we define the appropriate variance ratio as rx, and if there 
are no duplicates rx = 1. Let b be as defined in §3.1. 

If we have graduated qx (with initial exposures), 
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and 

if we have graduated µx, 

and 

if we have graduated mx, 

and 

(9.1.1) 

(9.1.2) 

(9.1.3) 

(9.1.4) 

(9.1.5) 

(9.1.6) 

if we have graduated qx (with central exposures), 

and 

(9.1.7) 

We then define the deviation at each integral age as 

Devx = Ax - Ex 

and the relative deviation as 

(9.1.8) 

(9.1.9) 

(9.1.10) 

As stated in CMI Committee (1974) the questions to be asked are whether the 
deviations or the relative deviations are 

(a) randomly distributed (when their sequence is considered), 
and 

(a) distributed in accordance with the assumptions inherent in the model 
used, i.e. normal, Poisson, or binomial. 

Some of the tests that can be used are familiar, and we shall not dwell on 
these. Others have not been used before in the actuarial literature. Some of the 
tests are applicable also to test whether an observed experience is compatible 
with some other set of rates, whether based on a mathematical formula or not, 
and are therefore appropriate for testing, for example, whether the experience 
at one select duration is satisfactorily represented by the graduated rates at some 
other duration. The comparison of two experiences is discussed further in § 13. 



42 On Graduation by Mathematical Formula 

9.2 Grouping of ages 
Most of the tests rely on the assumption that the numbers of deaths at each 

age are approximately normally distributed. This is a reasonable assumption 
only if the expected numbers of deaths at each age are sufficiently large, such as 
at least 5 or so. In almost all investigations the numbers at each age may be less 
than this at the extreme ages under consideration, and in some investigations the 
data may be scanty at more than just the extreme ages. It is therefore useful to 
group neighbouring ages so that the sum of the expected deaths in the group is 
at least some number, k, such as 5. This can be done by an algorithm such as 
the following: starting at the lowest age in the table of data, consecutive ages are 
grouped until the sum of the expected deaths in the group is not less than k; a 
group is completed at that point; the next group is then started; a group may 
consist of a single age; at the end of the table, if the last (incomplete) group has 
fewer than k expected deaths, it is added to the last completed group. Different 
algorithms for grouping may produce different groups; one could start at the 
highest age and run down the table, or at both ends and run towards the central 
region (provided that the centre of the table is sufficiently dense), or at the centre 
and run out. It probably makes little difference which algorithm is adopted, but 
it is always desirable to choose the algorithm for grouping before examining the 
results, so that there is no possibility that the method of grouping is chosen to 
produce favourable or unfavourable results. In each of the examples discussed 
in § 15 below the grouping method has been as described above, with k = 5 and 
with grouping from the youngest age in the table upwards; any residual group 
at the highest age is added back to the group formed by the next lower ages. 

The justification for grouping is readily explained. If the number of deaths at 
age x is assumed to be distributed (whether normally or not) with mean Ex and 
variance Vx, then the number of deaths at ages x1 to x2 is distributed with mean 

and variance 

(9.2.1) 

(9.2.2) 

As Ex1,x2 increases, the distribution of the number of deaths in the group from 
x1 to x2 tends to the normal distribution. The actual number of deaths in the 
group is denoted by 

the deviation by 

(9.2.3) 

Dev x1,x2 = Ax1, x2 — Ex1,x2 (9.2.4) 
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and the relative deviation by 

(9.2.5) 

Further discussion about tests will generally assume that the data has been 
grouped before the test is applied, and it will be assumed that there are N distinct 
ages or age groups. 

9.3 Signs test 
The first test to use is the signs test. This test considers only the signs (positive 

or negative) of the deviations. If the observed numbers of deaths come from the 
experience implied by the graduated rates, and if at each age the distribution of 
the number of deaths has its mean equal to its median (as is the case with the 
normal distribution, but not the Poisson distribution), then for each deviation 
the probabilities that its sign is positive or negative are both equal to one half. 
The number of positive (or negative) signs is therefore binomially distributed as 
B(N, ½). If the number of positive signs is denoted by NP, then 

(9.3.1) 

The expected number of positive signs is N/2 and the variance is N/4. If N is 
large, then it can be assumed that the number of positive signs is approximately 
normally distributed, but it is not difficult, when the graduation tests are being 
carried out by computer, to calculate from the binomial distribution the exact 
probability that the number of positive signs would not exceed the observed 
number. We denote this probability by p(pos). 

If the value of p(pos) is too low, such as less than .025, then the observed 
number of positive deviations is unexpectedly small, and if it is too high, such 
as greater than .975, then the observed number of negative signs is unexpected- 
ly small. In either case, the graduated rates are too far to one side or the other 
of the observed rates, and are unlikely to be a satisfactory representation of the 
experience. In practice we have found that, where the parameters of the 
graduated rates have been fitted by one of the optimising methods described 
above, it is rare for this test to show a significantly low or high probability, even 
if the graduation is obviously unsatisfactory in other respects. For further 
discussion of the signs test and the more sensitive Wilcoxon signed ranks test see 
Larson (1982) Chapter 10. 

9.4 Runs test 
A second non-parametric test is the runs test or the sign-change test. If the 

numbers of deaths at each age were distributed according to the normal model, 
the deviations at successive ages would be independent, and the signs of the 
deviations would be randomly distributed, with neither too many nor too few 
runs of successive deviations with the same sign. If the number of positive signs 
is n1 and the number of negative signs is n2 (with n1 + n2 = N), and if the signs 
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are arranged at random within the sequence of groups, then the distribution of 
NR, the number of runs of one or more consecutive deviations with the same 
sign, is known. The probabilities of different values of NR are given by 

if r = 2k (i.e. r is even), and 

if r = 2k + 1 (i.e. r is odd) 
The mean number of runs is 

(9.4.3) 

and the variance is 

(9.4.4) 

If both n1 and n2 are larger than about 20 then the number of runs is approxi- 
mately normally distributed, but it is not difficult with a computer to calculate 
the exact distribution of NR, and hence the probability, p(runs), that the value 
of NR is less than or equal to the observed value. A low value of p(runs) means 
too few runs, which is typical of a graduation that is too straight compared with 
the observed values, cutting across waves or bends in the observed rates. In this 
case a formula with a larger number of parameters may be needed to give a 
satisfactory fit. This can be achieved, for example, by increasing the order of the 
polynomials in a GM(r, s) formula. However, some otherwise satisfactory 
graduations show rather low values for p(runs) and examination of the observed 
rates shows that a formula with a very much larger number of parameters would 
be needed if the number of runs were to be increased sufficiently. A too high 
value for p(runs) rarely occurs, but when it does it indicates that the graduation 
follows the observed experience too slavishly, weaving on either side of the 
observed rates, and is an indication of over-fitting. A satisfactory value for 
p(runs) shows that the graduated rates run comfortably down the middle of the 
observed rates. See Larson (1982) Chapter 10 or Fisz (1963) Chapter 11 for 
further discussion of this test. 

9.5 Kolmogorov—Smirnov test 
A further non-parametric test that can be applied is the Kolmogorov— 

Smirnov test. This test considers the distribution of the maximum absolute 
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deviation between two cumulative distributions. It has been described by the 
CMI Committee (1986) where it is used to compare the cumulative distri- 
butions of the exposed to risk or actual deaths in two successive years. In 
graduation we use it to compare the distributions of actual and expected deaths. 

Consider the distributions of the actual deaths and the expected deaths by age 
from x1 to x2, viz {Ax} and {Ex}. Define the total actual deaths as 

(9.5.1) 

and the total expected deaths as 

Define the cumulative distributions 

(9.5.2) 

(9.5.3) 

and 

(9.5.4) 

The maximum absolute difference between the cumulative distributions is 

(9.5.5) 

The Kolmogorov-Smirnov statistic 

(9.5.6) 

has a known distribution, so the probability, p(KS) say, of a value as large as 
or larger than that actually obtained can be calculated or derived from tables 
of the distribution. See Fisz (1963) or Durbin (1973) for further discussion of 
this test. 

If the expected numbers of deaths are based on a graduation produced by one 
of the optimising methods described above then E is very often equal to A. (See 
Appendix 2.) This result strictly depends on the formula used to represent the 
mortality rates. To show that the Kolmogorov–Smirnov statistic is related to 
the maximum absolute value of the cumulative sum of the deviations we put 

(9.5.7) 
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= A.F(x) – E.G(x) 

Thus, if E = A, 

C(x) = A[F(x) – G(x)] 

and 

(9.5.8) 

(9.5.9) 

(9.5.10) 

(9.5.11) 

(9.5.12) 

(9.5.13) 

(9.5.14) 

Thus a test traditionally used by actuaries, as described for example by Benja- 
min & Pollard (1970) p. 231, is seen to be related to a more general result, well 
known by statisticians. 

Unfortunately the Kolmogorov–Smirnov test used in this way is fully valid 
only when the rates on which the expected deaths are based are independent of 
the actual deaths, which is clearly not the case when the expected deaths are 
based on graduated rates derived from the actual deaths. In this case the 
cumulative expected deaths should be much closer to the cumulative actual 
deaths than the test implies. Even so, the test remains a useful negative one. Too 
high a value for the maximum deviation (or equivalently too low a value for 
p(KS)) indicates that the graduation is certainly not a satisfactory one. In 
practice we have found that satisfactory graduations often produce values of 
p(KS) higher than .9, sometimes exceeding .99. 

9.6 Serial correlation test 
A test that has been used previously by the CMI Committee (1974) is the serial 

correlation test. Each relative deviation, zx has approximately a unit normal 
distribution, that is, it is normally distributed with mean zero and variance 1. 
The values of zx form a sequence, and the serial correlation coefficients, rj,j = 1, 
2, 3. . . . , (that is the correlation coefficients between the values of zx and zx–j) 
can be calculated. If zx and zx–j are independent, then rj is normally distributed 
with zero mean and variance l/N, where N is the number of ages or age groups. 
One can therefore calculate tj = rj/N–1/2 and compare this with a unit normal 
distribution. Too high a value indicates that successive values of zx are too 
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closely related, and the graduation is less than satisfactory. A low value for 
p(runs), indicating that the number of runs is too few, is often associated with 
high values for tj for low values of j (say j = 1, 2, 3). Graduations generally pass 
or fail these tests together. 

9.7 The x2 test 
The most comprehensive test of the normality of the relative deviations is the 

familiar x2 test. The statistic, 

(9.7.1) 

is distributed as x2(N – m), where N is the number of ages (or age-groups) and 
m is the number of parameters in the graduation formula that have been fitted. 
Computer algorithms are available to calculate p(x2), the probability of a value 
of x2 greater than that observed. Alternatively, if N – m is large enough, say 
greater than about 30, the probability may be estimated from the fact that the 
test statistic 

(9.7.2) 

has approximately a standard unit normal distribution. If the value of x2 is high, 
so that the value of p(x2) is less than say .05, and if the graduation has passed 
the other tests, then it is usually satisfactory. 

However, the x2 test is as much a test of the hypothesis that the data are 
independent as a test of the graduation, and in practice many satisfactory 
graduations show high values of x2. This may be accounted for by the presence 
of duplicates in the data which have not been allowed for. Inspection of the 
individual values of zx may show that there is a quite small number of unusually 
high values; these may be because of duplicates, or they may indicate errors in 
the data, which should be investigated. The existence of unusually high values 
of x2, with considerable irregularity in the values of zx, some being high and 
others low, seems to be a feature of very large investigations where duplicates 
ought not to occur, such as in graduations of population mortality rates. We 
cannot account for this observation, but we believe that it is true of other 
investigations with very large numbers of observations, where apparently sig- 
nificant values of x2 are found even when no reason for them should exist. 

9.8 Assessment of battery of tests 
We have now described a battery of statistical tests that can be applied to any 

one trial graduation. In some cases it will be found that one particular gradu- 
ation is obviously satisfactory, having passed all the tests, and in other cases a 
graduation will be found to be obviously unsatisfactory. In practice there are 
also many intermediate cases, where a graduation passes some tests, but not 
others. If it fails only the x2 test then it is likely that this is because of the data 
rather than because the graduation is unsatisfactory. A further consideration is 
whether the shape of the curve of graduated rates outside the main range of the 
data is sensible. The typical shapes of mortality curves are well known, and a 
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curve that extrapolates in a fairly reasonable way will be considered more 
satisfactory than one that does not, if extrapolation of the rates to higher or 
lower ages is desired. But this takes us on to the subject of comparing two 
different graduations, which is the topic of the next section. 

10. CHOICE OF ORDER OF FORMULA 

10.1 Order of Formula 
If one of the families of formulae described in §§ 4 and 5 is being used for the 

graduation, it may be necessary to choose which order of formula to use. For 
example, if the GM(r,s) family is being used, different graduated rates result 
from different values of r and s. Various tests are available for assisting in this 
choice, in addition to those described in § 9 which test only whether one par- 
ticular graduation is acceptable, and do not compare two graduations, each of 
which may be considered acceptable. 

10.2 Likelihood Ratio Test 
First is the likelihood ratio test. Assume that we have fitted a formula with 

n = r + s parameters, say GM(r, s), or LGM(r, s), and the parameters we have 
found are the maximum likelihood estimates. We have also fitted a formula with 
n + k parameters, where one or both of the orders of the polynomials have 
been increased and neither has been reduced. We can therefore imagine that we 
are comparing two graduations, each with n + k parameters, with the first 
graduation having the k extra parameters set to zero. The statistic 

(10.2.1) 

where L(n + k) is the maximum value of the likelihood for the (n + k)- 
parameter graduation and L(n) is the maximum value of the likelihood for the 
n-parameter graduation, is distributed as x2 with k degrees of freedom (see 
Kendall & Stuart, 1979). Cox & Oakes (1984) also discuss the application of this 
test to mortality data. One can therefore test whether the total improvement 
when k parameters have been added is significant. 

10.3 Akaike Criterion 
If k = 1, i.e. one extra parameter is being added, then the statistic D(1) is 

distributed as x2 with one degree of freedom. Since there is approximately a 5% 
chance that D(1) is greater than 3.8 (i.e. that ½D(l) is greater than 1.9) and a 95% 
chance that it is less than this value, we see that one extra parameter can be 
considered to provide a ‘significant’ improvement in the graduation if it in- 
creases the log-likelihood by 1.9. This is the same test as the ‘level of support’ 
described by Edwards (1972) and used by the CMI Committee (1976). If k extra 
parameters are added in sequence, the log-likelihood needs to be increased by 
approximately 2k for the improvement at each step to be considered ‘signifi- 
cant’. Note that this is different from what we have described above where we 
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tested whether the k added parameters are significant in aggregate. Thus one 
criterion for the best fitting formula, when at each step the order of one of the 
polynomials is kept fixed and the order of the other is increased by one, is to 
choose the order of formula that maximizes the Akaike Criterion 

AC = log L(n + k) – 2k. (10.3.1) 

(See Akaike, 1978 and 1985.) 
Since the log-likelihood is related to the X2 statistic (see § 6.2 above), we can 

express the same result by noting that a reduction of X2 by 3.8 for each extra 
parameter is worth while. However, the value of X2 in mortality experiences is 
so often confused by the possible presence of duplicates that it is only appro- 
priate to use this criterion rigorously when one can be confident that duplicates 
are not an issue. Nevertheless the test is extremely useful as a first guide to the 
order of formula to choose. 

10.4 Maximum p(X2) or Minimum t(X2) 
A similar test is the maximum p(X2) or its equivalent, the minimum t(X2) test 

(see McCutcheon, 1984). As the number of parameters is increased the value of 
X2 can be expected to reduce. But the number of degrees of freedom is also 
reduced. If the number of degrees of freedom, n, is large enough (in practice 
greater than about 30) then t(X2) is approximately normally distributed with 
zero mean and unit variance (see § 9.7). Thus, if the number of degrees of 
freedom is large enough, the value of t(X2) can be used as an alternative statistic 
to p(X2). As the number of parameters increases, the number of degrees of 
freedom reduces, the value of X2 reduces, and in the first place the value of t(X2) 
usually reduces, while that of p(X2) usually increases. Beyond a certain point, 
when the addition of extra parameters has little effect on the graduation, the 
value of t(X2) is usually found to increase, and that of p(X2) to reduce. Either 
statistic therefore gives a possible criterion for deciding on a best graduation. 
Again, the usefulness of this test is diminished by the presence of duplicates, if 
these have not been allowed for explicitly. 

10.5 Confidence Intervals for Parameters 
The calculation of the information matrix and hence the variance-covariance 

matrix of the estimates of the parameters in the formula for the appropriate 
death rates (see § 8) gives yet another guide. In general the vector of estimated 
parameters, can be assumed to be multivariate normally distributed, given 
that the true, but unknown parameter vector is a. The true value of each 
parameter is therefore probably (with a roughly 95% probability) within a 2 
confidence interval on each side of the estimated value. If this confidence 
interval for one particular parameter includes zero, then it is not unreasonable 
to assume that the true value of that parameter might well be zero, so that the 
term corresponding to that parameter could be omitted from the formula. In 
practice we have found that, as the order of a particular formula is increased, 
the last parameter to be added eventually is not significant in this sense, and we 
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have gone too far. Sometimes we find that, when the order is increased beyond 
a certain point, several parameters become not significant, even though they 
were significant with lower orders of formula. It is as if there were only a limited 
amount of significance to spread around, so that, if too many parameters are 
chosen the significance is spread too thinly. We do not have a formal statistical 
explanation of this phenomenon. 

11. ESTIMATION OF CONFIDENCE INTERVALS FOR q AND µ 

11.1 Simulation of Parameter Sets 
The variance-covariance matrix of the parameter estimates has allowed us to 

estimate confidence intervals for the values of the parameters, as we have 
described in § 10.5 above. It is also possible to use the matrix to estimate 
confidence intervals for the values of q or µ themselves. In some special cases this 
may be done analytically, but it is always possible to obtain estimated con- 
fidence intervals by Monte-Carlo simulation methods. 

It is a property of the method of maximum likelihood that, if the true (but 
unknown) value of the parameter vector is a, the set of maximum likelihood 
estimates for a derived from a series of experiences, all of which have the same 
exposures to risk as the single observed experience but different numbers of 
deaths, is asymptotically multivariate normally distributed with mean value the 
true vector and variance-covariance matrix the inverse of the information 
matrix, evaluated at a. Since we do not know and have in fact only a single 
observed experience (with the resulting estimate we take as the mean of this 
distribution and use the corresponding variance-covariance matrix (described in 
§ 9 above) to generate a set of vectors = 1, 2, . . .}, which we take as an 
approximation to the maximum likelihood estimates resulting from different 
sets of observed numbers of deaths {A,}. 

How this is done is described below. For each sample vector we then 
calculate and record the corresponding values of q or µ over the appropriate 
range of ages. When a sufficiently large set of vectors has been obtained, the 
corresponding values of q or µ will-provided the exposures to risk are suf- 
ficiently large-be distributed much as the graduated values would be in a set 
of experiences with the same exposures to risk as the observed experience and 
the same underlying mortality rates, but with different numbers of deaths. 
Conversely, the distribution of these rates provides a measure of the possible 
spread of the true rates of mortality around the values resulting from our 
maximum likelihood estimate 

In order to simulate values from a multivariate normal distribution it is 
convenient to decompose the parameters into a set of orthogonal (which in this 
context means independent) random variables. Assume that there are n par- 
ameters represented by the column vector c. These have means represented by 
the column vector M, and a symmetric variance-covariance matrix V. We 
postulate a set of n independent standard normal random variables represented 



On Graduation by Mathematical Formula 51 

by the column vector e. Suppose that the vector c is related to the vector e by 
a transformation c = Ae + M, where A is an n by n matrix. Then c has a mean 
M, and, if A is suitably chosen, variance-covariance matrix V. To show that c 
has mean M is trivial: clearly E[c] = A·E[e] + M = M (since E[e] = 0). The 
matrix A needs to be chosen so that E[(c – M)(c – M)'] = V’, i.e. 
E[Aee’A’] = V. Since E[ee’] = I, the identity matrix, we just need AA’ = V. 

A can be chosen in many ways, but it is most convenient to choose A as a 
lower triangular matrix, L. It is well known that, for any non-singular variance- 
covariance matrix V, there is a unique L such that LL’ = V. The actual 
mechanics of calculating A = L are not difficult. Because the terms in A above 
the diagonal are zero, we have first = v11 where aij is the term in the ith row 
and jth column of A, and vij is defined likewise for V, so we can calculate a11 . In 
the second row we have a21a11 = v21 and so we get a,, and a22 
In the next row we derive three terms in succession, and so on. The matrix L is 
called the Cholesky decomposition of A. 

It is not difficult to generate a sequence of pseudo-random unit normal 
variates, using for example Marsaglia’s polar method (see Maturity Guarantees 
Working Party, 1980, Appendix E. or Press et al., 1986) or the Box–Müller 
method (Press et al., 1986 or Rubinstein, 1986). We have found the former 
method to be faster on the computers we have used, but algorithms already 
programmed for the latter may be more readily available. For the ith vector we 
generate n such pseudo-random normal variates, which are considered as a 
column vector ei. The vector is then calculated as = Aei + M and sample 
values of q or µ for a range of ages are calculated using this vector. If the 
sampling process is repeated say a further 100 times, we shall obtain 101 sets of 
parameter values in all, and 101 sets of values of q or µ. Sample statistics for each 
of these variables (parameters and mortality rates) can be calculated, including 
their means and variances, and the covariance matrix of the sample parameter 
values. The means of the sample parameters should be close to the means used 
to generate them, i.e. the maximum likelihood estimates, and the sample va- 
riance-covariance matrix should be similar to the matrix V. 

11.2 Standard Errors of the Estimates of Mortality Rates 
The means of the sample mortality rates should be similar to the graduated 

rates based on the maximum likelihood parameters. There may, however, be 
some bias in them, depending on the formula used. 

For example, suppose that µx is given by a Gompertz formula, 

(11.2.1) 

where and are bivariate normally distributed, so that (for fixed x) 
B = is normally distributed. Let the mean and variance of B be m(B) 
and s2(B) respectively. Then µx, is log-normally distributed with mean 

(11.2.2) 
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and variance 

(11.2.3) 

(See, for example, Hogg & Klugman, 1985.) 
In this case the rate based on the parameter mean, viz 

exp {m(B)} 

is the median value of µx and is lower than the mean. However, provided that 
the values of the parameter variances are not too large, in practice the sample 
values of q or µ are approximately normally distributed, and we can derive a 
95% confidence interval for them in the usual way from the sample variances. 

11.3 Quantile Plots 
It is illuminating to plot the sample values of qx say on a graph. Rather than 

plot every one of the simulated samples, it is convenient to plot selected quan- 
tiles, for example the 1st, 3rd, 5th, 11th, 21st, 51st, 81st, 91st, 97th, 99th and 
101st highest, at each age, out of say 101 samples. These typically lie along the 
line showing the maximum likelihood fit, but with a scatter that indicates the 
level of confidence one can have in the graduated values. 

If the experience is a large one, the confidence intervals both for the parameter 
estimates and for the graduated rates are small, and the quantile lines lie close 
together. Towards the ends of the age range in the experience, the quantiles 
spread out a bit, displaying typically a sheaf-shaped pattern. This indicates that 
there is greater uncertainty about the graduated rates in this part of the age- 
range. The sample rates may be carried on beyond any actual data, and this 
gives an indication of the region within which extrapolated rates might lie, based 
on the experience from which the rates have been derived. If the experience is 
a small one, the confidence intervals widen, and the plotted quantiles may cover 
quite a wide range. Further, if the formula used for the graduation has too many 
parameters, so that, as noted in § 10.5, the standard errors of the parameter 
estimates become larger, so also do the confidence intervals for the mortality 
rates, and sometimes the sheaf-shaped region bursts out erratically, especially at 
the ends of the range. 

Inspection of these quantile plots also helps one to choose between gradua- 
tions with different formulae or different orders of the same family of formulae. 
If the sheaf-shaped region is tightly bound in one graduation and bursts out 
loosely in another, then the former is to be preferred, since the latter is probably 
an example of over-fitting. However, if the values of the actual (crude) rates are 
also plotted, one can see whether the sheaf for a chosen graduation satisfactorily 
covers the actual rates. If one or two points representing the actual rates appear 
irregularly on either side of the sheaf, then the graduation is reasonably good. 
Usually these outlying points indicate high (absolute) values of the relative 
deviation zx. If a string of points representing the actual rates appears to one 
side or another of the sheaf, then the trial graduation does not run down the 
middle of the data satisfactorily, and a higher order of formula, or a formula 
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from a different family should be tried. One can say as a general rule that the 
tightest sheaf that covers the data is the best, but this generalization does not 
necessarily cover all circumstances, and it is in any case a matter of judgement 
by eye as to which of two similar graduations is the tighter or covers the data 
better. 

11.4 Distribution of log-likelihood 
At the same time as calculating the set of mortality rates resulting from each 

sample vector we calculate L , the corresponding likelihood for the ob- 
served experience. In each case the value of L must be less than L , the 
maximum value. The likelihood ratio test (see § 10.2 above) shows that asymp- 
totically –2 log is distributed as X2(n), 
where n is the dimension of the vector 

12. RECONSIDERATION OF THE DATA 

12.1 Assessment of the Test Results 
It is now appropriate to review what has been written above about choosing 

which out of many possible graduations is the most satisfactory, and to bring 
out other considerations that may be relevant. We start by assuming that a 
particular family of formulae, for example the GM(r, s) family, has been chosen. 
If we are dealing with mortality data at adult ages, then a Gompertz formula 
GM(0, 2) is the lowest order than can possibly be suitable, and it is often 
convenient to start there. (To put s = 1 is ambiguous, since the exponential 
term is then confounded with the constant term in the polynomial in x of order 
r; to put s = 0 is possible, but leaves the formula just as a polynomial in x, 
which has in practice not been found to fit mortality rates well.) In some cases, 
particularly if the experience is not very large and is confined to ages above 
about 30, we may find that we need not go any further. 

However, it seems to us desirable always to investigate the effect of adding one 
parameter too many. Starting with GM(0, 2) we could add one parameter to the 
first polynomial, giving GM(1, 2) (Makeham’s formula), or one to the second 
polynomial, giving GM(0, 3). If we find that one or other of these is better than 
GM(0, 2), we may wish to go further, trying GM(2, 2), GM(1, 3) or GM(0, 4). 
We can carry on, increasing the total number of parameters by one each time, 
and trying all the possible formulae in the family with that number of par- 
ameters. One line of approach is to choose the best of the n-parameter formulae, 
using for example the criterion of the maximum value of the log-likelihood, and 
advancing forward by adding one parameter to each of those polynomials in 
turn; whether this can readily be done depends on the cost of computing, but 
we have not found it expensive to try a wide range of orders in any one sequence 
of trials. If the best of the (n + 1)-parameter formulae has a log-likelihood no 
more than 2 larger than the best of the n-parameter ones, and if the latter is a 
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special case of the former, then it is probably not worth going further. If the 
family of formulae is in general a suitable one, then this probably identifies the 
most suitable graduation. But sometimes the log-likelihood test (or the mini- 
mum t( χ ²) test) draws one on to a higher order formula than seems to us to be 
justified. This appears to occur when insufficient or no allowance for duplicates 
has been made, since the value of χ ² (and the log-likelihood) should have been 
scaled down to allow for them. 

If a graduation of a lower order fails some of the elementary tests, such as the 
signs test, runs test, serial correlation test, or Kolmogorov–Smirnov test, and a 
graduation with a higher order passes them, then the latter is to be preferred. 
But sometimes no graduation of a reasonably low order satisfies these tests. In 
this case another family of formulae may be tried. There is no point in increasing 
the number of parameters excessively. It is usually found that the standard errors 
of the parameter estimates increase, so that many of the parameters appear to 
be not significantly different from zero. The quantile sheaf also tends to burst 
out, if too many parameters are included. If the standard errors of the sample 
mortality rates are calculated, the graduation with the lowest values of 
these standard errors may be preferred, provided that it satisfies adequately the 
elementary tests. 

12.2 Visual Inspection 
It is advisable also to look at the chart showing the actual rates and the gates 

described in § 2.6. If a graduated rate for one age lies outside the corresponding 
95% gate, then its relative error, zx, is outside the range ± 1.96. If too many 
gates are missed, particularly if they are in a sequence of ages, then a higher 
order formula (or another family) may help. But if the gates at one or two ages 
are so positioned that no reasonable curve could pass through them without 
missing some of the neighbouring gates, then one should first suspect erroneous 
figures, or faulty data, and then probably reach the conclusion that the data 
itself has caused the problem. There may be unidentified duplicates (as was 
recorded by the CMI Committee (1976) in relation to the 1967-70 male imm- 
ediate annuitants data), or there may be some other peculiarity about the data 
at that age. 

In the CMI data relating to male pensioners, retiring at or after the normal 
age for their scheme, there have always been one or two such ages in the range 
from 64 to 67 (but not always at the same ages in each quadrennium). Since 
members of pension schemes typically retire at around those ages, the exposed 
to risk is changing rapidly, and it is possible that the method used to calculate 
the exposed to risk is not sufficiently accurate; another possible explanation is 
that the level of mortality of those who have just retired is unusual; yet another 
is that if a member dies at around retirement age there is bias as to whether or not 
he is deemed by the scheme administrators to have gone on pension. None of 
these explanations is wholly plausible, but it would not be appropriate when 
graduating an aggregate table like this one to take too much account of this 
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irregularity, even though one or two gates are missed, and one or two ages show 
unusually high values of zx. 

Sometimes one finds that the data at high ages is particularly erratic, and 
successive gates are well out of line. This may be because of misstatements of 
age (in population data) or because unreported deaths are included in the 
exposed to risk (in life assurance data). In either case it may be more satisfactory 
to restrict the age range for the graduation, stopping say at age 89, and to allow 
the graduation to produce extrapolated rates. The CMI Committee (1974) did 
this when graduating the experience on which the A1967-70 ultimate rates were 
based. 

On the other hand, there is no justification for missing out ages where the data 
is just scanty, so that the gates are wide and neighbouring gates overlap to a 
great extent. The crude rates may be erratic, but they do not carry a great weight 
in the graduation, and the method of grouping described in § 9.2 ensures that 
they do not upset the tests. 

Inspection of a chart on which the full range of graduated rates, including 
extrapolations beyond the age range of the data, is desirable. In some cases 
extrapolation of the rates may not be needed, but it is frequently necessary to 
continue the rates to high ages to complete a mortality table. If one graduation 
produces sensible extrapolations, and another (equally satisfactory in other 
respects) does not, then the former may be preferred, since it would then be 
possible to use the graduated rates without special adjustment. In other circum- 
stances it may in any case be necessary to extend the rates on the basis of other 
data, so this consideration may not apply. Formulae with too high orders of 
polynomial may fit the data in the main age range well, but they have a habit 
of turning in an undesirable way beyond this range. It seems implausible for 
mortality rates to reduce steeply at the highest ages, and a formula that has a 
pronounced turning point in the useable age range is undesirable (though it may 
not matter if the turning point is at a sufficiently high age). 

12.3 Related Experiences 
If the experience being graduated is one of a related set of experiences, such 

as the data for successive durations in a select investigation, then a desirable 
feature of the graduated rates may be that they run consistently. If it is clear that 
the level of mortality at the main age ranges increases with duration, then a set 
of graduated rates that run suitably ‘parallel’, i.e. do not overlap in the desired 
age range, may be preferable to ones that cross over implausibly. For this sort 
of reason a graduation that has a generally desirable shape may well be more 
suitable than another that has a less satisfactory shape, even though the latter 
might be preferred on the basis of statistical tests alone. The battery of statistical 
tests that we have described are a guide to assist the actuary’s judgement, not 
a set of rules to override it. The examples we discuss in §§ 1.5 to 17 may help to 
illustrate this. 
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13. COMPARISON OF TWO EXPERIENCES 

13.1 Comparison of Crude Rates 
We may wish to compare the data from two different mortality experiences 

to see whether they can be considered to have experienced the same levels of 
mortality. The experiences may be for two different durations in the same 
investigation, or for two different periods for the same investigation, or for two 
different investigations. Whatever the contrast, the comparison can be done in 
two ways: first by comparing the data from the two experiences directly, perhaps 
before graduation, and secondly by graduating the data for the two experiences 
separately and comparing the graduated rates. Different tests apply in these two 
circumstances. We discuss them in turn. 

Assume that we have data for two experiences, denoted by I and II. For each 
we have a sequence of values of exposed to risk and of actual deaths, for a range 
of ages. The ranges may not be identical for the two experiences, but we assume 
that there is a reasonable overlap of ages. (Otherwise there is not much to 
compare!) We may wish to restrict our comparison to roughly matching ages. 
We may wish first to adjust the exposed to risk and actual deaths in either 
experience or both, so as to eliminate the effect of duplicates. This can be done 
by dividing the exposed to risk and the number of deaths at each age by the 
appropriate variance ratio, as described in § 3.2. We then suggest grouping the 
ages, perhaps in the way described in § 9.2, so that the number of deaths (after 
adjustment) in each experience in each group is at least some number, such as 
5. We can then assume at least approximate symmetry and probably approxi- 
mate normality in the distributions of actual deaths in the two experiences. 

We denote the numbers of exposed to risk at age x (or in age-group x) in the 
two experiences by and and the numbers of actual deaths by and 
in each case after adjustment by any variance ratio (if appropriate). We first 
calculate the crude mortality rates at each age for the two experiences. Assume 
that we have central exposed to risk, that we wish to work with µ, and that the 
quotient Ax/Rx gives the crude value of the force of mortality at exact age x. (If 
we use q, the methods are exactly comparable.) We denote the crude rates as 

(13.1.1) 

and 

(13.1.2) 

We shall wish to use also the pooled data, and we shall denote the corresponding 
exposed to risk, actual deaths, and crude rates for this by 

(13.1.3) 

(13.1.4) 

and 
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µx = Ax/Rx (13.1.5) 

13.2 Comparison of Levels of Mortality 
We first wish to test whether the general level of mortality rates is the same 

for each experience. (If it is not, we may decide to go no further.) We use the 
signs test for this, calculating the signs of the differences On the basis 
of the null hypothesis that the true mortality rates for the two investigations 
are the same, at each age the difference between the crude rates in the two 
populations is equally likely to be positive or negative. (At least for practical 
purposes this may be considered the case; strictly it is true only asymptotically 
as the exposures to risk increase.) Accordingly the number of positive differen- 
ces is distributed binomially B(N, l/2), where N is the number of ages (or 
age-groups) that we are comparing. 

13.3 Comparison of Shapes 
Even if the signs test does not show a significant difference in the overall level 

of mortality in the two experiences, the levels may not be ‘parallel’, so that one 
experience shows higher mortality at some ages and lower at others. If the 
mortality of the two experiences is the same, then the differences should not only 
be equally likely to be positive and negative, but the pattern of positive and 
negative signs should be random. The runs test can be used on the signs of the 
differences of the crude rates. 

13.4 The χ ² Test 
We can also use the χ ² test to compare the distribution of the rates. To do this 

we use the pooled experience to estimate µx. We then calculate the expected 
deaths at each age for each experience as 

(13.4.1) 

and 

(13.4.2) 

We also calculate the deviations and relative deviations at each age for each 
experience as 

(13.4.3) 

(13.4.4) 

(13.4.5) 

and 

(13.4.6) 

Finally we calculate χ ² as 
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(13.4.7) 

and note that χ ² is distributed as χ ²(N). (Although it is the sum of 2N terms, N 
degrees of freedom are used up in the calculation of the pooled values of µx.) 

A sufficiently low value of χ ² indicates that the experiences have similar 
patterns of mortality. A too high value does not necessarily indicate the opp- 
osite. Inspection of the individual values of and may show that at one or 
two ages the data are more likely to be the problem. 

If the two experiences clearly do not have significantly different crude rates, 
then there is little justification for graduating them separately. The tests we shall 
describe below would probably lead us to the same conclusion if we were to 
graduate them separately. At the other extreme, if the levels of mortality, as 
shown by the signs test, are clearly different, or if the shapes, as shown by the 
runs test, are clearly different, then there is little justification for graduating the 
pooled experience. 

However, if the levels and shapes of the crude rates are similar and the χ ² test 
alone shows a difference, then we would prefer to graduate the two experiences 
separately, and test the graduated rates, as described below, with a view to 
pooling the experiences, and graduating the pooled rates, if the graduations are 
not significantly different. In some cases a high value of χ ² in the test of the crude 
rates corresponds to a high value of χ ² for one or other (or both) of the 
experiences when each is compared with its own graduation. Often the same age 
or ages produce high values of zx This is not in itself a reason for not pooling. 
In our view, pooling is to be preferred unless it cannot possibly be justified. 
There is seldom a good reason for making distinctions between durations or 
experiences for their own sake, but there is often a temptation to make spurious 
distinctions where none exist. 

13.5 Comparison of Graduated Rates 
We now describe the test that might be applied to compare the graduated 

rates of two experiences. We assume that we find that the same formula fits the 
two experiences, if necessary by increasing the order of the polynomials in the 
formulae to make them correspond. We assume that this formula requires n 
parameters. We denote by and the parameter vectors obtained (by maxim- 
um likelihood or minimum- χ ² methods) for the graduations of the two experien- 
ces. We denote by V1 and V11 the corresponding variance–covariance matrices. 
We then define the measure of ‘distance’ between the two sets of graduated 
parameters as 

(13.51) 

If experiences I and II are two samples from the same underlying experience, then 
D is distributed as χ ²(n). We can thus use a χ ² test on the distance between the 
two experiences in the n-dimensional parameter space. This gives a simple and 
conclusive test for the comparison of two graduations. 
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14. CONSTRUCTION OF THE MORTALITY TABLE FROM THE 
GRADUATED RATES 

14.1 Suppose first that the graduation has produced a formula for qx. In this 
case, since 

(14.1.1) 

the values of lx, in the resulting mortality table are readily obtained successively 
starting from any chosen radix. 

If the graduating function is valid only over a restricted range of ages, in 
certain circumstances it may be necessary to extrapolate the mortality rates to 
a wider age-range. (For example, in an investigation into the mortality of 
assured lives it may be desirable for practical purposes to extend the table 
‘downwards’ to age 0.) In such a situation one must consider whether or not the 
graduating formula may be used for ages outwith the basic age-range. If the 
formula is considered inappropriate at these ages, ad hoc extrapolation methods 
will have to be used (see, for example, CMI Committee, 1974 and 1976). 

It will generally be useful to include in the published table values of µx at each 
age. Such values can be estimated from the sequence of values {lx} in several 
ways. For example, one might assume that over a series of appropriate (short) 
age-ranges the force of mortality (as a function of age) is a polynomial of low 
degree. The resulting set of values {µx} will be sufficiently accurate for all 
practical purposes and may, therefore, be included in the published table. (It is 
perhaps worth noting that an alternative method of estimating the force of 
mortality, based on the assumption that over short age-ranges lx itself is a 
polynomial of low degree is, for theoretical reasons, a less desirable procedure 
(see McCutcheon, 1983).) Similar methods may also be used for a select table. 

14.2 Suppose, alternatively, that the graduation has produced a formula for 
the force of mortality µx. In this situation the sequence of values {qx} is required, 
in order to construct the mortality table. 

If the graduating function can be integrated exactly, the value of qx at each 
age is easily calculated as 

(14.2.1) 

If exact integration is not possible, since the force of mortality can be evaluated 
by formula at any age (and not only at integer ages) it is a trivial matter to 
evaluate the right-hand side of equation (14.2.1) to any desired degree of 
accuracy by standard methods of approximate integration (see Conte & de 
Boor, 1980). Even using only the values of µx at integer ages, one can generally 
estimate the value of the integral in equation (14.2.1) sufficiently accurately for 
most practical purposes. 

In certain situations one of the simple approximations 

(14.2.2) 
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(14.2.3) 

or 

(14.2.4) 

might be appropriate. (See Waters & Wilkie, 1987.) In general, however, greater 
accuracy than that provided by these first approximations is desirable. 

14.3 If the graduation has produced a formula for the central death rate mx, 
it is necessary to obtain values of both qx and µx at each age. 

Provided that the formula for mx is valid at all ages above a certain value 
say) and the graduating function can be easily integrated, the values of qx and 
µx at each age greater than can be found exactly quite simply by letting 

(14.3.1) 

and 

(14.3.2) 

Then (subject to convergence conditions which will be satisfied in most practical 
situations) we have, for 

(14.3.3) 

and 

(14.3.4) 

(see McCutcheon, 1971). Although these last two equations involve infinite 
series, their evaluation by computer to any desired degree of accuracy is a trivial 
matter. Having determined the two sequences {gx} and {hx,} 

we can immediately construct the sequences {qx} and {µx} at these 
same ages from equations (14.3.3) and (14.3.4). 

If it is impractical to integrate the graduating function for mx, or to carry out 
the above procedures, alternative methods are readily available. For example, 
at each age we may estimate qx, either in terms of mx—1 and mx, or in terms of mx, 

and mx+1 by simple quadratic-based approximations. (See McCutcheon, 1977.) 
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Then, using the values obtained for the sequence{qx}, we can estimate the force 
of mortality at each age as in § 14.1 above. 

Alternatively, except at high ages, we might use the well-known approxima- 
tion 

(14.3.5) 

to determine the force of mortality at each integer age, the right-hand side of 
equation (14.3.5) being evaluated by formula. Then, using these values of the 
force of mortality, we may estimate qx by an appropriate approximate integra- 
tion procedure (as in § 14.2 above). 

15. EXAMPLE I—PENSIONERS’ WIDOWS 

15.1 Introduction 
We now show how the principles described above can be applied by giving 

practical examples of the graduation of particular experiences. Each experience 
is one of those whose graduations are discussed in the accompanying report, and 
each relates to one of the CMI investigations for the period 1979 to 1982. Our 
first example is a relatively new investigation, that of the widows of life office 
pensioners. It has relatively few deaths, 692 in all, and it turns out to be rather 
easy to find a satisfactory graduation, since a simple formula with two par- 
ameters suffices. Consequently, its simplicity makes it suitable for exemplifying 
the various alternative methods and formulae described above. 

Our second example (in § 16) uses a much larger experience, that for male life 
office pensioners retiring at or after their normal retirement age. This has 85,426 
deaths, but it too is a more simple example, because of its restricted age range, 
absence of select period, and apparent absence of duplicates. It has, however, 
data both on a ‘Lives’ and on an ‘Amounts’ basis. 

Our third example (in § 17) is more complex, and it includes a number of the 
complications absent from our second example. This is for male permanent 
assured lives (UK) with a total of 95,023 deaths spread over six durations, a full 
age range and a considerable number of duplicates. 

In order to make comparisons between different GM and LGM formulae 
more meaningful, in the remainder of this paper we adopt the convention that 
the coefficients of the first polynomial in a GM(r,s) formula are denoted, by a0, 
a1, . . . ar–1 . We call these the ‘r-coefficients’. If r = 0, there are no r-coefficients. 
Similarly we denote by b0, . . .bs–1 the coefficients of the polynomial in the 
exponential term and refer to these as the ‘s-coefficients’. If s = 0, there are no 
s-coefficients. Throughout we use Chebycheff polynomials of the first type (see 
§4.2 above), denoting by Ci(t) the polynomial in t of degree i, and work with 
the scaled variable 

These conventions being clearly understood, we may then write 
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(15.1.1) 

where, as before, if r = 0, the right-hand side of this last equation is to be 
interpreted as containing only the exponential term and, if s = 0· it is to be 
interpreted as containing only the polynomial term. 

This notation is used also for LGM(r,s) formulae, LGMr,s (x) being defined 
by equations (4.1.6) and 15.1.1). 

15.2 Widows of life office pensioners 
We consider first the experience of the widows of pensioners of schemes 

insured by life offices. This investigation began only in 1975 and this is the first 
occasion that the experience of spouses has been considered by the CMI Com- 
mittee for graduation. We therefore had no prior experience to guide or to 
hinder us. The total central exposed to risk for this experience was 28,386.5 
years (initial 28,732.5), and there were 692 deaths, The numbers at each age 
appear in Tables 15.5 (central) and 15.6 (initial). The extreme limits of age 
observed in the exposed to risk were 17 to 108 (nearest birthday), but no deaths 
were observed below age 45 or above age 98. Outside the range of ages from 38 
to 85 inclusive the central exposed to risk at each age was less than 100, and 
outside the range of ages from 59 to 88 inclusive the number of deaths at each age 
was less than 10, so the bulk of the deaths were concentrated into about a 
30-year age span. 

There was no reason to suppose that a large number of duplicates existed in 
this experience, and no information from which variance ratios could be 
derived, so it was assumed that each observation represented one ‘life’. The 
subsequent results did not suggest that this assumption might have been unjus- 
tified. 

The experience was graduated both by using ‘initial’ exposures and graduat- 
ing qx, which is the traditional way used for CMI graduations, and by using 
‘central’ exposures and graduating µx, which is possibly preferable. We also 
graduated qx with ‘central’ exposures, but to save space we do not report on the 
results here. Since the CMI Bureau calculates initial exposures by adding half 
the number of observed deaths to the mean of the census populations for the 
in-force, it is an easy matter to subtract half the deaths from the initial exposures 
to obtain the central exposures. 

The crude rates of µx or qx for each age were calculated, and those for µx are 
plotted in Figure 15.1. Confidence intervals for µx and qx were also calculated, 
using the methods described in § 2.6, and using the exact Poisson or Binomial 
method for each age. The maximum number of deaths at any one age was 33 
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(at age 75), and our criterion has been to use the normal approximation only 
when the number of actual deaths exceeds 60. The upper and lower limits of the 
95% confidence intervals for µx are also shown in Figure 15.1 (along with a 
possible graduation formula, GM(0, 2), discussed below). The corresponding 
figure for qx has a very similar appearance. 

It can be seen that the confidence intervals are extremely wide at young ages, 
where there were no deaths, and reduce as the exposed to risk increases. Even 
from age 45 to about 60 the observed rates are erratic and the confidence 
intervals are wide. From ages 60 to 90 or so the observed rates rise in the usual 
way of almost all mortality experiences, and the confidence intervals are each of 
a similar width. Above age 90 the crude rates become more erratic and the 
confidence intervals widen again, extending almost the whole width of the 
interval (0, 1) in the ages above 95. 

It is pretty clear in general where the graduated rates should lie, and pretty 
clear that a straight line drawn on the semi-logarithmic graph would pass through 
most of the gates. A straight line corresponds to a Gompertz or GM(0, 2) 
formula, and this is clearly the starting point of our investigations. We shall 
pre-empt our conclusions by saying now that this formula (and the related 
logistic LGM(0.2) formula) proved to be our finishing point too, but discussion 
of the appropriate order of formula to use is deferred to § 15.3. 

For each of the functions 

(A) µx and 

Figure 15.1. Widow of pensioners crude rates and gates: µx = GM(0, 2). 
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(B) qx with initial exposures, 
we fitted the formulae 

(a) Gompertz GM(0, 2) and 
(b) logistic LGM(0, 2), 

using in each case the maximum value of 
(1) the likelihood (L1), 
(2) the normal approximation to the likelihood (L2), and 

(3) – ½ χ ² (L3). 
This gives 2 x 2 x 3 = 12 different graduations, which we denote for 
reference purposes by Aa1, Bb2, etc. 

(In fact, because the available computer routines were minimization routines, 
in each case we calculated the optimum parameters by minimizing – L1, – L2, 
or – L3 as appropriate. We sometimes used two different minimization methods 
(steepest descent and the simplex method), which gave the same answers (a 
comforting discovery).) We calculated the statistics for the various tests 
described in § 9, and also the information matrix, H, at the optimal point. From 
the inverse of H we calculated the standard errors of the parameter estimates 
(see § 8 above). 

In graduations of µx we calculated the corresponding values of qx at integral 
ages by approximate integration, using Simpson’s rule repeatedly until suc- 
cessive answers were near enough ‘the same. In graduations of qx we could 
calculate qx at integral ages from the appropriate formula. We used the esti- 
mated optimal parameters and the derived variance-covariance matrix to sim- 
ulate at random 100 sets of parameters and values of µx or qx at each age. In the 
case of µx we then derived simulated values of qx for integral ages by the 
approximate formula 

qx = 1 – exp (– µx+½) 

and calculated standard errors for qx from the observed simulated values of qx. 
The results of each of the graduations are summarized in Tables 15.1 to 15.4. 

Each table is for one combination of function and formula, and shows results 
for all three criteria. Thus Table 15.1 shows results for µx, formula GM(0, 2), 
for criteria L1, L2 and L3. The Tables show 

Table 15.1 Graduation Aa µx GM(0, 2) 
Table 15.2 Graduation Ab µx LGM(0, 2) 
Table 15.3 Graduation Ba qx (initial) GM(0, 2) 
Table 15.4 Graduation Bb qx (initial) LGM(0, 2) 

We can first observe that all twelve graduations shown fit the data quite 
satisfactorily. The p-values for the signs test, runs test and χ ² test are all 
satisfactorily large (i.e. well above ·05, the value which would imply a significant 
deviation from a satisfactory fit). The absolute values of the t-ratios for the serial 
correlation test are all well below 1·96, the value which, at the 5% level, would 
imply a significant deviation of the serial correlation coefficient from zero. 
(T-ratios here, and when the parameter estimates are being discussed, are simply 
the estimated value divided by the standard error of the estimate; for the serial 
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correlation coefficients the standard errors are N–1/2, where N is the number of 
values of zx used to calculate the coefficients.) The values of p(KS) are generally 
well above ·9, though in a few cases they are below this. 

The value of A – E (the difference between the actual and expected deaths) 
is always small, but in two cases it is almost exactly zero; these are graduations 
Aa1(µx), formula GM(0, 2), maximum likelihood) and Bb1 (qx), formula 
LGM(0, 2), maximum likelihood), which are the two cases where this result can 
be expected on theoretical grounds. 

The values of the parameters b0 and b1 are in all cases very significantly 
different from zero, and are reasonably similar for all the graduations of any one 
function and any one formula. But they are by no means the same. The normal 
approximation does not necessarily produce values any closer to the maximum 
likelihood values than the cruder L3 approximation. 

The values of qx produced by the different methods show quite a large range. 
At age 70, where the standard error of qx is at a minimum, the range of values 
is from ·028285 (Ba2) to ·031079 (Ab3), a range of about 10%. This should be 
compared with the standard errors of the estimates of q70 which are around 
3·5% to 4% of the value of q70. Different formulae and criteria produce results 
that appear significantly different from each other. The divergence is even wider 
at the extreme ages for which values of µx and qx are shown, where the formulae 
are projected well beyond the range of any significant volume of data. 

There is less difference, however, between the values of qx for our two 
preferred methods, Aa1 and Bb1. These show values of q70 of ·029468 and 
·029629, respectively, a difference of only about ·5%, well within one standard 
error. The differences between the values of qx for these two graduations remain 
small relative to their standard errors for all ages from 20 to 100, and exceed one 
standard error only at age 110. 

The graph of the GM(0, 2) formula for µx, using the L1 criterion, is shown 
on Figure 15.1. It can be seen how it passes through almost all the gates, the only 
exceptions being at the extreme ends of the data where the numbers of deaths 
are small. 

The results of the simulation of values of µx derived from the GM(0, 2) 
graduation with the L1 criterion are depicted in Figure 15.2, which shows the 
crude rates, the graduated rates, and the following quantiles from 100 simu- 
lations: numbers 1, 3, 5, 10, 20, 81, 91, 96, 98 and 100. Thus the lowest (dotted) 
line joins the points representing the lowest values of µx simulated at each 
separate age. These are not necessarily all from one set of simulated parameter 
values. The ‘sheaf shape can easily be seen. 

The standard errors of the estimates of qx indicate the accuracy which it is 
reasonable to expect any graduation to achieve. The values of the standard 
errors for each age are reasonably similar for all the graduations. The value of 
one standard error is less than 10% of the estimated value of qx for all ages from 
about 50 to 90. This is a little wider than the range of ages at which the numbers 
of deaths at each age exceed 10. 

Tables 15.5 and 15.6 give detailed results for graduations Aa1 and Bb1, 
showing for each age the exposed to risk, Rx, the number of deaths, A,, the 
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Table 15.1. Pensioners’ widows, 1979-82. 

Statistics for graduations Aa. 

Function: µx, formula: GM(0, 2) 

– 3003·85 
152·73 

– 29·60 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

Values of criteria at optimum point: 
L1 – 3003·23 – 3004·86 

L2 153·61 155·55 
L3 – 30·24 – 32·40 

Values of parameters at optimum point: 
– 3·553013 – 3·587134 

(standard error) ·039234 ·037967 
T-ratio – 90·56 – 94·48 

4·316579 4·664277 

(standard error) ·196615 ·162352 
T-ratio 21·95 28·73 

Comparison of total actual deaths (A) and total expected (E): 
Total A-E ·00 10·10 
Ratio 100A/E 100·00 101·48 

(Ages grouped so that each Ex 5) 

L3 
– ½ χ ² 

– 3·512447 
·036668 

– 95·79 

4·343006 
·159236 

27·27 

– 29·60 
95·90 

Signs test: 
Number of + 19 23 
Number of – 22 18 
p-(pos) ·3776 ·8256 

Runs test: 
Number of runs 21 20 
p(runs) ·5124 ·4120 

Kolmogorov–Smirnov test: 
Max deviation ·0228 ·0467 

P(KS) ·9938 4420 

Serial Correlation test: 
r1 – ·0747 ·0241 
T-ratio – ·48 ·15 

r2 ·1258 ·1405 
T-ratio ·81 ·90 
r3 – ·0734 ·0188 
T-ratio – ·47 ·12 

χ ² test 
x2 38·29 38·97 

Degrees of freedom 39 39 
p( χ ²) ·5019 ·4712 

Specimen values of qx for integral ages, simulated standard 
errors, and standard errors as percentage of value of qx: 

17 
24 

·1744 

19 
·3233 

·0245 
·9839 

– ·0027 
– ·02 
·1163 
·74 
– ·096O 
– ·61 

35·68 
39 

·6223 

Age 20 ·000399 ·000273 ·000405 
(standard error) ·00092 ·00049 ·000067 
percentage s.e. 22·98 18·06 16·52 



Method 
Optimization 

criterion 

Age 30 
(standard error) 
percentage s.e. 

Age 40 
(standard error) 
percentage s.e. 

Age 50 
(standard error) 
percentage s.e. 

Age 60 
(standard error) 
percentage s.e. 

Age 70 
(standard error) 
percentage s.e. 

Age 80 
(standard error) 
percentage s.e. 

Age 90 
(standard error) 
percentage s.e. 

Age 100 
(standard error) 
percentage se. 

Age 110 
(standard error) 
percentage s.e. 
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Table 15.1 (cont.) 

L1 L2 
Maximum Normal 
likelihood approximation 

·000946 ·000695 
·000174 ·000102 

18·44 14·64 

·002242 ·001765 
·000316 ·000200 

14·09 11·32 

·005306 ·004480 
·000529 ·000364 

9·97 8·13 

·012536 ·011348 
·000785 ·000598 

6·26 5·27 

·029468 ·028593 
·001176 ·001013 

3·99 3·54 

·068462 ·071082 
·003558 ·003143 

5·20 4·42 

·154772 ·170902 
·012490 ·011301 

8·07 6·61 

·328796 ·378966 
·033918 ·030691 

10·32 8·10 

·611429 ·702045 
·061060 ·048323 

9·99 6·88 

L3 
– ½ χ ² 

·000965 
·000129 

13·33 

·002298 
·000235 

10·23 

·005469 
·000398 

7·28 

·012987 
·000616 

4·74 

·030677 
·001080 

3·52 

·071575 
·003334 

4·66 

·162236 
·010966 

6·76 

·344225 
·028496 

8·28 

·634218 
·048582 

7·66 

graduated death rate (µx or qx–½, as appropriate) for the formula, the corre- 

sponding expected number of deaths, Ex (Rxµx or Rxqx–½, as appropriate), and 

the deviation Devx = Ax – Ex. Note that the exposed to risk and actual deaths 

are those for ‘age nearest’, so the age adjustment b (see § 3.1) is – 1/2, and the 

values given are those for µx and µx–½. 

Neighbouring ages are then grouped so that the total of Ex in each group is 

at least 5. The following items are shown for each resulting age group: totals of 

Rx, Ax, Ex and Devx; the standard deviation (Vx)½ (see § 9.1), the statistic zx, 

and the ratio Ax/Ex as a percentage. The values of zx can be compared mentally 

with a unit normal variate. It can be seen that only one value in each table, that 

for age 88, exceeds 2·0 in absolute value. The signs test, and runs test are carried 

out on the signs of the zx and the serial correlation test uses the values of the zx. 

The sum of the squares of zx gives the value of χ 2. 
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Table 15.2. Pensioners’ widows 1979-82. 

Statistics for graduations Ab. 

Function: µx, formula: LGM(0, 2) 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

L1 – 3003·17 – 3004·90 
L2 154·98 157·12 
L3 – 31·87 – 34·42 

Values of parameters at optimum point: 
b0 – 3·512845 – 3·542254 

(standard error) 3·512845 ·039457 
T-ratio – 86·45 – 89·78 

b1 4·526366 4·923193 
(standard error) ·215332 ·177519 
T-ratio 21·02 27·73 

Comparison of total actual deaths (A) and total expected (E): 

Total A-E ·34 7·09 
Ratio 100A/E – 100·05 101·03 

(Ages grouped so that each Ex 5) 

Signs test: 
Number of + 19 22 
Number of – 21 18 
p(pos) ·4373 ·7852 

Runs test: 
Number of runs 18 18 
p(runs) ·2170 ·2293 

Kolmogorov–Smirnov test: 
Max deviation ·0267 ·0513 
P(KS) ·9658 ·3254 

Serial Correlation test: 
r1 – ·0070 ·1354 
T-ratio – ·04 ·86 

r·2 ·1271 ·1649 
T-ratio ·80 1·04 
r3 – ·0602 ·0453 
T-ratio – ·38 ·29 

χ ² test 
χ ² 37·37 37·15 
Degrees of freedom 38 38 
P( χ ²) ·4983 ·5085 

Specimen values of qx for integral ages, simulated standard 
errors, and standard errors as percentage of value of 4x: 

Age 20 ·000337 ·000221 
(standard error) ·000085 ·000043 
percentage s.e. 25·08 19·48 

Age 30 ·000834 ·000592 

L3 
– ½ χ ² 

– 3003·78 
153·93 

– 31·23 

– 3·469051 
·038181 

– 90·86 

4·532029 
·171787 

26·38 

– 29·23 
95·95 

17 
23 
·2148 

22 
·7377 

·0270 
·9591 

·0151 
·10 
·1397 
·88 
– ·0456 
– ·29 

37·11 
38 

·5102 

·000351 
·000062 

17·71 

·000867 
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Table 15.2 (cont.) 

Method L1 L2 L3 
Optimization Maximum Normal 

criterion 
– ½ χ ² 

likelihood approximation 

standard error) ·000167 ·000093 ·000123 

percentage s.e. 20·00 15·71 14·21 

Age 40 ·002058 ·001582 ·002142 
(standard error) ·000312 ·000191 ·000231 
percentage s.e. 15·14 12·04 10·80 

Age 50 ·005065 ·004219 ·005278 
(standard error) ·000534 ·000360 ·000400 
percentage s.e. 10·55 8·53 7·57 

Age 60 
(standard error) 
percentage s.e. 

·012385 
·000797 

6·43 

·011174 ·012915 
·000602 ·000619 

5·39 4·79 

Age 70 ·029805 ·029091 ·031079 
(standard error) ·001197 ·001043 ·001106 
percentage s.e. 4·02 3·58 3·56 

Age 80 ·069119 ·072531 ·071953 
(standard error) ·003698 ·003295 ·003418 
percentage s.e. 5·35 4·54 4·75 

Age 90 ·148020 ·163851 ·153371 
(standard error) ·011265 ·009987 ·009621 
percentage s.e. 7·61 6·09 6·27 

Age 100 ·274188 ·308174 ·281679 
(standard error) ·022362 ·018529 ·018047 
percentage s.e. 8·16 6·01 6·41 

Age 110 ·416258 ·456408 ·423220 
(standard error) ·027193 ·019417 ·020871 
percentage s.e. 6·53 4·25 4·93 

15.3 Formulae of higher orders 

Since a simple two-parameter formula fits the data satisfactorily in this case, 

it is hardly necessary to try a graduation formula of a higher order. For 

completeness, however, we show in Tables 15.7 and 15.8 the values of the L1 

criterion and the values of the parameter estimates for higher order formulae, 

for µx, formula GM(r, s), maximum likelihood (i.e. corresponding to gradu- 

ation Aa1), for the following formulae 

Table 15.7 GM(0, 2), GM(0, 3), GM(1, 2) 

Table 15.8 GM(0, 4), GM(1, 3), GM(2, 2) 

The improvement in the value of the criterion as compared with the GM(0, 2) 

is at the most ·46 when one parameter is added, and 1·41 when two parameters 

are added. Such a small improvement does not justify the use of a formula with 

more parameters. 

Further, it can be seen that the values of the added s-parameters, b2 and b3, 

are well within one standard error away from zero (T-ratios all less than 1·0), 
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Table 15.3. Pensioners’ widows, 1979-82. 

Statistics for graduations Ba. 

Function: qx (initial), formula: GM(0, 2) 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

Values of criteria at optimum point: 
L1 – 3003·81 – 3004·65 – 

L2 156·76 157·91 
L3 – 30·14 – 32·34 

Values of parameters at optimum point: 
– 3·530580 – 3·565433 

(standard error) ·038071 ·037083 
T-ratio – 92·74 – 96·15 

b1 4·160519 4·354299 
(standard error) ·184697 ·155070 
T-ratio 22·53 28·08 

Comparison of total actual deaths (A) and total expected (E): 

Total A-E 
Ratio 100A/E 

1·87 20·24 
100·27 103·01 

(Ages grouped so that each Ex 5) 

Signs test: 
Number of + 19 21 
Number of – 23 20 
P(pos) ·3220 ·6224 

Runs test: 
Number of runs 21 17 
p(runs) ·4599 ·1025 

Kolmogorov–Smirnov test: 
Max deviation ·0224 ·0305 
p(KS) ·9950 ·9096 

Serial Correlation test: 
r1 – ·1190 – ·0256 
T-ratio – ·77 – ·16 
r2 ·1329 ·0951 
T-ratio ·86 ·61 
r3 – ·0036 – ·1210 
T-ratio – ·02 – ·78 

χ ² test 

χ ² 39·85 37·37 
Degrees of freedom 40 39 
P( χ 2) ·4769 ·5442 

Specimen values of qx for integral ages, simulated standard 
errors, and standard errors as percentage of value of qx: 

Age 20 ·000457 ·000363 

L3 
– ½ χ ² 

3004·25 
155·16 

– 29·68 

– 3·495853 
·035817 

– 97·60 

4·088510 
·150720 

27·13 

– 20·69 
97·10 

17 
25 

·1400 

21 
·5330 

·0251 
·9797 

– ·0497 
– ·32 

·1370 
·89 

– ·0073 
– ·05 

37·11 
40 

·6009 

·000508 
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Table 15.3 (cont.) 

71 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

L3 
—½X2 

(standard error) 
percentage s.e. 

·000099 
21·73 

·000063 ·000080 
17·33 15·77 

Age 30 ·001050 ·000868 ·001152 
(standard error) ·000184 ·000122 ·000147 
percentage s.e. 17·50 14·08 12·76 

Age 40 ·102413 ·002075 ·002609 
(standard error) ·000324 ·000226 ·000256 
percentage s.e. 1344 10·92 9·83 

Age 50 ·005545 ·004956 ·005909 
(standard error) ·000531 ·000391 ·000417 
percentage s.e. 9·58 7·89 7·05 

Age 60 ·012744 ·011840 ·013386 
(standard error) ·000780 ·000613 ·000623 
percentage s.e. 6·12 5·18 4·66 

Age 70 ·029288 ·028285 ·030323 
(standard error) ·001162 ·001002 ·001060 
percentage s.e. 3·97 3·54 3·49 

Age 80 ·067308 
(standard error) ·003417 
percentage s.e. 5·08 

·067571 
·002990 

4·42 

·068690 
·003174 

4·62 

Age 90 
(standard error) 
percentage s.e. 

·154684 
·012697 

8·21 

·161425 ·155603 
·011240 ·010926 

6·96 7·02 

Age 100 ·355486 ·385639 ·352485 
(standard error) ·042233 ·038617 ·034636 
percentage s.e. 11·88 10·01 9·83 

Age 110 ·816961 ·921278 ·798480 
(standard error) ·128758 ·122375 ·102193 
percentage s.e. 15·76 13·28 12·80 

and that the values of the added r-parameters, a0 and a1, are less than two 
standard errors away from zero. Therefore none of the added parameters is itself 
significantly different from zero. 

These results show that in this case a simple two-parameter formula is the 
most complex that the data can support, and we see no reason to suggest 
any other. The choice between µx with a GM(0, 2) formula, and qx with a 
LGM(0, 2) formula is discussed below. 
15.4 µx, qx or mx? 

There is some choice as to whether a life table should be described in terms 
of a function for µx or one for qx. The tables produced by the CMI Committee 
in the past have been defined in terms of qx Where values of px have also been 
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Table 15.4. Pensioners’ widows, 1979-42. 
Statistics for graduations Bb. 

Function: qx (initial), formula: LGM(0, 2) 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

Values of criteria at optimum point: 
L1 — 3003·00 — 3004·61 
L2 159·66 161·59 
L3 — 30·04 — 32·96 

Values of parameters at optimum point: 
b0 — 3·488932 — 3·517671 
(standard error) ·039507 ·038543 
T-ratio — 88·31 — 91·27 

4·424580 4·788848 

(standard error) ·206191 ·173164 
T-ratio 21·46 27·66 

Comparison of total actual deaths (A) and total expected (E): 
Total A-E ·00 9·70 
Ratio 100A/E 100·00 101·42 

(Ages grouped so that each Ex 5) 

Signs test: 
Number of + 
Number of – 
p(pos) 

Runs test: 
Number of runs 
p(runs) 

Kolmogorov–Smirnov test: 
Max deviation 
p(KS) 

19 22 
21 18 

·4373 ·7852 

20 18 
·4440 ·2293 

·0242 ·0481 
·9873 ·4035 

Serial Correlation test: 
r1 
T-ratio 
r2 
T-ratio 
r3 
T-ratio 

x2 test 
X2 
Degrees of freedom 

P(X2) 

— ·0239 
— ·15 

·1159 
·73 

— ·0713 
— ·45 

36·22 
38 

·5520 

·1083 — ·0100 
·68 — ·06 
·1487 ·1291 
·94 ·82 
·0226 — ·0568 
·14 — ·36 

35·85 36·03 
38 38 

·5693 ·5609 

Specimen values of qx for integral ages, simulated standard 
errors, and standard errors as percentage of value of qx: 

Age 20 ·000366 ·000247 ·000400 
(standard error) ·000088 ·000047 ·000070 
percentage s.e. 24·17 19·12 17·37 

L3 
—½X 

— 3003·46 
158·20 

— 29·56 

— 3·451337 
·037349 

— 92·41 

4·371442 
·167053 

26·17 

— 24·10 
96·64 

17 
23 
·2148 

22 
·7377 

·0256 
·9748 
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Method 
Optimization 

criterion 

Age 30 
(standard error) 
percentage s.e. 

Age 40 
(standard error) 
percentage s.e. 

Age 50 
(standard error) 
percentage s.e. 

Age 60 
(standard error) 
percentage s.e. 

Age 70 
(standard error) 
percentage s.e. 

Age 80 
(standard error) 
percentage s.e. 

Age 90 
(standard error) 
percentage s.e. 

Age 100 
(standard error) 
percentage s.e. 

Age 110 
(standard error) 
percentage s.e 

Table 15.4 (cont.) 

L1 L2 
Maximum Normal 
likelihood approximation 

·000885 ·000643 
·0000171 ·000099 

19·33 15·45 

·002142 ·001674 
·000315 ·000199 

14·70 11·88 

·005175 ·004350 
·000533 ·000368 

10·31 8·46 

·012446 ·011257 
·000793 ·000606 

6·37 5·38 

·029629 ·028814 
·001184 ·001030 

3·99 3·57 

·068880 ·071764 
·003634 ·003269 

5·28 4·55 

·151987 ·167684 
·012000 ·010949 

7·90 6·53 

·302761 ·344261 
·028338 ·025211 

9·36 7·32 

·512680 ·577717 
·044231 ·035478 

8·63 6·14 

L3 

— ½X2 

·000959 
·000134 

13·95 

·002296 
·000244 

10·64 

·005487 
·000411 

7·49 

·013053 
·000623 

4·77 

·030729 
·001085 

3·53 

·070630 
·003374 

4·78 

·154105 
·010329 

6·70 

·303968 
·023320 

7·67 

·511452 
·035443 

6·93 

given, they have been derived from an assumption about the local shape of lx 
(see McCutcheon, 1983). The classical Gompertz and Makeham formulae, 
however, express µx in a simple way. 

It should be noted that all the functions associated with a life table are wholly 
defined if the values of µx are known for all x, but that they are not wholly 
defined if only the values of qx are known, even for all x. Two different 
survivorship functions may have the same values of qx at every age x (not just 
at integer values) (see McCutcheon, 1971). Given µx for all x, we may calculate 
the value of qx for any desired x, if necessary by approximate integration, as 
noted in § 14.2, or explicitly. Explicit integration is possible if µx is represented 
by any GM(r, 2) formula. When qx is used as the basis of the life table, some 
further assumption is required if values of µx are to be calculated. 

If the life table is defined in terms of a known function for mx, at least above 
some fixed age x0, then above this age the whole table is uniquely specified, and 
values of lx and µx can be calculated, using approximate methods but to any 
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Age 
17 
18 
19 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

Figure 15.2. Widows of pensioners sheaf for µx = GM(0, 2). 

Table 15.5. Pensioners’ widows, 1979-82. 
Details of graduation Aa1. 

Function: µx formula: GM(0, 2), criterion: maximum 
likelihood. 

Ages (nearest birthday) grouped so that each Ex 5 

Rx µx Ax Ex Devx (Vx)½ zx 1OOA/E 

·5 ·00029499 0 ·00 ·oo 
·O ·00032158 0 ·00 ·oo 
·O ·00035058 0 ·00 40 
4·0 ·00038219 0 ·00 ·oo 
4·0 ·00041665 0 ·00 ·oo 
3·5 ·00045422 0 ·00 ·oo 
4·5 ·00049518 0 ·00 ·oo 
10·5 ·00053983 0 ·01 – ·01 

16·5 ·00058850 0 ·01 – ·01 
13·5 ·00064156 0 ·01 - ·01 
20·5 ·00069941 0 ·01 - ·01 
29·5 ·00076248 0 ·02 - ·02 
36·5 ·00083123 0 ·03 - ·03 

30 36·0 ·00090618 0 ·03 - ·03 
31 44·5 ·00098789 0 ·04 - ·04 



Age 
32 
33 
34 

Rx µx 

50·0 ·00107696 
64·0 ·00117407 
73·0 ·00127993 

79·5 ·00139534 
80·0 ·00152115 
93·5 ·00165831 

106·5 ·00180784 
122·0 ·00197085 

115·5 ·00214855 
127·0 ·00234229 
157·0 ·00255348 
184·5 ·00278373 
191·0 ·00303473 

206·5 ·00330836 
219·5 ·00360667 
265·5 ·00393188 

2359·0 

AX Ex Devx 

0 ·05 – ·05 
0 ·08 – ·08 
0 ·09 – ·09 

35 
36 
37 
38 
39 

0 ·11 – ·11 
0 ·12 – ·12 
0 ·16 – ·16 
0 ·19 – ·19 
0 ·24 – ·24 

40 
41 
42 
43 
44 

0 ·25 – ·25 
0 ·30 – ·30 
0 ·40 – ·40 
0 ·51 – ·51 
0 ·58 – ·58 

45 
46 
47 

17–47 

2 ·68 1·32 
1 ·79 ·21 
1 1·04 – ·04 
4 5·78 – 1·78 

48 
49 
50 
51 

48–51 

301·5 ·00428640 
330·5 ·00467290 
378·5 ·00509424 
437·5 ·00555358 

1448·0 

4 1·29 2·71 
3 1·54 1·46 
3 1·93 1·07 
2 2·43 – ·43 

12 7·19 4·81 

52 480·0 ·00605433 3 2·91 ·09 
53 541·5 ·00660024 3 3·57 – ·57 

52-53 1021·5 6 6·48 – ·48 

54 576·0 ·00719537 2 4·14 – 2·14 
55 671·0 ·00784416 5 5·26 – ·26 

55–55 1247·0 7 9·41 – 2·41 

56 
51 
58 
59 

719·5 ·00855145 
813·0 ·00932251 
879·0 ·01016310 
934·0 ·01107949 

2 6·15 – 4·15 2·48 – 1·67 32·5 
7 7·58 – ·58 2·75 – ·21 92·4 
7 8·93 – 1·93 2·99 – ·65 78·4 

10 10·35 – ·35 3·22 – ·11 96·6 

60 
61 
62 
63 
64 

1029·0 ·01207850 
1091·0 ·01316759 
1074·5 ·01435488 
995·5 ·01564923 
963·5 ·01706028 

1029·0 ·01859857 
1108·5 ·02027556 
1130·5 ·02210376 
1146·5 ·02409681 
1037·0 ·02626956 

941·0 ·02863823 
908·5 ·03122048 

14 12·43 1·57 3·53 ·45 112·6 
14 14·37 – ·37 3·79 – ·10 91·5 
18 15·42 2·58 3·93 ·66 116·7 
20 15·58 4·42 3·95 1·12 128·4 
19 16·44 2·56 4·05 ·63 115·6 

65 
66 
67 
68 
69 

21 19·14 1·86 4·37 ·43 109·7 
29 22·48 6·52 4·74 1·38 129·0 
26 24·99 1·01 5·00 ·20 104·0 
30 27·63 2·37 5·26 ·45 108·6 
23 27·24 – 4·24 5·22 – ·81 84·4 

70 
71 

21 26·95 – 5·95 5·19 
31 28·36 2·64 5·33 
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Table 15·5 (cont.) 

(Vx)½ Zx 100A/E 

2.40 –.74 69.2 

2.68 1.79 166.8 

2.55 – .19 92.6 

3.07 – .79 74.4 

– 1.15 77.9 
.50 109.3 

75 
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Table 15.5 (cont.) 

Age Ax Ex 
12 
73 
74 
75 
76 
77 
78 
79 

29 28.74 
24 28.42 
26 27.59 
33 26.77 
21 25.62 
21 26.23 
20 26.42 
21 23.82 

80 
81 
82 
83 
84 

25 21.97 
17 20.87 
21 19.65 
13 18.78 
28 16.40 

Devx (Vx)½ 

.26 5.36 
– 4.42 5.33 
– 1.59 5.25 

6.23 5.17 
– 4.62 5.06 
– 5.23 5.12 
– 6.42 5.14 
– 2.82 4.88 

3.03 4.69 
– 3.87 4.57 

85 
86 
87 
88 
89 

Rx µx 
844.5 ·03403555 
766·0 ·03710446 
682·0 ·04045009 
607·0 ·0409738 
533·0 ·14807354 
500·5 ·05240823 
462·5 ·05713376 
382·5 ·06228538 

323·5 ·06790151 
282·0 ·07402404 
243·5 ·08069862 
213·5 ·08797503 
171·0 ·09590754 

132·5 ·10455530 
99·5 ·11398282 
77·5 ·12426039 
59·0 ·13546467 
42·0 ·14767921 

30·5 ·16099511 
19·5 ·17551167 
50·0 

11 13·85 
11 11·34 
10 9·63 
12 7·99 
9 6·20 

90 
91 

90–91 

6 4·91 
2 3·42 
8 8·33 

92 8·5 ·19133716 3 1·63 
93 8·0 ·20858960 1 1·67 
94 8·0 ·22739766 4 1·82 

92-94 24·5 8 5·11 

11·60 

1·35 4·43 

4·05 

– 2·85 3·72 

– 5·78 

– ·34 

4·33 

3·37 
·37 3·10 

4·01 2·83 
2·80 2·49 

1·09 
– 1·42 

– ·33 2·89 

1·37 
– ·67 

2·18 
2·89 2·26 

95 
96 
97 
98 
99 

4·0 ·24790159 
2·5 ·27025431 
2·5 ·29462253 

·5 ·32118798 

100 
101 
102 
103 
104 

·5 ·35014877 

1·0 ·38172090 
·5 ·41613981 
·0 ·45366219 

2 ·99 1·01 
0 ·68 – ·68 
0 ·74 – ·74 
1 ·16 ·84 
0 ·18 – ·18 

1·0 ·49456788 
·0 ·53916195 

0 ·38 – ·38 
0 ·21 – ·21 
0 ·00 ·00 
0 ·49 – ·49 
0 ·00 ·00 

105 ·0 ·58777696 0 ·00 
106 ·0 ·64077548 0 ·00 
107 ·0 ·69855276 0 ·00 
108 2·0 ·76153968 0 1·52 

95–108 14·5 3 5·35 

Tot. 28386·5 692 692·00 

·00 
·00 
·00 

– 1·52 
– 2·35 2·31 

·00 

x2 = = 38·29 

Zx 100A/E 

·05 100·9 
– ·83 84·4 
– ·30 94·2 

1·20 123·3 
– ·91 82·0 

– 1·02 80·1 
– 1·25 75·7 

– ·58 

·30 106·9 

88·1 

·65 113·8 

– 1·33 

– ·85 

69·2 

81·4 

2·86 170·7 

– ·77 79·4 
– ·10 97·0 

·12 103·8 
1·42 150·1 
1·12 145·1 

– ·13 96·0 

1·28 156·4 

– 1·01 56·1 

100·0 



Age 
17 
18 
19 
20 
21 
22 
23 
24 

Rx qx–½ Ax Ex Devx (Vx)½ Zx 100A/E 

·5 ·00026827 0 ·00 ·00 
·0 ·00029309 0 ·00 ·00 
·0 ·00032020 0 ·00 ·00 

4·0 ·00034981 0 ·00 ·00 
4·0 ·00038217 0 ·00 ·00 
3·5 ·00041751 0 ·00 ·00 
4·5 ·00045613 0 ·00 ·00 

10·5 ·00049831 0 ·01 – ·01 

25 16·5 ·00054439 0 ·01 – ·01 
26 13·5 ·00059473 0 ·01 – ·01 
27 20·5 40064972 0 ·01 – ·01 
28 29·5 90070979 0 ·02 – ·02 
29 36·5 ·00077542 0 ·03 – ·03 

30 36·0 ·00084710 0 ·03 – ·03 
31 44·5 ·00092541 0 ·04 – ·04 
32 50·0 ·00101095 0 ·05 – ·05 
33 64·0 ·00110438 0 ·07 – ·07 
34 73·0 ·00120644 0 ·09 – ·09 

35 79·5 ·00131792 0 ·10 – ·10 
36 80·0 ·00143968 0 ·12 – ·12 
37 93·5 ·00157268 0 ·15 – ·15 
38 106·5 ·00171794 0 ·18 – ·18 
39 122·0 ·00187660 0 ·23 – ·23 

40 115·5 ·00204987 0 ·24 – ·24 
41 127·0 ·00223911 0 ·28 – ·28 
42 157·0 ·00244578 0 ·38 – ·38 
43 184·5 ·00267147 0 ·49 – ·49 
44 191·0 ·00291793 0 ·56 – ·56 

45 207·5 
46 220·0 
47 266·0 

1747 2361·0 

·00318705 
·00348091 
·00380175 

·66 
·77 

1·01 
5·54 

48 303·5 
49 332·0 
50 380·0 
51 438·5 

48–51 1454·0 

·00415205 
·00453448 
·00495195 
·00540765 

4 1·26 
3 1·51 
3 1·88 
2 2·37 

12 7·02 

52 481·5 
53 543·0 

52-53 1024·5 

·00590504 
·00644788 

3 
3 
6 

2·84 
3·50 

1·34 
·23 

– ·01 
– 1·54 2·35 – ·66 72·1 

2·74 
1·49 
1·12 

– ·37 
4·98 2·64 1·88 171·0 

·16 
– ·50 

6·34 – ·34 2·51 – ·14 94·6 
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Table 15·6. Pensioners’ widows, 1979-42. 
Details of graduation Bb1. 

Function: qx (initial), formula: LGM(0, 2)) 
criterion: maximum likelihood. 

Ages (nearest birthday) grouped so that each Ex 5 

2 

2 

2 
2 
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Table 15.6 (cont.) 

Age Rx Ax Ex 

54 577·0 
55 673·5 

545·5 1250·5 

qx–½ 

·00704027 
·00768667 

2 4·06 
5 5·18 
7 9·24 

56 720·5 ·00839191 2 6·05 
57 816·5 ·00916126 7 7·48 
58 882·5 ·01000043 7 8·83 
59 939·0 ·01091562 10 10·25 

Devx 

– 2·06 
– ·18 

– 2·24 

– 4·05 
– ·48 

(Vx)½ 

3·03 

2·45 
2·72 

– 1·83 2·96 
– ·25 3·18 

60 1036·0 ·01191355 14 12·34 
61 1098·0 ·01300152 14 14·28 
62 1083·5 ·01418742 18 15·37 
63 1005·5 ·01547980 20 15·56 
64 973·0 ·01688788 19 16·43 

65 1039·5 ·01842165 21 19·15 
66 1123·0 ·02009186 29 22·56 
67 1143·5 ·02191013 26 25·05 
68 1161·5 ·02388894 30 27·75 
69 1048·5 ·02604171 23 27·30 

1·66 3·49 
– ·28 3·75 

2·63 3·90 
4·44 3·91 
2·57 4·02 

1·85 4·34 
6·44 4·70 

·95 4·95 
2·25 5·20 

70 951·5 
71 924·0 
72 859·0 
73 778·0 
74 695·0 

·02838283 
·03092773 
·03369291 
·03669595 
·03995559 

21 27·01 
31 28·58 
29 28·94 
24 28·55 
26 27·77 

75 623·5 ·04349169 33 27·12 
76 543·5 ·04732533 21 25·72 
77 511·0 ·05147869 21 26·31 
78 472·5 ·05597515 20 26·45 
79 393·0 ·06083916 21 23·91 

– 4·30 5·16 

– 6·01 5·12 
2·42 5·26 

·06 5·29 
– 4·55 5·24 
– 1·77 5·16 

5·88 5·10 
– 4·72 4·95 
– 5·31 5·00 
– 6·45 5·00 
– 2·91 4·74 

80 336·0 ·06609624 25 22·21 
81 290·5 ·07177287 17 20·85 
82 254·0 ·07789637 21 19·79 
83 220·0 ·08449475 13 18·59 
84 185·0 ·09159654 28 16·95 

2·79 4·55 
– 3·85 4·40 

85 138·0 ·09923054 11 13·69 
86 105·0 ·10742555 11 11·28 
87 82·5 ·11621003 10 9·59 
88 65·0 ·12561175 12 8·16 
89 46·5 ·13565735 9 6·31 

90 33·5 
91 20·5 

90–91 54·0 

·14637184 
·15777810 

6 4·90 
2 3·23 
8 8·14 

92 10·0 ·16989631 3 1·70 
93 8·5 ·18274332 1 1·55 
94 10·0 ·19633201 4 1·96 

1·21 4·27 
– 5·59 4·13 

11·05 3·92 

– 2·69 3·51 
– ·28 3·17 

·41 2·91 
3·84 2·67 
2·69 2·34 

1·10 
– 1·23 

– ·14 2·63 

1·30 
– ·55 

2·04 

Zx 100A/E 

– ·74 75·8 

– 1·65 33·1 
– ·18 93·6 
– ·62 79·3 
– ·08 97·6 

·47 113·4 
– ·07 98·1 

·68 117·1 
1·13 128·5 

64 115·6 

·43 109·7 
1·37 128·5 
·19 103·8 
·43 108·1 

– ·83 84·2 

– 1·17 77·8 
·46 108·5 
·01 100·2 

– ·87 84·1 
– ·34 93·6 

1·16 121·7 
– ·95 81·6 

– 1·06 79·8 
– 1·29 75·6 

– ·61 87·8 

·61 112·6 
– ·88 81·5 

·28 106·1 
– 1·35 69·9 

2·82 165·2 

– ·77 80·3 
– ·09 97·5 

1·14 104·3 
144 147·0 
1·15 142·7 

– ·05 98·3 
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Age Rx 
95 5·0 
96 2·5 
91 2·5 
98 1·0 
99 ·5 

100 1·0 
101 ·5 
102 ·0 
103 1·0 
104 ·0 

105 ·0 
106 ·0 
107 ·0 
108 2·0 

92–108 44·5 

Tot. 28732·50 

x2 = = 36·22 

qx–½ 

·21067068 
·22576231 
·24160425 
·25818707 
·27549462 

·29350334 
·31218201 
·33149165 
·35138549 
·37180921 

·39270130 
·41399368 
·43561243 
·45747879 

Table 15·6 (cont.) 

Ax Ex Devx (Vx)½ Zx 100A/E 

2 1·05 ·95 
0 ·56 – ·56 
0 ·60 – ·60 
1 ·26 ·74 
0 ·14 – ·14 

0 ·29 – ·29 
0 ·16 – ·16 
0 40 ·00 
0 ·35 – ·35 
0 90 ·00 

0 ·00 ·00 
0 44 ·00 
0 90 ·00 
0 ·91 – ·91 

11 9·55 1·45 2·70 ·54 115·2 

692 692·00 ·00 100·0 

desired degree of accuracy. There are, however, theoretical reasons for prefer- 
ring µx to mx as the basis of a graduation. 

For most practical actuarial calculations a table of values of qx for integer 
values of x is needed. How such a table of values has been calculated may be 
of little practical importance, and many different tables may be in use that have 
been constructed in different ways. In some circumstances, however, a simple 
formula for qx may be desirable, so that values of qx can be calculated directly 
by a computer function or subroutine. In this case, approximate integration of 
µx on each occasion that a value of qx is required may be inconveniently slow. 
This is less of a problem if µx can be integrated explicitly to give an expression 
for qx. 

In this paper we have discussed the fitting of a mathematical formula to 
mortality data for a particular experience. In order to produce a mortality table 
for practical use, it may be necessary to extend the range of ages over which the 
formula has been fitted, either upwards to the highest ages, or downwards to 
lower ages, or both. It is convenient if the formula itself provides a reasonable 
function for higher ages, and many of the formulae we have used do this. For 
a downwards extension a variety of methods may be used. 

For the lower ages of the A1967-70 table the CMI Committee used an ad hoc 
extension based on a table of values of qx at integral ages only. For the lower 
ages for the annuitants table aeg 1967-70, on which the a(90) tables were based, 
the Committee used for males the A1967-70 formula rates, with a blending 
function; the values of qx for all x could therefore be derived by means of a 
formula, although rather a complicated one. For females the rates for lower ages 
were derived from the A1967-70 rates ratioed by the rates for ELT12 Females 
and ELT12 Males, both of which were based on formulae, so again a rather 
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Table 15.7. Pensioners’ widows, 1979-32. 
Statistics for graduations Aa1. 

Function: µx formula: GM(r, s). 
Optimisation criterion: Maximum likelihood (L1) 

Number of parameters 2 3 3 
r 0 0 1 
s. 2 3 2 

Values of criterion at optimum point: 

L1 – 3003·23 

Values of parameters at optimum point: 

– 3003·21 – 3002·79 

a0 x 100 – – – ·132331 
(standard error) – – ·085059 
T-ratio – – – 1·56 

– 3·553013 – 3·618036 – 3·489439 
(standard error) ·039234 ·310230 ·056184 
T-ratio – 90·56 – 11·66 – 62·11 

b1 4·316579 4·325999 4·07591 
(standard error) ·196615 ·202828 ·262517 
T-ratio 21·95 21·33 15·52 

– – ·070109 – 
— ·331634 — 

T-ratio — – ·21 – 

complicated formula was required. The pensioners’ tables, PA(90), for males 
were not extended below age 50, and for females the formula provided reason- 
able values down to age 20. In these cases a simple formula for qx sufficed. 

Where a table has had to be extended by an elaborate method the advantage 
of a simple formula for qx may be lost, and it may be more convenient to use 
a table of values of qx for integral ages. In such cases it may be preferable to use 
the theoretically nicer method of defining µx by formula, which generally may 
be of the GM(r, s) type. In cases, however, where a simple formula for qx both 
fits the data and provides reasonable values for the whole range of ages desired, 
then the practical advantages may outweigh the theoretical niceties; in general 
a LGM(r, s) formula may be preferable. 

16. EXAMPLE 2—MALE PENSIONERS 

16.1 The Data 
For our second example we use a much larger experience, that for male life 

office pensioners retiring at or after their normal retirement age. For this 
graduation we ignore the select data, subdivided by duration since retirement, 
and use only the aggregate data, as was done when the experience for 1967-70 
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Table 15.8. Pensioners’ widows, 1979-82. 
Statistics for graduations Bbl. 

Funciton: µX, formula: GM(r,s). 
Optimisation criterion: Maximum likelihood (L1) 

Number of parameters 4 4 4 
r 0 1 2 
s 4 3 2 

Values of criterion at optimum point: 

L1 – 3003·19 – 3002·43 – 3001·82 

Values of parameters at optimum point: 

a0 × 100 
(standard error) – 

T-ratio – 

a1 × 100 – 

(standard error) – 

T-ratio – 

(standard error) 
– 3·628966 

·318213 
T-ratio – 11·40 

(standard error) 
4·492413 

·992051 
T-ratio 4·53 

b2 – ·082429 
(standard error) ·340834 
T-ratio – ·24 

b3 ·066381 
(standard error) ·386927 
T-ratio ·17 

– ·421281 
·808794 

– ·52 

– 

– 

– 

– 2·926007 – 3·919935 
1·075632 ·295883 

– 2·72 – 13·25 

3·623105 
1·064041 
3·40 

·482083 
·846736 
·57 

·855473 
·524312 

1·63 

1·491302 
·819679 

1·82 

5·094109 
·775866 

6·57 

– 

– 

– 

– 
– 

– 

– 
– 

for the same investigation was used to provide the basis for the Peg 1967-70 
graduated tables described by the C.M.I. Committee (1976). 

On that occasion the Committee graduated qX using a LGM(0,2) formula. It 
was of interest to see whether the same formula would be satisfactory for the 
1979-82 data. 

The total central exposed to risk for this experience was 1,377,059·5 years 
(initial 1,419,772·5), and there were 85,426 deaths, more than 100 times the 
number of deaths in our first example. The numbers at each age appear in Tables 
16.5 (central) and 16.6 (initial). The extreme limits of age observed in the 
exposed to risk were 19 to 108 (nearest birthday), but it must be suspected that 
the tiny amount of data below age 30 is the result of errors, and even from age 
30 to about 50 is as likely to be erroneous as valid. Outside the range of ages 
from 54 to 97 inclusive the central exposed to risk at each age was less than 100, 
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and outside the range of ages from 60 to 100 inclusive the number of deaths at 
each age was less than 10, so the bulk of the deaths were concentrated into the 
same sort of span of years as the pensioners’ widows in the first example. 

As for the pensioners’ widows there was no reason to suppose that a large 
number of duplicates existed in this experience, and no information from which 
variance ratios could be derived, so it was assumed that each observation 
represented one ‘life’. 

We graduated this experience both by using ‘initial’ exposures and graduating 
qx, and by using ‘central’ exposures and graduating µx, as in the first example. 

The crude rates of µX or qx for each age were calculated, and those for µx are 
plotted in Figure 16.1. Confidence intervals for µX and qx were also calculated, 
using the methods described in § 2.6, and using the normal approximation for 
ages where the number of deaths exceeded 60 (ages 64 to 96 inclusive) and the 
exact Poisson or Binomial method for other ages. The upper and lower limits 
of the 95% confidence intervals for µX are also shown in Figure 16.1 along with 
the graph of the GM(1,3) formula for µx, discussed below. 

It can be seen that the confidence intervals are extremely narrow at ages from 
65 to 92 or so. There can be little doubt about where the graduated rates should 
lie. Below 65 there are some irregularities (age 64 shows a rather high crude 
rate), and below age 55 the confidence intervals become very wide. Above age 
92 the confidence intervals widen somewhat, and the crude rates appear to fall 

Figure 16.1. Male pensioners (N/L, lives) crude rates and gates: µx = 
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below a linear projection of the rates at younger ages. This suggests that a 
GM(0,2) formula would not fit the data well at these ages. 

16.2 Choice of Order of Formula 
We first explored which order of formula might be suitable. We began this 

exploration with graduations of µx, using a GM(r,s) formula and a maximum 
likelihood (L1) criterion. We tried values of r and s with s ≥ 2, r + s ≤ 6, a 
total of 15 formulae. The values of the L1 criterion (plus a large constant) are 
shown below. 

s 2 3 4 5 6 

0 — 155·9 — 58·5 — 55·4 — 53·4 — 53·4 
1 — 98·7 — 52·6 —51·5 — 46·9 
2 — 53·3 — 50·9 — 50·9 
3 — 54·0 — 50·7 
4 — 52·2 

It can be seen that the value of the criterion either increases or remains the 
same as one moves down a column, or along a row, in each case as one extra 
parameter is fitted. Along a NE/SW diagonal the number of parameters is 
constant. It is therefore reasonable to prefer that entry along such a diagonal 
that shows the highest value. The Akaike criterion (Edwards’ level of support) 
suggests that one step down or to the right is not worth making unless the value 
of L1 is improved by 2. It is easily seen that the entry for GM(1,3), a value of 
– 52·6, is the first possible stopping point, since that value is much more than 
2 greater than its neighbours above and to the left, is greater than its neighbours 
to north-east and south-west, and differs by less than 2 from its neighbours 
below and to the right. 

The other possible contender is GM(1,5), which shows a value of – 46·9. This 
is 5·7 higher than the value for GM(1,3), but the formula requires two extra 
parameters. If twice the difference between the values of L1, i.e. 11·4, is com- 
pared with x2(2), it is readily seen to be very significant. Thus a GM(1,5) formula 
could be preferred to a GM(1,3) on this criterion. 

There are, however, other considerations to take into account. Table 16.1 
summarises these considerations for each of the 15 formulae investigated. The 
first two columns of this table show the order (r,s) of the formula and the value 
of L1 already discussed. In the next column, headed ‘Good fit’, is an indication 
of whether the graduation satisfies the following tests: signs test, runs test, serial 
correlation test, and Kolmogorov-Smirnov test (with a value of p(KS) exceed- 
ing ·9). It can be seen that the formulae of too low an order, GM(0,2) and 
GM(1,2), do not pass these tests. 

Next is shown the values of x2 and of p(x2). A graduation is satisfactory if the 
value of p(x2) is greater than say ·05. It can be seen that the first four formulae 
in the table do not satisfy this test, and that GM(0,6) is marginal. 

If the estimated value of the highest order parameter in either the r-poly- 
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Table 16.1. Comparison of GM(r,s) formulae for graduating µx 

Order Value Good 

(r,s) of L1 fit 

0,2 –- 155·9 No 

0,3 
1,2 

0,4 –- 55·4 
1,3 –- 52·6 
2,2 –- 53·3 

0,5 –- 53·4 
1,4 –- 51·5 
2,3 –- 50·9 
3,2 –- 54·0 

0,6 –- 53·4 
1,5 –– 46·9 

2,4 –– 50·9 

3,3 –– 50·7 
4,2 –– 52·2 

x2 
243·8 

–- 58·5 Yes 65·1 
–- 98·7 No 130·9 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 

60·0 
54·7 
54·1 

56·4 
52·0 
51·4 
54·9 

56·7 
43·3 
51·1 
50·9 
51·9 

P(x2) 

·00 

·02 
·00 

·04 
·11 
·19 

·08 
·19 
·21 
·15 

·05 
·46 
·19 
·19 
·17 

Signf. Good Tight 
pars. shape sheaf 

Yes Yes Yes 

Yes Yes Yes 
Yes No No 

Yes Yes No 
Yes Yes Yes 
Yes No No 

Yes No No 
Yes Yes Yes 
No No Yes 
No No No 

No No No 
Yes No Yes 
No No No 
No No No 
No No No 

nomial or the s-polynomial is not significantly different from zero, this indicates 
possible over-parameterization. It is therefore appropriate to note whether these 
parameters are significantly different from zero. This is indicated in the next 
column, headed ‘Signf. pars.‘. It can be seen that when the number of par- 
ameters does not exceed 4 the highest order ones remain significant, but that 
when the number does exceed 4 one or other or both of the highest order 
parameters are found to be non-significant for all formulae except GM(0,5), 
GM(2,3) and GM(1,5). 

A formula which provides a ‘good’ shape for the ages beyond where the bulk 
of the data is found may be preferable to one that extrapolates to values that 
are clearly unreasonable. A good shape is defined for this purpose as one where 
the values of µx continue to rise as age increases up to age 110, and neither rise 
unreasonably nor fall away to zero as age reduces down to 20. The column 
headed ‘Good shape’ indicates whether or not this criterion is satisfied. It can 
be seen that most of the higher-order formulae do not provide a good enough 
shape. 

Finally, a graduation may be preferred if the ‘sheaf of quantile plots of 
simulated values of µX, described in § 11.3, is fairly tight, indicating that the 
relative standard errors of the graduated estimates of µX are reasonably small. 
The tightness of the sheaf is associated with the size of the standard errors of 
the parameter estimates. What is tight for this purpose is a relative matter, but 
in this case there is a clear division between tight and loose sheaves. It can be 
seen that many of the high-order formulae and even some of the low-order 
formulae do not have tight sheaves. 

There is only one formula that satisfies all these criteria, and that is the 
GM(1,3) formula already identified as potentially the best through its high value 
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for L1. The GM(1,5) formula has many good features, but it has a rather poor 
shape, in fact reaching a maximum value of µX at x = 98, and falling sharply 
thereafter. 

The graph of the GM(1,3) formula for µx is shown in Figure 16.1, and the 
sheaf in Figure 16.2, in which the quantiles plotted are the same as those 
described for the pensioners’ widows, viz: numbers 1, 3, 5, 10, 20 ,81, 91, 96, 98 
and 100 out of 100 simulations. It can be seen how much tighter is the sheaf for 
this large experience than is that for pensioners’ widows, shown in Figure 15.2. 
The standard errors of the estimates of qx shown in Table 16.3 are also much 
smaller than those in Table 15.1. 

As a contrast, in Figure 16.3 we show the sheaf for a GM(3,3) formula. The 
maximum likelihood estimates of the parameters for this formula and their 
standard errors and T-ratios are 

a0 × 100 – 23·632738 
a1 × 100 – 34·505888 
a2 × 100 – 10·747659 

b0 – 2·341549 

b1 3·286758 

b2 – ·571860 

Parameter 
Estimate 

Standard 
Error 

43·996884 
58·025867 
16·846927 
2·215710 
1·861814 

·621756 

T-ratio 

– ·5371 
– ·5947 
– ·6380 

– 1·0568 
1·7654 

– ·9198 

Figure 16.2. Male pensioners (N/L,lives) sheaf for µx = GM(1,3). 



86 On Graduation by Mathematical Formula 

Figure 16.3. Male pensioners (N/L, lives) sheaf for µx = GM(3,3). 

The effect of over-parameterization can readily be appreciated. 
A similar exploration was carried out for graduations of qX with a LGM(r,s) 

formula. Values of L1 (plus a large constant) are 

s 2 3 4 5 6 

r0 – 77·7 – 23·0 – 20·7 – 18·5 – 18·5 
1 – 68·7 – 18·0 – 16·4 – 12·9 
2 – 16·9 – 16·5 – 16·0 
3 – 16·6 – 16·0 
4 – 15·7 

These values cannot be compared directly with the values of L1 for the formulae 
graduating µx shown above, since a constant adjustment needs to be allowed for. 
The tables show a similar pattern, The LGM(1,3) formula is potentially good, 
but in this case the LGM(2,2) formula would appear to be better. LGM(l,5) is 
again a contender. 

Table 16.2 shows how these formulae match up to the same criteria as dis- 
cussed above for the graduations of µX. The entries are similar to those in Table 
16.1, but they are not identical. Although formula LGM(2,2) has a high value 
of I1, it has neither a good shape nor a tight sheaf, so we do not prefer it to 
LGM(1,3). 
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Table 16.2. Comparison of LGM(r,s) formulae for graduating qx 

Value Good Signf. Good Tight 
of L1 fit x2 P(X2) pars. shape sheaf 

– 77·7 No 169·5 ·00 Yes Yes Yes 

– 23·0 Yes 64·6 ·02 Yes Yes Yes 
– 68·7 No 148·7 ·00 No No No 

– 20·7 Yes 60·0 ·04 No Yes No 
– 18·0 Yes 55·4 ·10 Yes Yes Yes 
– 16·9 Yes 52·3 ·18 Yes No No 

– 18·5 Yes 56·7 ·06 Yes No No 
– 16·4 Yes 52·6 ·18 No Yes Yes 
– 16·5 Yes 51·8 ·17 Yes No No 
– 16·6 Yes 52·3 ·16 No No Yes 

– 18·5 Yes 56·9 ·05 No No No 
– 12·9 Yes 43·6 ·45 Yes No Yes 
– 16·0 Yes 51·7 ·15 No No No 
– 16·0 Yes 52·0 ·14 No No No 
– 15·7 Yes 50·7 ·16 No No No 

Order 

(r,s) 

0,2 

0,3 
1,2 

0,4 
1,3 
2,2 

0,5 
1,4 
2,3 
3,2 

0,6 
1,5 
2,4 
3,3 
4,2 

16.3 Alternative Criteria 
For the pensioners’ widows we compared different methods of fitting each of 

the functions. We do this again, but using only the combinations 

(Aa) µx using Gompertz-Makeham GM(1,3) and 
(Bb) qx using logistic LGM(1,3) 

In each case we calculated the values described in § 15. The results of each of the 
graduations are summarized in Tables 16.3 and 16.4, which correspond to 
Tables 15.1 and 15.4, showing 

Table 16.3 Graduation Aa µX GM(1,3) 
Table 16.4 Graduation Bb qx (initial) LGM(1,3) 

We can observe that all six graduations shown are very much closer together 
than was the case in the first example. The parameters and the values of µx or 
qx (at least for the main age range of about 60 to 100) for the normal approxima- 
tion (L2) are quite close to those for the exact maximum likelihood (L1) 
criterion. Those for the minimum ½x2 (L3) criterion are a little further away, but 
not substantially so. All the graduations fit the data satisfactorily according to 
all the relevant tests. 

The standard errors for the parameter estimates appear quite wide, but in fact 
they are closely correlated, in such a way that a variation in one parameter 
requires a corresponding variation in another so that the values of µx or qx 
produced are not so very different. This is seen from the very low standard errors 
for the estimates of µx or qx at the ages where the data is densest. For example, 
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Table 16.3. Male pensioners, normal or late, 1979–82. 
Statistics for graduations Aa. 

Function: µx, formula: GM(1,3) 

Method L1 L2 

Optimization Maximum Normal 
criterion likelihood approximation 

Values of criteria at optimum point: 
L1 – 309752·58 – 309752·65 
L2 77·27 77·39 
L3 – 45·70 – 44·59 

Values of parameters at optimum point: 
a0 × 100 ·557291 ·617109 
(standard error) ·183966 ·120454 
T-ratio 3·03 5·12 

b0 – 4·993529 – 5·068128 
(standard error) ·265676 ·195440 
T-ratio – 18·80 – 25·93 

b1 5·882482 5·963083 
(standard error) ·273044 ·192761 
T-ratio 21·54 30·94 

b2 – 1·668855 – 1·726347 
(standard error) ·215576 ·163880 
T-ratio – 7·74 – 10·53 

Comparison of total actual deaths (A) and total expected (E): 
Total A-E 1·00 – 5·11 
Ratio 100A/E 100·00 99·99 

(Ages grouped so that each Ex ≥ 5) 

Signs test: 
Number of + 23 24 25 
Number of – 24 23 23 
P(pos) ·5000 ·6146 ·6673 

Runs test: 
Number of runs 
p(runs) 

Kolmogorov-Smirnov test: 
Max deviation 
P(KS) 

Serial Correlation test: 

29 27 25 
·9304 ·8119 ·5616 

·0019 ·0019 ·0026 
·9984 ·9980 ·9284 

r1 ·0018 ·0035 ·0702 
T-ratio ·01 ·02 ·49 
r2 – ·1140 – ·1135 – ·0778 
T-ratio – ·78 – ·78 – ·54 
r3 – ·0611 – ·0660 – ·0728 
T-ratio – ·42 – ·45 – ·50 

x2 test 

x2 
Degrees of freedom 
P(X2) 

54·72 54·73 57·71 
43 43 44 

·1085 ·1083 ·0805 

L3 

-½x2 

– 309754·12 
75·98 

– 42·89 

·831983 
·141503 

5·88 

– 5·344232 
·237788 

– 22·47 

6·275090 
·240608 

26·08 

– 1·937322 
·196673 

– 9·85 

– 42·01 
99·95 
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Table 16.3 (cont.) 

Method L1 L2 
Optimization 

criterion 
Maximum 
likelihood 

Normal 
approximation 

89 

l3 

–½x2 
Specimen values of qX for integral ages, simulated standard 

errors, and standard errors as percentage of value of qx: 

Age 20 
(standard error) 
percentage s.e. 

Age 30 
(standard error) 
percentage s.e. 

Age 40 
(standard error) 
percentage s.e. 

Age 50 
(standard error) 
percentage s.e. 

Age 60 
(standard error) 
percentage s.e. 

Age 70 
(standard error) 
percentage ss.e. 

Age 80 
(standard error) 
percentage s.e. 

Age 90 
(standard error) 
percentage s.e. 

Age 100 
(standard error) 
percentage s.e. 

Age 110 
(standard error) 
percentage s.e. 

·005561 ·006155 ·008287 
·001626 ·001006 ·001438 

29·24 16·35 17·35 

·005600 ·006189 ·008306 
·001613 ·000995 ·001429 

28·79 16·08 17·20 

·005906 ·006466 ·008496 
·001526 ,000937 ·001371 

25·83 14·49 16·14 

·007729 ·008184 ·009864 
·001216 ·000736 ·001134 

15·73 9·00 11·50 

·015886 
·000588 

3·70 

·016105 ·016929 
·000356 ·000579 

2·21 3·42 

·042799 ·042781 ·042677 
·000225 ·000202 ·000225 
·53 ·47 ·53 

·106334 ·106369 ·106575 
·000557 ·000513 ·000547 
·52 ·48 ·51 

·209121 ·208980 ·209213 
·002342 ·002151 ·002380 

1·12 1·03 1·14 

·317159 ·314823 ·308279 
·011132 ·010908 ·013032 

3·51 3·46 4·23 

·379986 
·030153 

7·94 

·372433 ·348706 
·028303 ·034134 

7·60 9·79 

at ages 70 to 80 the values of µX and qx can be estimated with a standard error 
of only one half per cent of their value. 

In this example we have shown that the simplest formulae that adequately fit 
the data are a GM(1,3) for µx and a LGM(1,3) for qx. Although certain higher 
order formulae fit the data just as well, and in terms of the log-likelihood 
criterion rather better, the other considerations that should be taken into 
account make them less satisfactory than the GM(1,3) and LGM(1,3) formulae. 
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Table 16.4. Male pensioners, normal or late, 1979-82. 
Statistics for graduations Bb. 

Function: qx (initial), formula: LGM(1,3) 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

Values of criteria at optimum point: 

L1 – 309717·99 – 309718·05 
L2 81·31 81·41 
L3 – 49·24 – 48·22 

Values of parameters at optimum point: 

a0 × 100 ·538616 ·591097 
(standard error) ·195921 ·095333 
T-ratio 2·75 6·20 

b0 – 4·700716 – 4·758472 
(standard error) ·282191 ·168455 
T-ratio – 16·66 – 28·25 

b1 5·897192 5·961896 
(standard error) ·281004 ·153143 
T-ratio 20·99 38·93 

b2 – 1·464466 – 1·508395 
(standard error) ·233190 ·147569 
T-ratio – 6·28 – 10·22 

Comparison of total actual deaths (A) and total expected (E): 

Total A-E – ·02 – 7·80 
Ratio 100A/E 100·00 99·99 

(Ages grouped so that each Ex 5) 

Signs test: 

Number of + 
Number of – 

p(pos) 

Runs test: 

Number of runs 

p(runs) 

Kolmogorov–Smirnov test: 

Max deviation 

p(KS) 

24 23 25 
23 24 23 

·6146 ·5000 ·6673 

29 29 25 
·9304 ·9304 ·5616 

·0018 ·0019 ·0026 
·9989 ·9984 ·9420 

Serial Correlation test: 

r1 ·0029 ·0042 ·0680 
T-ratio ·02 ·03 ·47 

r2 – ·1085 – ·1091 – ·0752 
T-ratio – ·74 – ·75 – ·52 

r3 – ·0626 – ·0680 – ·0740 
T-ratio – ·43 – ·47 –·51 

2 
2 test 
Degrees of freedom 

p( 2) 

55·40 55·33 58·20 
43 43 44 

·0973 ·0985 ·0741 

– 

L3 

– ½ 2 

309719·56 
79·82 

– 46·29 

·833373 
·148560 

5·61 

– 5·085900 
·252404 

– 20·15 

6·312090 
·246157 

25·64 

– 1·767744 
·212793 

8·31 

– 36·36 
99·96 
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Table 16.4 (cont.) 

Method L1 L2 
Optimization Maximum Normal 

criterion likelihood approximation 

Specimen values of qx for integral ages, simulated standard 
errors, and standard errors as percentage of value of qx: 

Age 20 ·005363 ·005881 
(standard error) ·001704 ·000791 
percentage s.e. 31·78 13·45 

Age 30 ·005411 ·005923 
(standard error) ·001686 ·000780 
percentage s.e. 31·16 13·17 

Age 40 ·005751 ·006238 
(standard error) ·001597 ·000727 
percentage s.e. 27·17 11·66 

Age 50 ·007653 ·008050 
(standard error) ·001255 ·000564 
percentage s.e. 16·40 7·01 

Age 60 ·015880 ·016078 
(standard error) ·000595 ·000295 
percentage s.e. 3·75 1·83 

Age 70 ·042785 ·042771 
(standard error) ·000229 ·000197 
percentage s.e. ·54 ·46 

Age 80 ·106434 ·106454 
(standard error) ·000562 ·000498 
percentage s.e. ·53 ·47 

Age 90 ·209901 ·209904 
(standard error) ·002338 ·002161 
percentage s.e. 1·11 1·03 

Age 100 ·322789 ·321598 
(standard error) ·010429 ·009613 
percentage s.e. 3·23 2·99 

Age 110 ·404906 ·400729 
(standard error) ·027012 ·023393 
percentage s.e. 6·67 5·84 

L3 

–½x² 

·008267 
·001496 

18·10 

·008289 
·001485 

17·92 

·008491 
·001420 

16·72 

·009882 
·001165 

11·79 

·016939 
·000587 

3·41 

·042653 
·000225 
·53 

·106706 
·000548 
·51 

·209644 
·002432 

1·16 

·313193 
·012394 

3·96 

·373526 
·031796 

8·51 

Tables 16.5 and 16.6 show detailed results for these two graduations. In each 
table the value of zx exceeds 2.0 on three occasions, for age group 56–57, and 
ages 64 and 74. No value of zx is less than – 2.0. An unusually high number of 
deaths at or about age 64 in this investigation in previous periods has been 
noticed by the CMI Committee. The exposed to risk changes sharply between 
ages 64 and 65, multiplying over tenfold, and it is possible that the census 
method used to calculate the exposed to risk does not give a good enough 
estimate in these circumstances. 
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Table 16.5. Male pensioners, normal or late, 1979-82 
Details of graduation Aal. 

Function: µx, formula: GM(1,3), criterion: maximum 
likelihood. 

Ages grouped so that each Ex ³ ³ 5 

Age Rx µx Ax Ex Devx (Vx)1/2 zx 100A/E 

19 
20–28 

29 

1.0 .00557567 
no data 

..5 .00560356 

no data 
,5 .00562094 

no data 
.5 .00566522 

13.0 .00568707 
20.0 .00571371 
17.0 .00574611 
10.5 .00578540 
6.0 .00583291 

3.5 .I0589018 
2.0 .00595904 
6.0 .00604160 
5.5 .00614028 
6.5 .00625791 

5.5 .00639773 
11.5 .00656343 
12.5 .00675925 
14.5 .00699000 
16.5 .00726111 

25.5 .00757873 
53.5 .00794975 
63.5 .00838188 
84.0 .00888373 

121.0 .00946484 

206.0 .01013573 
706.5 

0 .01 —.01 

0 .00 .00 

30 
31 

32–33 
34 

0 .00 .00 

0 .00 .00 

35 
36 
37 
38 
39 

1 .07 .93 
0 .11 –.11 
0 .10 –.10 
0 .06 –.06 
0 .03 – .03 

40 
41 
42 
43 
44 

0 
0 
0 
0 
0 

.02 

.01 

.04 

.03 
,04 

–.02 
– .01 
– .04 
– .03 
–.04 

45 
46 
47 
48 
49 

0 .04 –. 04 
0 .08 – .08 
0 .08 – .08 
0 .10 –.10 
0 .12 –.12 

50 
51 
52 
53 
54 

2 .19 1.81 
0 .43 –43 
0 .53 – .53 
0 .15 –.15 
1 1.15 –.15 

55 
19–55 

2 2.09 
6 6.09 – .03 98.6 

56 341.0 .01090802 5 3.72 
57 442.5 .01179438 10 5.22 

56–57 783.5 15 8.94 

– .09 
– .09 2.47 

1.28 
4.78 
6.06 2.99 

4.12 2.62 
– 1.62 2.94 

3.91 4.59 
9.74 6.42 

– 5.91 6.99 
– .75 7.66 
25.31 8.58 

2.03 167.8 

58 
59 

537.5 .01280865 
617.0 .01396584 

1380.2 .01528213 
2459.5 .01677490 
2649.0 .01846273 
2884.8 .02036532 
3271.8 .02250346 

11 6.88 
7 8.62 

1.57 159.8 
– .55 81.2 

60 
61 
62 
63 
64 

25 21.09 
51 41.26 
43 48.91 
58 58.75 
99 73.63 

.85 118.5 
1.52 123.6 

– .84 87.9 
–.10 98.7 
2.96 134.5 



Age 
65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 
101 

102 
103 
104 
105 
106 
107 
108 

102–108 

T. 
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Table 16.5 (cont.) 

RX µx 
36460-2 ·02489899 
90619-0 ·02157463 

101939-0 -03055392 
105445-2 -03386100 
104575-8 -03752047 

101021·8 ·04155713 
96954-0 -04599576 
92197-5 -05086080 
86210-8 ·05617606 
80050-2 ·06196438 

73819-2 -06824723 
67097-2 -07504433 
60212-0 -08237325 
52777-0 -09024892 
45130-2 ·09868328 

37312-0 ·10768474 
29974-2 ·11725781 
23539-0 ·12740261 
18308-5 -13811453 
14281-0 -14938379 

11134-0 -16119512 
8578-5 ·17352745 
6622-2 ·18635370 
5104·8 ·19964058 
3827-8 -213348&n 

2787-5 ·22743141 
1989-8 -24183718 
1323-2 -2650742 
895-0 -27137788 
579-5 -28637877 

376-8 -30143518 
240-8 -31646765 
159-o -33139275 
95-0 -34612381 
59-0 -36057173 
32-2 -37464579 
17-2 ·38825464 

5-5 ·40130719 
6-5 -41371369 
4-5 -42538666 
4-0 -43624199 
2-5 ·44619989 

-5 -45518589 
-O ·46313176 

23-5 

1377059-5 

Ax Ex 
937 907-82 

2408 2498-79 
3008 3114-64 
3556 3570-48 
3945 3923-73 

4209 4198-17 
4448 4459-47 
4806 4689-24 
4808 4842-98 
5149 4960-26 

5047 5037-96 
5037 5035-27 
4867 4959-86 
4727 4763-07 
4456 4453-60 

4049 4017-93 
3509 3514-71 
3016 2998-93 
2448 2528-67 
2126 2133-35 

1775 1794-75 
1467 1488-61 
1234 1234-08 
1021 1019-12 
842 816-64 

627 633-97 
482 481-20 
365 339-42 
233 242-88 
165 165-96 

134 113-57 
76 76-19 
57 52-69 
28 32-88 
25 21-27 
11 12-08 
8 6-70 

2 2-21 
0 2-69 
0 1-91 
0 1-74 
2 1-12 
0 -23 
1 -00 
5 9-90 

85426 85425-00 

Devx (Vx)½ 

29-18 30-13 
–90-79 49-99 

–106-64 55-81 
–14-48 59-75 
21-27 62-64 

10-83 64-79 
–11-47 66-78 

116-76 68-48 
–34-98 69-59 

188-74 70-43 

9-04 70-98 
1-73 70-96 

–92-86 70-43 
–36-07 69-02 

2-40 66-74 

31-07 63-39 
–5-71 59-28 

17-07 54-76 
–80-67 50-29 

–7-35 46-19 

–19-75 42-36 
–21-61 38-58 

–·08 35-13 
1-88 31-92 

25-36 28-58 

–6-97 25-18 
-80 21-94 

25-58 18-42 
–9-88 15-58 

–·96 12-88 

20-43 10-66 
–·19 8-73 
4-31 7-26 
– 4-88 5-73 
3-73 4-61 
–1-08 3-48 
1-30 2-59 

–·21 
2-69 
–1·91 
–1-74 
-88 
– ·23 

1-00 
– 4-90 3-15 

1-00 

Zx 100A/E. 

-97 103-2 
–1·82 96-4 
–1-91 96-6 

– ·24 99-6 
-34 100-5 

-17 100-3 
–·17 99-7 

1-71 102-5 
–·50 99-3 

2-68 103-8 

-13 100-2 
·02 100-0 

–1-32 98-1 
–·52 99-2 
·04 100-1 

-49 100-8 
–·10 99-8 

-31 100-6 
–1-60 96-8 

–·16 99-7 

–·47 98-9 
–·56 98-5 
–·00 100-0 
-06 100-2 
-89 103-1 

–·28 98-9 
-04 100-2 

1-39 107-5 
– ·63 95-9 
– ·07 99-4 

1-92 118-0 
– ·02 99-8 
-59 108-2 
– ·85 85-2 
-81 117-5 

– ·31 91-0 
-50 119-4 

–1-56 50-5 

100-0 

x2 = = 54-72 
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(Vx)½ 

0 
0 
0 
0 
0 

Table 16.6. Male pensioners, normal or late, 1979-82 
Details of graduation Bbl. 

Function: qx (initial), formula: LGM(1,3), 
criterion: maximum likelihood. 

Ages grouped so that each Ex 5 

Age Zx 

19 
20–28 

29 

Rx qx–1/2 
1·0 ·00536131 
no data 

·5 ·00539601 

no data 
·5 ·00541655 

no data 

Ax Ex Devx 

0 ·01 – ·01 

0 ·00 ·00 

30 
31 

32–33 
0 ·00 ·00 

34 ·5 ·00546754 

13·5 ·00549225 
20·0 ·00552212 

0 ·00 ·00 

35 
36 
37 
38 
39 

17·0 ·00555812 
10·5 ·00560142 

1 ·07 ·93 
0 ·11 – ·11 
0 ·09 – ·09 
0 ·06 – ·06 
0 ·03 – ·03 

40 
41 
42 
43 
44 

6·0 ·00565334 

3·5 ·00571548 
2·0 ·00578963 
6·0 ·00587791 
5·5 ·00598273 
6·5 ·00610689 

·02 
·01 
·04 
,03 
·04 

– ·02 
– ·01 
– ·04 
– ·03 
– ·04 

45 
46 
47 
48 
49 

5·5 ·00625357 
11·5 ·00642641 

0 ·03 – ·03 
0 ·07 – ·07 
0 ·08 – ·08 
0 ·10 – ·10 
0 ·12 – ·12 

50 
51 
52 
53 
54 
55 

19–55 

12·5 ·00662957 
14·5 ·00686774 
16·5 ·00714622 

26·5 ·00747099 
53·5 ·00784874 
63·5 ·00828695 
84·0 ·00879393 

121·5 ·00937889 
207·0 ·01005199 
709·5 

2 ·20 1·80 
0 ·42 – ·42 
0 ·53 – ·53 
0 ·74 – ·74 
1 1·14 – ·14 
2 2·08 – ·08 
6 6·04 – ·04 2·45 – ·01 99·4 

56 343·5 ·01082437 5 3·72 1·28 
51 447·5 ·01170820 10 5·24 4·76 

56–57 791·0 15 8·96 6·04 

58 
59 
60 
61 
62 
63 
64 

543·0 ·01271671 
620·5 ·01386421 

1392·8 ·01516606 
2485·0 ·01663869 
2670·5 ·01829954 
2913·8 ·02016698 
3321·2 ·02226025 

36928·8 ·02459931 

11 
7 

25 
51 
43 
58 
99 

6·91 
8·60 

21·12 
41·35 
48·87 
58·76 
73·93 

4·09 

2·98 2·03 

2·61 1·57 
– 1·60 2·91 – ·55 

3·88 4·56 ·85 
9·65 6·38 1·51 

– 5·87 6·93 – ·85 
– ·76 7·59 – ·10 
25·07 8·50 2·95 

65 
66 

937 
91823·0 ·02720468 2408 

908·42 28·58 29·77 ·96 103·1 
2498·02 – 90·02 49·30 – 1·83 96·4 

100A/E 

167·5 

159·3 
81·4 

118·4 
123·3 
88·0 
98·7 

133·9 



Age 
67 
68 
69 

Ax Ex 
3008 3113·35 
3556 3570·33 
3945 3923·97 

70 
71 
72 
73 
74 

Rx qx–½ 
103443·0 ·03009725 
107223·2 ·03329807 
106548·2 ·03682806 

103126·2 ·04070770 
99178·0 ·04495672 
94600·5 ·04959370 
88614·8 ·05463572 
82624·8 ·06009792 

4209 4198·03 
4448 4458·72 
4806 4691·59 
4808 4841·53 
·5149 4965·58 

75 
76 
77 
78 
79 

76342·8 ·06599309 
69615·8 ·07233129 
62645·5 ·07911940 
55140·5 ·08636078 
47358·2 ·09405498 

5047 5038·09 
5037 5035·40 
4867 4956·47 
4727 4761·98 
4456 4454·28 

80 
81 
82 
83 
84 

39336·5 ·10219737 
31728·8 ·11077902 
25047·0 ·11978654 
19532·5 ·12920199 

4049 4020·09 
3509 3514·88 
3016 3000·29 
2448 2523·64 
2126 2132·86 

85 
86 
87 
88 
89 

15344·0 ·13900299 

12021·5 ·14916281 
9312·0 ·15965060 
7239·2 ·17043174 
5615·2 ·18146817 
4248·8 ·19271892 

1775 1793·16 
1467 1486·67 
1234 1233·80 
1021 1018·99 
842 818·81 

90 
91 
92 
93 
94 

3101·0 ·20414059 
2230·8 ·21568791 
1505·8 ·22731431 
1011·5 ·23897253 
662·0 ·25061515 

627 633·04 
482 481·15 
365 342·28 
233 241·72 
165 165·91 

95 
96 
97 
98 
99 

100 
101 

443·8 ·26219519 
278·8 ·27366654 
187·5 ·28498448 
109·0 ·29610607 

102 
103 
104 
105 
106 
107 
108 

102–108 

71·5 ·30699042 
37·8 ·31759902 
21·2 ·32789591 

6·5 ·33784782 
6·5 ·34742421 
4·5 ·35659733 
4·0 ·36534216 
3·5 ·37363631 

·5 ·38145996 
·5 ·38879569 

26·0 

134 116·35 
76 76·28 
57 53·43 
28 32·28 
25 21·95 
11 11·99 
8 6·97 

2 2·20 
0 2·26 
0 1·60 
0 1·46 
2 1·31 
0 ·19 
1 ·19 
5 9·21 

T. 1419772·5 85426 85426·02 
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Table 16.6 (cont.) 

Devx (Vx)½ 

–105·35 54·95 
–14·33 58·75 
21·03 61·48 

10·97 63·46 
–10·72 65·26 

114·41 66·78 
–33·53 67·65 

183·42 68·32 

8·91 68·60 
1·60 68·35 

–89·47 67·56 
–34·98 65·96 

1·72 63·52 

28·91 60·08 
–5·88 55·91 

15·71 51·39 
–7564 46·88 

–6·86 42·85 

–18·16 39·06 
–19·67 35·35 

·20 31·99 
2·01 28·88 

23·19 25·71 

–6·04 22·45 
·85 19·43 

22·72 16·26 
–8·72 13·56 

–·91 11·15 

17·65 9·27 
–·28 744 

3·57 6·18 
–4·28 4·77 
3·05 3·90 

–·99 2·86 
1·03 2·16 

–·20 
–2·26 
–1·60 
–1·46 
·69 

–·19 
·81 

–4·21 2·44 

–·02 

Zx 100A/E 

–1·92 96·6 
–·24 99·6 

·34 100·5 

·17 100·3 
–·16 99·8 

1·71 102·4 
–·50 99·3 
2·68 103·7 

·13 100·2 
·02 100·0 

–1·32 98·2 
–·53 99·3 
·03 100·0 

·48 100·7 
–·11 99·8 

·31 100·5 
–1·61 97·0 

–·16 99·7 

–·46 99·0 
–·56 98·7 
·0l 100·0 
·07 100·2 
·90 102·8 

–·27 99·0 
·04 100·2 

1·40 106·6 
–·64 96·4 

–·68 99·5 

1·91 115·2 
–·04 99·6 
·58 106·7 
–·90 86·8 
·78 113·9 
–·35 91·7 
·48 114·8 

–1·73 54·3 

100·0 

x2 = = 55·40 
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Table 16.7. Male pensioners, normal or late, 1979-82. 

Lives and Amounts 

Date 
Formula 

Statistics for graduations Aa1. 

Function: µx, criterion: maximum likelihood 

(Amounts values in units of £324.416) 

Lives Amounts 

GM(1,3) GM(0,3) 

Values of criterion at optimum point: 

L1 –309752·58 

Values of parameters at optimum point: 

–241553·12 –241552·04 

a0 × 100 ·557291 – ·200562 
(standard error) ·183966 – ·125554 

1·60 T-ratio 3·03 

b0 –4·993529 –4·379382 
(Standard error) ·265676 ·092408 
T-ratio – 18·80 – 47·39 

b1 5·882482 5·487972 
(standard error) ·273044 ·057148 
T-ratio 21·54 96·03 

b2 –1·668855 –1·005111 
(standard error) ·215576 ·092497 
T-ratio –7·74 –10·87 

Comparison of total actual deaths (A) and total expected (E): 

Total A–E 1·00 ·57 
Ratio 100A/E 100·00 100·00 

(Ages grouped so that each Ex 5) 

Signs test: 

Number of + 23 24 
Number of – 24 24 
p(pos) ·5000 ·5573 

Runs test: 

Number of runs 29 27 
p(runs) ·9304 ·7660 

Kolmogorov–Smirnov test: 

Max deviation ·0019 ·0045 
p(KS) ·9984 ·5621 

Serial Correlation test: 

r1 
T-ratio 
r2 
T-ratio 
r3 
T-ratio 

x2 test 

x2 
Degrees of freedom 

·0018 –·0083 
·01 ·06 

–·1140 –·0295 
–·78 –·02 
–·0611 –·3061 
–·42 –2·12 

54·72 217·55 
43 45 

·1085 ·0000 

Amounts 

GM(1,3) 

–4·716405 
·239617 

–19·68 

5·832101 
·232910 

25·04 

–1·277685 
·202092 

–6·32 

·54 
100·00 

24 
24 

·5573 

29 
·9052 

·0053 
·3557 

–·0518 
–·36 
–·0013 
–·01 
–·3198 

–2·22 

214·36 
44 

·0000 



Date 
Formula 

.094480 

·000519 
·55 

Age 20 
(standard error) 
percentage s.e. 

Age 30 
(standard error) 
percentage s.e. 

Age 40 
(standard error) 
percentage s.e. 

Age 50 
(standard error) 
percentage s.e. 

Age 60 
(standard error) 
percentage s.e. 

.005561 .00021 .002012 
·001626 .00004 ·001031 

29·24 21·51 51·26 

·005600 .000128 ·002069 
·001613 .000018 ·001018 

28·79 14·25 49·19 

·005906 .000668 ·002426 
·001526 .000058 ·000975 

25·83 8·62 40·17 

·007729 .002964 ·004237 
·001216 .000131 ·000765 

15·73 4·43 18·05 

·015886 ·011169 
.000588 ·000182 

3·70 1·63 

·011611 
·000347 

2·99 

Age 70 ·042799 ·035536 .35405 
(standard error) ·000225 ·000155 .000191 
percentage s.e. .53 ·44 .54 

Age 80 .106334 
(standard error) ·000557 

percentage s.e. ·52 

.094850 
·000626 
·66 

Age 90 
(standard error) 
percentage s.e. 

Age 100 
(standard error) 
percentage s.e. 

·209121 ·206884 ·205732 
·002342 .002857 ·002936 

1·12 1·38 1·43 

.317159 ·369299 ·354160 
·011132 ·011957 ·013838 

3·51 3·24 3·91 

Age 110 ·379986 ·541793 ·492450 

(standard error) ·030153 .028839 .037474 
percentage s.e. 7·94 5·32 7·61 
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Table 16·7 (cont.) 

Lives Amounts 

GM(1,3) GM(0,3) 

Specimen values of qx for integral ages, simulated standard 
errors, and standard errors as percentage of value of qx: 

Amounts 

GM(1,3) 

16.4 ‘Amounts’ Data 

We have so far considered the data based on ‘Lives’, but ‘Amounts’ are also 

collected for this investigation, and the standard PA(90) tables are based on the 

graduation of the 1967-70 Amounts data. The existence of multiple pound 

amounts on one life is equivalent to there being multiple policies on one life, so 

it is an example of the presence of duplicates. We have no knowledge about the 

distribution of amounts per life other than the average amounts for each life at 

each age among the exposed to risk and the deaths. 
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Table 16.8. Male pensioners, normal or late, 1979–82. 

Amounts values in units of £324.416 

Details of graduation Aa1. 

Function: formula: GM(1 ,3), maximum likelihood. 

Ages grouped so that each Ex 5 

Age (Vx)1/2 Zx 100A/E 

19 
20 

21–28 
29 

Rx µx Ax Ex Devx 

·6 ·00201148 ·00 ·00 ·00 
·3 ·00201293 ·00 ·00 ·00 

no data 
·4 ·00205386 ·00 ·00 

30 
31 

32–33 
34 

no data 
·3 ·00207736 

no data 
1·2 ·00213374 

33·4 ·00216042 
62·7 ·00219229 
44·6 ·00223025 
32·4 ·00227538 
4·2 ·00232892 

2·4 ·00239229 
0·7 ·00246714 
5·1 ·00255536 
7·7 ·00265909 
5·5 ·00278082 

10·2 ·00292334 
52·5 ·00308984 

100·7 ·00328394 
22·7 ·00350971 
20·6 ·00377174 

44·5 ·00407517 
105·6 ·00442579 
167·5 ·00483003 
172·4 ·00529506 
228·0 ·00582883 
533·4 ·00644014 

1659·7 

40 

·00 

·00 ·00 

00 ·00 ·00 

35 
36 
37 
38 
39 

·03 
·00 
·00 
·00 
·00 

·07 
·14 
·10 
·07 
·01 

–·04 
–·14 
–·10 
– ·07 
– ·01 

40 
41 
42 
43 
44 

·00 
·00 
·00 
·00 
90 

·01 
·00 
·01 
·02 
·02 

– ·01 
·00 

– ·01 
–·02 
– ·02 

45 
46 
47 
48 
49 

·00 ·03 – ·03 
·00 ·16 –·16 
·00 ·33 – ·33 
·00 ·08 – ·08 
·00 ·08 – ·08 

50 
51 
52 
53 
54 
55 

19–55 

·93 ·18 ·75 
·00 ·47 – ·47 
·00 ·81 – ·81 
40 ·91 – ·91 

1·76 1·33 ·43 
2·48 3·44 – ·96 
5·20 8·27 – 3·07 

56 
51 
58 
59 

15·56 5·95 9·60 
21·61 7·92 13·69 
13·64 11·74 1·90 
12·82 15·47 –2·65 

60 
61 
62 
63 
64 

834·1 ·00713869 
998·3 ·00793515 

1327·7 ·00884120 
1567·1 ·00986960 

5927·9 ·01103424 
11596·5 ·01235020 
11918·4 ·01383376 
12431·6 ·01550246 
13226·2 ·01737513 

62014·0 ·01947188 
132344·5 ·02181415 
133769·6 ·02442464 

27·54 65·41 
168·79 143·22 
163·18 164·88 
226·77 192·72 
205·24 229·81 

–37·87 

2·88 

2·44 
2·81 
3·43 
3·93 

8·09 
25·57 11·97 2·14 117·9 

– 1·69 12·84 –·13 99·0 
34·05 13·88 2·45 117·7 

– 24·57 15·16 – 1·62 89·3 

65 
66 
67 

1228·81 
2847·69 
3140·18 

1207·53 21·28 34·75 ·61 101·8 
2886·98 – 39·29 53·73 –·73 98·6 
3267·27 – 127·10 57·16 – 2·22 96·1 

– 1·07 

3·94 
4·86 

·55 
– ·67 

– 4·68 

62·9 

261·3 
212·8 
116·2 
82·9 

42·s 



Age 

68 
69 

70 
71 
72 
73 
74 

75 
76 
71 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 
101 
102 

101-102 

103 
104 
105 
106 
107 
108 

103-108 
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Rx Ax Ex 

126595·5 ·02732733 3442·87 3459·52 
114842·0 ·03054745 3491·83 3508·13 

103696·8 ·03411137 
94832·7 ·03804654 
82919·9 ·04238142 
72703·8 ·04714531 
64109·3 ·05236822 

57064·8 ·05808070 
51027·4 ·06431362 
44402·4 ·07109797 
37494·6 ·07846456 
31022·7 ·08644377 

25081·6 ·09506526 
19695·1 ·10435758 
15051·9 ·11434788 
11611·7 ·12506148 
8989·5 ·13652153 

6855·0 ·14874854 
5178·8 ·16176002 
3978·7 ·17557003 
3004·4 ·19018875 
2287·2 ·20562208 

1649·1 ·22187121 
1167·6 ·23893221 
769·1 ·25679570 
517·5 ·27544648 
336·9 ·29486320 

215·6 ·31501814 
121·1 ·33587694 
81·6 ·35739848 
58·8 ·37953474 
34·2 ·40223078 

17·1 ·42542416 
11·1 ·44904807 
6·0 ·47302547 

17·0 

1037·46 
837·76 
805·02 
550·85 
470·73 

375·15 
284·56 
207·36 
124·39 
73·51 

1019·67 
837·72 
698·54 
571·40 
470·30 

365·90 
278·97 
197·50 
142·54 
99·34 

17·79 
·04 

106·48 
– 20·55 

·42 

9·26 
5·59 
9·87 

– 18·15 
– 25·83 

59·64 67·93 – 8·29 
56·83 40·61 16·15 
40·52 29·16 11·36 
16·66 22·30 –564 
20·91 13·77 7·14 

3·52 7·28 – 3·76 
5·50 4·97 ·53 
5·23 2·82 2·41 

10·73 1·79 2·95 

6·6 ·49727541 ·00 3·30 – 3·30 
2·3 ·52171031 ·00 1·20 – 1·20 
1·5 ·54623103 ·00 ·82 – ·82 
1·4 ·57075737 ·28 ·82 – ·54 
0·4 ·59516863 ·00 ·24 – ·24 

·0 ·61936429 ·55 ·00 ·55 
12·3 ·83 6·39 – 5·56 

T. 1377059·5 61714·09 61713·55 0·54 

Table 16·8 (cont.) 

Devx 

– 16·65 
– 16·30 

3642·05 3537·24 104·81 
3511·88 3608·06 –96·17 
3776·04 3514·26 261·78 
3393·81 3427·64 – 33·84 
3561·40 3357·29 204·11 

3363·00 3314·36 4864 
3023·98 3281·76 – 257·78 
3018·78 3156·92 –75·14 
2884·94 2942·00 – 57·05 
2708·86 2681·72 27·14 

2350·73 2384·39 – 33·66 
2089·39 2055·33 34·06 
1826·29 1721·15 105·14 
1352·02 1452·17 – 100·15 
1159·77 1227·26 – 67·49 

(Vx)½ zx 100A/E 

58·82 – ·28 99·5 
59·23 – ·28 99·5 

59·47 1 ·76 103·0 
60·07 – 1·60 97·3 
59·28 4·42 107·4 
58·55 –·58 99·0 
51·94 3·52 106·1 

51·57 ·84 101·5 
57·29 –4·50 92·1 
56·19 – 1·34 97·6 
54·24 – 1·05 98·1 
51·79 ·52 101·0 

48·83 – ·69 98·6 
45·34 ·75 101·7 
41·49 2·53 106·1 
38·11 – 2·63 93·1 
35·03 – 1·93 94·5 

31·93 ·56 101·7 
28·94 ·00 100·0 
26·43 4·03 115·2 
23·90 –·86 96·4 
21·69 ·02 100·1 

19·13 ·48 102·5 
16·70 ·33 102·0 
14·05 ·70 105·0 
11·94 – 1·52 87·3 
9·97 – 2·59 74·0 

8·24 – 1·01 87·8 
6·38 2·53 139·7 
5·40 2·10 139·0 
4·72 – 1·19 74·7 
3·71 1·92 151·8 

2·70 – 1·39 48·3 

2·79 1·06 137·8 

2·53 – 2·20 12·9 

100·0 

x² = = 214·36 
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The CMI Committee, when graduating the corresponding 1967-70 ex- 

perience, divided the exposed to risk and deaths at each age by a constant factor, 

being the average pound amount among the exposed to risk over all ages. This 

simply scales down the amounts so that tests like the x2 test can be used. It makes 

no difference to the estimation of the maximum likelihood parameters, but it 

changes their standard errors very considerably, and consequently the standard 

errors of the values of or . It does not affect the signs test nor the runs test. 

If we had only Amounts data and we were wishing to derive rates appropriate 

to Lives, it might be appropriate to divide the exposed to risk and the deaths at 

each age by the average amount per life at each age, using these average 

amounts as if they were variance ratios. If each life at each age had the same 

number of pounds, the average amount would equal the variance ratio; but if 

this were so, the average amount for each death would be the same as the 

average amount per life among the exposed to risk, and this is not the case. The 

Amounts experiences for pensioners regularly show lower mortality than the 

corresponding Lives experiences, and the average amount per death is less than 

the average amount per life in the exposed to risk, at least in total, if not at each 

single age. 

However, we have already derived mortality rates for Lives, and we now wish 

to derive mortality rates appropriate to Amounts. The technique used by the 

Committee previously seems the only reasonable one. The resulting parameter 

estimates are at least asymptotically unbiassed, even though many of the tests 

we have used for Lives are invalidated. We therefore divided each pound 

amount by £324.416, and measured in ‘units’ of this amount. The deaths and 

exposed to risk are 

Deaths 
Exposed to risk (initial) 
Exposed to risk (central) 

£ Units 
20,021,034 61,714.l 

456,750,562.5 1,407,916.6 
446,740,045.5 1,377,059.5 

We fitted µX using a GM(r,s) formula to the Amounts data, and using an L1 

criterion. Values of L1 (plus a large constant) for various formulae are 

s 2 3 4 5 6 
r 

0 – 114·7 –53·1 –52·2 –52·2 –51·7 
1 –73·3 –52·0 –52·0 –49·2 
2 –55·9 –52·0 –51·9 
3 –52·3 –51·4 
4 –51·5 

The previous criteria for assessing differences in the value of L1 are not strictly 

valid in this case, and the T-ratios of the parameter estimates cannot be validly 

compared with a normal distribution. However, if we were to ignore this point, 

we would conclude that a GM(1,3) formula (as for the Lives data) provided a 
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satisfactory fit, although the value of x2 (214·4) would be thought unacceptably 
high. No higher order formula reduces the value of x2 substantially. The a, 
parameter in the GM(1,3) formula would be thought not significantly different 
from zero (100a0 = ·200562, T-ratio = 1·5974). A GM(0,3) formula would fit 
almost equally well, and the s-parameters would have similar values. One could 
therefore conclude that a GM(0,3) formula was the most suitable for this 
experience. 

However, a GM(1,3) formula was found to be appropriate for the Lives data, 
and there is an advantage in being able to compare the parameters and the 
resulting values of qx. Table 16.7 gives the statistics of the GM(0,3) and GM(1,3) 
graduations (Aa 1 basis), and compares them with the statistics for the GM(1,3) 
graduation of Lives (repeated from Table 16.3). Table 16.8 gives details of the 
graduation for each age. 

It is interesting to note that, although some of the tests we use are not strictly 
valid for Amounts data, they make a fairly good pretence of being suitable. The 
values of zx at certain ages are relatively large, and the coincidence of large 
values of opposite sign at ages 57 and 60 contributes to the large negative value 
of r3. The graduated values of qx are clearly substantially lower for the Amounts 
data than for Lives data. 

17. EXAMPLE 3—MALE ASSURED LIVES (UNITED KINGDOM — 
PERMANENT) 

17.1 Introduction 
For our third example we move to a more complicated experience, that for 

United Kingdom male lives assured for permanent (whole-life and endow- 
ment) assurances. This investigation includes data for a select period of five 
years and an ultimate period thereafter, so there are initially six different sets of 
data, for durations 0, 1, 2, 3, 4, and 5 and over. We shall abbreviate this last to 
‘duration 5 +’, and we shall use a similar notation when we group durations; for 
example durations 2, 3, 4 and 5 + combined will be referred to as ‘duration 2 + ’. 

The experience of this class of life for previous periods has formed the basis 
of several sets of standard tables for assured lives, A1924-29, A1949-52, A1967- 
70 and A1967-70(5). For the first of these a standard table with three years 
selection was constructed. For A1949-52 this was reduced to two years selection. 
The 1967-70 data provided the basis for two sets of tables, one with two years 
and the other with five years selection. The question of what select period might 
be appropriate therefore requires investigation. 

17.2 Duplicates and Variance Ratios 
Previous investigations by the CMI Committee had discovered that there was 

often a considerable number of duplicate policies in the data. That is, one life 
was insured under two or more policies. Some of the statistical methods and 
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tests described above are less reliable when there are duplicates, and a method 
of allowing for duplicates has been described (§§ 3.2 and 6.2). This is to adjust 
the numbers of deaths and the exposed to risk by dividing each of them by the 
appropriate ‘variance ratio’, rx, and then using the adjusted numbers in place of 
the original numbers. While this method is theoretically correct only for certain 
of the tests described above, it is the only practicable way of dealing with 
duplicates, given the data available to the CMI Committee. 

If duplicate cases could be eliminated reliably from the original exposed to 
risk, so that each life was recorded only once in the investigation, this adjust- 
ment would not be required. This cannot be done. It is, however, possible to 
count the number of policies on each life among the deaths, since a copy of the 
death certificate for each life assured who has died is supplied to the Bureau for 
the Cause of Death investigation. By matching cases that correspond appro- 
priately, a count of duplicates (not just within offices, but also across offices) can 
be obtained. The result of such an investigation for two of the four years of the 
quadrennium has been described by the CMI Committee (1986). We have 
available also the corresponding results for the full four years of the. quadren- 
nium. 

To use variance ratios derived from records of the deaths as if they applied 
also to the exposed to risk is to make two assumptions: first that mortality rates 
for lives assured of the same age do not depend on the number of policies for 
which they are insured, so that the variance ratios derived from the deaths are 
unbiassed estimates of the variance ratios that would have been derived from the 
exposed to risk; secondly, that the experience is large enough for the standard 
deviations of the variance ratios derived from the deaths (as estimates of the 
variance ratios from the exposed to risk) to be small. 

We have no evidence about the first assumption. It is not valid for pensioners 
and annuitants when ‘duplicates’ are interpreted as pound amounts on one life, 
since the ‘Amounts’ experience for these investigations is markedly different 
from that for ‘lives’, as we have seen in § 16.4 (though we do not strictly know 
whether the difference is statistically significant). As regards the second assump- 
tion, we know that the number of duplicates among deaths is large only for 
the 5 + experience (and hence the experiences for 0 + , 1 + , etc which include the 
5 + data). 

This is the large part of the experience, so it is reasonable to assume that the 
possible error caused by using the variance ratios derived from the deaths is 
small, at least for the main range of ages where the numbers are large. 

Since one life may have policies in the data for more than one of the different 
durations, when the experiences for different durations are combined a separate 
count of the duplicates and separate calculation of the variance ratios is re- 
quired; the ratios cannot be derived in any way by adding totals for two or more 
durations together. The count of duplicates, and hence variance ratios, has been 
done for each duration separately, and for duration 2 + . The values of the ratios 
for each of the select durations are small (i.e. close to 1·0) and we have ignored 
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duplicates in investigating these experiences. The variance ratios for duration 
5 + are shown in Table 17.6 and those for duration 2 + are in the accompanying 
CMI Report. 

17.3 The Data 
The numbers of deaths and the exposed to risk (central and initial) for each 

of the separate durations are as shown below. For durations 2 + and 5 + we show 
both the unadjusted and adjusted numbers. 

Duration Deaths Central exposed Initial exposed 

0 1,795 1.799.039·7 1,799,937·2 
1 2,287 1.776.058·3 1,777,201·8 
2 2,388 1.704.683·3 1,705,877·3 
3 2,509 1.649.973·7 1,651,228·2 
4 2,606 1.571.019·8 1,572,322·8 
5+ 83,438 17.313.471·2 17,355,190·2 
2+ 90,941 22.239.148·0 22,284,618·5 

Adjusted by variance ratios 
5+ 53,239·3 10.827.136·0 10,853,755·6 
2+ 56,539·1 13,440.029·9 13,468,299·4 

We have noted previously three age ranges of interest: first the extreme limits of 
the data; secondly the continuous range over which the exposed to risk at each 
age exceeds 100; thirdly the continuous range over which the deaths at each age 
exceed 10. We note each range for each duration below. 

Range Central exposed Deaths 
Duration of data 100 10 

0 10–100 10–76 17–67 
1 10–88 12–76 18–68 
2 10–89 12–77 19–69 
3 10–100 13–77 20–72 
4 10–97 14–16 21–72 
5+ 10–108 15–100 22–100 
2+ 10–108 10–100 18–100 

The same age ranges apply also to the adjusted data. 
It can be seen there is adequate data in the select durations for a wide range 

of ages from below 20 to about 70, and for the ultimate data for the whole range 
of adult life. The data for individual ages for duration 0 is shown in Table 17.4, 
that for durations 2 to 4 combined in Table 17.5. 

17.4 Comparison of data for different durations 
In § 13 we discussed the tests that can be applied to the data for two different 

experiences in order to see whether they are significantly different, or whether 
they are sufficiently similar for the data to be pooled before graduating. We 
applied these tests to this experience, in order to distinguish or to amalgamate 
durations. We first compared each single duration with each other single dura- 
tion, and then each group of one or more consecutive durations with each other 
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neighbouring group of one or more consecutive durations. The results are 
summarized in Table 17.1. 

In order to apply a x2 test, the data for duration 5 + has been adjusted by 
dividing the numbers of deaths and the exposed to risk at each age by the 
corresponding variance ratio. This does not affect the signs test nor the runs test. 
Central exposures have been used. For each comparison ages have been grouped 
so that there were at least 5 actual deaths in each age group in each experience. 

Table 17.1 shows the results for each comparison in one line. The durations 
or groups of durations compared are identified as I and II. Thus the first line 
compares duration 0 with duration 1, and the last compares durations 0 to 4 
combined with duration 5 + . 

The next two columns show the ratios of actual to expected deaths for the two 
experiences, where the expected deaths at each age are calculated from the 
pooled experience. It can be seen that in every case the earlier duration or group 
of durations shows lighter mortality in aggregate than the later. 

The next two columns show the number of ages or age groups where the first 
duration showed a crude mortality rate higher (+) or lower (–) than the 
second. The column headed p(+) shows the probability of this number or fewer 
+ signs being observed if the probability of a + were one half. It can be seen 
that in no case does the number of + s exceed the number of – s, i.e. the second 
experience always shows a majority of ages or age groups with higher mortality 
rates than the first. In most cases the value of p(+) is very small, indicating 
significant difference in the level of mortality between the two durations. We 
shall comment on the exceptions below. 

The next two columns show the number of runs of similar sign among the + s 
and – s of the previous test, and the probability, p(runs), of as small or smaller 
a number of runs. Although the number of runs is often small, this is because 
the number of + s is also small. In very few cases is the value of p(runs) less than 
·05 and in no case less than ·01. This shows that the experiences of the 
different durations are in some sense reasonably ‘parallel’, and overlap to the 
extent expected, considering that their levels differ. 

The last two columns show the values of x2 and of p(x2). The number of 
degrees of freedom is the sum of the numbers of + and – signs; it is at the 
lowest 56 and the highest 62, so the significant and non-significant values of x2 
are readily identified. It can be seen that the value of p(x2) is in most cases very 
small, indicating a significant difference between the mortality rates of the two 
durations being compared. 

Inspection of the table shows that duration 0 has significantly lower mortality 
than any other duration singly or any combination of durations, and that 
duration 5 + has significantly higher mortality than any other. Any group of 
durations including 5 + is significantly higher than any earlier group of dura- 
tions. 

Durations 1, 2, 3 and 4 are not so readily separated. Durations 1 and 3, and 
durations 3 and 4 are not significantly different (at a 5% level) either by the signs 



Durations I II 
I v II A/E A/E 

1 
2 
3 
4 
5+ 

2 
3 
4 
5+ 

3 
4 
5+ 

88·9 110·9 
87·2 112·4 
85·2 114·2 
83·3 116·0 
68·1 101·6 

+ 

11 
14 
6 
3 
1 

47 
44 
51 
53 
55 

P(+) 
·0000 
·0001 
·0000 
·0000 
·0000 

runs p(runs) x2 
13 ·0165 102·3 
19 ·1679 141·1 
10 ·1470 146·6 
7 1·0000 165·0 
3 1·0000 385·7 

105 

P(X2) 
·0003 
·0000 

·0000 
·oooo 
·oooo 

98·0 102·0 22 37 ·0337 28 4847 43·0 
96·0 104·0 23 34 ·0924 30 ·7142 67·7 
93·8 106·1 15 41 ·0003 24 ·6804 70·0 
82·0 101·0 7 50 ·0000 11 ·1582 184·8 

·9417 
·1565 
·0984 
·0000 

2 
2 
2 

98·0 102·0 28 31 ·3974 33 ·7904 80·9 ·0308 
96·0 104·0 21 36 ·0314 31 ·8759 64·2 ·2393 
85·1 100·8 12 46 ·0000 17 ·1635 149·9 ·0000 

3 
3 
4 

98·2 101·8 26 32 ·2559 28 ·3753 54·1 ·6224 
87·3 100·7 12 46 ·0000 21 ·7375 126·7 ·0000 

90·0 100·6 16 41 ·0006 19 ·0719 113·1 ·0000 

4 
5+ 
5+ 

1–2 
2–3 
3–4 
4+ 

84·8 107·4 16 43 ·0003 19 ·0593 144·3 ·0000 
96·1 101·9 19 40 ·0043 26 ·4575 47·0 ·8698 
96·1 102·0 25 34 ·1488 35 ·9380 76·8 ·0596 
87·7 100·6 12 47 ·0000 21 ·7266 124·2 ·0000 

0 l–3 81·9 105·8 6 53 ·0000 11 ·4328 151·8 ·0000 
1 2–4 94·1 102·0 18 41 ·0019 22 ·1352 55·8 ·5925 
2 3+ 85·6 100·7 11 48 ·0000 19 ·6135 144·7 ·0000 

0 1–4 79·6 104·9 3 56 ·0000 7 1·0000 167·3 ·0000 
1 2+ 83·4 100·8 10 50 ·0000 13 ·0364 161·6 ·0000 
0 1+ 68·7 101·3 0 59 ·0000 1 1·0000 348·0 ·0000 

0–1 2 95·1 109·6 17 43 ·0005 23 ·2782 91·1 
l–2 3 98·0 104·0 26 33 ·2175 33 ·8184 89·1 
2–3 4 98·0 103·9 22 36 ·0435 28 ·5168 54·3 
3–4 5+ 89·3 101·2 13 48 ·0000 19 ·2337 184·3 

·0059 
·0068 
·6135 
·0000 

0–1 2–3 91·9 107·9 8 52 ·0000 13 ·2383 105·3 ·0003 
l–2 3–4 96·0 104·0 22 39 ·0198 32 ·8240 95·8 ·0029 
2–3 4+ 87·2 101·3 10 51 ·0000 17 ·4674 201·4 ·0000 

0–1 
l–2 
0–1 

0–2 
l–3 
2–4 

0–2 
1–3 
0–2 

0–3 
1–4 
0–3 
0–4 

2–4 
3+ 
2+ 

3 
4 
5+ 

3–4 
4+ 
3+ 

4 
5+ 
4+ 
5+ 

89·3 107·0 6 54 
84·9 101·4 10 52 
77·1 102·0 1 60 

·0000 
·0000 
·0000 

·0003 
·0435 
·0000 

·0000 
·OOOO 
·0000 

·OOO1 
·0000 
·0000 
·0000 

11 ·4268 131·3 ·0000 
15 ·1570 270·5 ·0000 
3 1·0000 425·7 ·0000 

96·6 110·0 16 43 
98·0 106·0 22 36 
88·8 101·8 12 49 

23 ·3954 104·7 
30 ·7273 66·7 
15 ·0335 264·6 

·0002 
·2034 

93·8 109·0 
86·6 102·0 
80·9 102·7 

51 
52 
59 

18 ·5745 132·6 
15 ·1570 317·0 
7 1·0000 507·3 

97·2 111·2 
88·1 102·5 
83·6 103·2 
85·8 103·7 

10 
10 
3 

14 
10 
4 

44 
52 
58 

5 57 

22 ·5066 89·0 
15 ·1570 370·2 
7 ·1870 542·3 

11 1·0000 578·3 
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Table 17.1. Male assured lives, permanent, U.K. 
Comparison of data for different durations 

Numbers 
– 

0 

0 

0 

0 

0 

1 

1 
1 

1 

0 

1 

2 
3 

·0000 

·0000 

·0000 

·0000 

·0055 

·0000 

·0000 
·0000 
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test or by the x2 test. Durations 1 and 2 differ by the signs test (p(+) = ·0337), 
but not by the x2 test. The same is true for durations 2 and 4 (p(+) = ·0314). 
Durations 2 and 3 reverse this, being different by the x2 test (p(x2) = ·0308), but 
not by the signs test. Durations 1 and 4 are very different according to the signs 
test (p(+) = ·0003), but not by the x2 test. In no case does the runs test show 
a significant distinction. 

When durations 1,2,3 and 4 are grouped similarly ambiguous results appear, 
with one test being passed and the other failed in almost every case. In none of 
the grouped comparisons shown are both tests passed, and in one (1–2 versus 
3–4) both are failed. One may conclude that there is some evidence of a 
‘gradient’ of increasing mortality with duration of selection over durations 1 to 
4, but that it is not very conclusive. It would not be unreasonable to group all 
four durations together, nor would it be unreasonable to keep them separate. 

Our preliminary investigation provides little justification for grouping 2–4 
with 5 + for form 2 + , as was done when the A 1967–70 tables were constructed, 
but a comparison of this duration group with the previous graduation would be 
of interest. This is discussed in the accompanying CMI Report. 

We therefore chose to graduate the following durations: 0, 1, 2, 3, 4, 2–4, 1–4, 
and 5 +. This would allow select tables to be constructed: 

0, 1, 2, 3, 4, 5 + (full five years selection) 

0, 1, 2–4, 5 + (five years selection as A1967-70(5)) 

0, 1–4, 5 + (five years selection with only three groups) 

We graduated each of these eight experiences by using ‘central’ exposures and 
graduating µx. A direct comparison with A1967-70 would be provided by using 
initial exposures and graduating qx, as the CMI Committee had done at that 
time; this too is discussed in the accompanying Report. 

17.5 Durations 0 to 4 
We started with the relatively easy select durations, viz: 0, 1, 2, 3, 4, 2–4, and 

1–4, seven sets of data in all. 
The crude rates of µx for each age were calculated. Those for durations 0 and 

2–4 are plotted in Figures 17.1 and 17.2. Confidence intervals for µx were also 
calculated, using the methods described in §2.6, and using the normal ap- 
proximation for ages where the number of deaths exceeded 60 and the exact 
Poisson method for other ages. The upper and lower limits of the 95% con- 
fidence intervals for durations 0 and 2–4 are also shown in Figures 17.1 and 17.2. 

The general shapes of the crude rates are very similar for all seven experiences. 
The sizes of the gates are also similar for the single durations (0 to 4), and they 
become rather narrower for duration groups 2–4 and 1–4. It is clear in every case 
that the crude rates start relatively high at the youngest ages for which any 
reasonable numbers are shown, falling to the late 20s of age, and rising almost 
linearly (on the vertical log scale) as age advances. These shapes are similar to 
that of the 1967-70 experiences, and suggest that a similar formula might suit. 
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Figure 17.1. Male assured lives Duration 0 Crude rates and gates: 
µx = GM(2, 2). 

Figure 17.2. Male assured lives Durations 2–4 Crude rates and gates: 
µx = GM(2, 2). 
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On that occasion the CMI Committee used Barnett’s formula, i.e. LGM(2,2), 
graduating qx with initial exposures. 

17.6 Choice of order of formula 
We explored as before which order of formula might be suitable, and as 

before began with graduations of µx, using a GM(r,s) formula, and a maximum 
likelihood (L1,) criterion, and with values of r and s with s 2, r + s 6, a 
total of 15 formulae. The values of the L1 criterion (minus a large constant) for 
each duration are shown below. 

r 

0 
1 
2 
3 
4 

r 

0 
1 
2 
3 
4 

r 

0 
1 
2 
3 
4 

r 

0 
1 
2 
3 
4 

s 2 

– 126·8 
– 53·2 
– 18·0 
– 18·0 
– 18·0 

s 2 

– 145·6 
– 67·7 
– 12·3 
– 12·0 
– 12·0 

5 s 2 

– 82·9 
– 34·0 
–3·8 
–3·5 
–3·5 

s 2 

– 87·3 
– 33·4 

– 5·5 
–5·5 
–4·9 

Duration 0 
3 4 

– 67·6 – 21·7 
– 36·4 – 17·5 
– 17·9 – 16·9 
– 17·9 

Duration 1 
3 4 

– 89·5 – 25·3 
– 35·2 – 17·4 
– 12·1 – 10·7 
– 12·0 

Duration 2 
3 4 

–52·1 – 13·1 
– 17·1 –4·9 
–3·5 –3·5 
–3·5 

Duration 3 
3 4 

– 55·4 –8·8 
– 13·3 –4·9 

– 5·4 –4·6 
–4·7 

5 

– 25·7 
– 17·3 

5 

– 18·8 
– 12·0 

–7·1 
– 3·4 

5 6 

–5·2 
–4·9 

–5·1 

6 

– 25·2 

6 

– 12·7 

6 

–6·9 
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Duration 4 
s 2 3 4 5 6 

r 

0 –– 145·7 – 129·3 – 92·7 –85·1 – 84·9 
1 – 112·3 –95·1 – 71·7 – 77·2 
2 –78·7 – 77·5 –71·5 
3 – 77·3 – 16·9 
4 – 71·3 

Durations 2–4 
2 s 3 4 5 6 
r 

0 – 318·9 
1 – 183·4 
2 – 94·0 
3 –93·3 
4 – 93·3 

2 s 3 

– 240·9 – 119·0 
– 129·7 – 95·9 

– 93·5 – 93·2 
– 93·0 

Durations 1–4 
4 5 

– 103·4 – 103·4 
– 92·8 

6 
r 

0 – 379·4 – 244·3 – 53·2 – 29·1 –29·1 
1 – 160·0 – 74·4 – 52·1 – 14·0 
2 – 14·4 – 14·1 – 14·1 
3 – 14·1 – 14·1 
4 – 14·1 

In every case a GM(2, 2) formula is the lowest order that one might stop at; 
any higher order formula hardly reduces the L1 criterion at all, and certainly not 
significantly. We also observed that in most cases when we reached a formula 
with six parameters (i.e. GM(0,6) to GM(4,2)), the added parameters had very 
low T-ratios, i.e. they were not significantly different from zero. Going to a 
higher order formula would therefore be no better. 

In every case the optimum GM(2, 2) formula proved to be a reasonably 
satisfactory fit. Tables 17.2 and 17.3 summarise the results for this formula for 
each duration group. Tables 17.4 and 17.5 give the detailed results for each age 
for duration 0 and durations 2–4. The results for the other durations are similar. 
Figures 17.1 and 17.2 show the values of µx according to the GM(2,2) formula 
for Durations 0 and 2–4, and Figures 17.3 and 17.4 show the corresponding 
sheaves. 

17.7 Comparison of graduation formulae 
In § 13.5 we discussed how, given two sets of data, to each of which has been 

fitted the same order of formula, the maximum likelihood estimates of the two 
sets of parameters can be compared by calculating the squared ‘distance’ 
between the points in the parameter space. The measure 
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is distributed as x2(n), where n is the number of parameters. 
We have five independent sets of data and two which are formed by groups 

of the independent sets. We have fitted the same GM(2,2) to each of them, and 
we have available the parameter estimates and the variance-covariance matrix 
for each of them. We are therefore able to calculate the measure, D, for each pair 
of durations or duration groups. The values of D and the values of p(D), the 
probability that a value of D as great or greater would be obtained from a x2(4) 
distribution, are given below. 

Value of D 
Duration 1 2 3 4 2–4 1–4 

Duration 

0 24·82 59·23 89·88 59·06 125·56 75·47 
1 6·46 10·55 19·56 14·92 9·30 
2 3·05 5·07 3·50 1·86 
3 3·96 1·60 3·39 
4 4·15 6·28 
2–4 1·97 

Value of p(D) 
Duration 1 2 3 4 2–4 1–4 

Duration 

0 ·0001 ·0000 ·0000 ·0000 ·0000 ·0000 
1 ·1675 ·0321 ·0006 ·0049 ·0540 
2 ·5494 ·2801 ·4782 ·7608 
3 ·4115 ·8083 ·4941 
4 ·3856 ·1795 
2–4 ·7418 

Duration 0 is clearly different from the others, as we had already observed when 
comparing the crude data. Duration 1 is not significantly different from dura- 
tion 2, but can be distinguished from durations 3 and 4. Durations 2, 3 and 4 
are not significantly different from one another, so grouping them to form 
durations 2–4 is justified. Duration 1 is different from durations 2–4, so it is 
justifiable to leave it separate. Comparisons such as, for example, duration 2 
with durations 2–4 and 1–4 are strictly invalid, since one duration is included in 
the other, and the data sets being compared are therefore not independent. 

This test of the parameters of the graduated rates appears to be a more 
powerful discriminator between different levels of mortality experience than the 
preliminary tests of the crude data discussed in § 17.4 above. We conclude that 
durations 0, 1 and 2–4 should be left separate, the same as in the A1967-70(5) 
tables. 

Inspection of the values of qx for these three durations (Tables 17.2 and 17.3) 
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shows that they are reasonably ‘parallel’ from age 30 onwards, but that the rates 
for duration 1 are above those for durations 2–4 at age 20. 

The values of qx actually cross over between ages 24 and 25. Whether this is 
a feature that should be eliminated in practical tables is a matter for considera- 
tion. 

17.8 Durations 5 and over 
We now turn to the ultimate experience, duration 5 +. We first divided the 

exposed to risk and numbers of deaths by the variance ratios for each age 
derived from the count of duplicates among the deaths from this experience. The 
original numbers, the variance ratios, and the adjusted numbers are shown in 
Table 17.6, and the adjusted numbers are used in Tables 17.9 and 17.10. 

The values of the crude rates, µx, and of the 95% confidence intervals, the 
gates, based on the adjusted numbers, are plotted in Figure 17.5. (Note that the 
adjustment by variance ratios does not alter the values of the crude rates, 
Ax/Rx.) It can be seen that the general pattern of the crude rates and of the gates 
for most of the age range is similar to that of the select durations, and that the 
gates are generally much narrower. But at the most advanced ages, above about 
90, a different pattern emerges. The crude rates for ages 92 to 96 drop below the 
earlier linear trend, and from ages 97 to 103 are generally below the level reached 
by age 96. The gates, although widening, are sufficiently narrow to justify either 
a falling or at least a level trend of mortality with advancing age, if the data can 
be relied on. 

The CMI Committee observed the same feature when investigating the cor- 
responding 1967-70 experience. It seems very unlikely that lives assured at 
advanced ages should be so rejuvenated that their mortality rates contradict 
every other known experience, and we must look for an explanation in the possi- 
bility that some policies remain in the in force records of life offices, even though 
the life assured is dead. The instructions of the CMI Bureau to offices ask them 
to remove from the investigation at least multiple policies where there are no 
further premiums due and no bonus notices sent out, so that contact with the 
policyholder may be lost. But even if offices are able to do this reliably, policies so 
excluded may have contributed to the exposed to risk before being removed from 
the investigation. Thus the exposed to risk may be inflated invalidly. 

To fit a satisfactory curve to this erratic part of the data would require a 
rather high order formula, in which mortality rates dropped after about age 96. 
We do not think that this would produce a practical mortality table. Further, 
the presence of this dubious data could distort any curve fitted to the main part 
of the table. We therefore followed the previous example, and omitted ages 
above 90 from the data when fitting a formula. 

We then tried a number of formulae, fitting µx with a GM(r, s) formula, up 
to r + s = 11. The resulting values of the L1 criterion (plus a large constant) 
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are shown below. 

s2 3 
r 

0 –293·4 –278·1 
1 –217·7 –94·5 
2 –37·5 –37·4 
3 –37·5 –36·7 
4 –37·2 –33·8 
5 –31·2 –20·4 
6 –31·2 –20·4 
7 –36·9 – 19·0 
8 –32·8 –16·9 
9 –32·2 

4 5 6 7 8 9 10 11 

– 156·1 –73·6 –47·0 –24·7 –20·1 –17·9 – 17·7 –15·9 
–64·8 –31·7 –30·8 –24·1 –18·6 –17·9 –17·6 
–35·6 –30·0 –24·7 –23·4 –17·3 –17·0 
–35·6 –19·3 –17·0 –17·0 –17·0 
–27·6 –18·0 –17·0 –17·0 
–17·5 –17·5 –17·0 
–17·4 – 17·4 
–16·6 

As we moved on to higher orders of formula we discovered that multiple 
maxima appear to exist. It is difficult to search an n-parameter space to establish 
this, when n exceeds about 4. The maximum value of the criterion (L1 in this 
case) for any GM(r, s) formula must not be less than the values of the criterion 
both for the GM(r – 1, s) and the GM(r, s – 1) formulae, if they exist. 
We therefore had to arrange that the search for the maximum point for each 
GM(r, s) formula commenced at the point represented by the parameters of 
whichever of GM(r – 1, s) and GM(r, s – 1) had the higher value of the 
criterion. 

Table 17.2. Male assured lives, permanent, U.K., Durations 0, 1, 
for graduations with GM(2, 2) formula 

Function: µx, criterion: maximum likelihood 

Duration 0 1 2 

Values of parameters at optimum point: 
a0 × 100 –·465192 –·713368 –·473123 
(standard error) ·131830 ·177278 ·121012 
T-ratio –3·53 –4·02 –3·91 

a1 × 100 –·452546 –·676049 –·474513 
(standard error) ·102930 ·135932 ·101693 
T-ratio –4·40 –4·97 –4·67 

b0 –3·985723 –3·689744 –3·687542 

2, 3, Statistics 

3 

–·394346 
·099159 

–3·98 

–·423833 
·089128 

–4·76 

–3·620979 
(standard error) ·051202 ·050065 ·039721 ·038291 
T-ratio –77·84 –73·70 –92·84 –94·56 

b1 
(standard error) 
T-ratio 

Signs test: 
Number of + 
Number of – 

p(pos) 
Runs test: 

No. of runs 
p(runs) 

3·185063 3·027036 3·573205 
·387967 ·340837 ·328751 

8·21 8·88 10·87 
(Ages grouped so that each Ex 5): 

3·989363 
·313282 

12·73 

30 28 31 30 
30 32 29 30 

·5513 ·3494 ·6506 ·5513 

30 28 37 39 
·4491 ·2686 ·9560 ·9869 
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Table 17.2 (cont.) 

Duration 0 1 2 3 

Kolmogorov–Smirnov test: 
Max deviation ·0105 ·0097 ·0079 ·0090 
p(KS) 1·0000 ·9999 1·0000 1·0000 

Serial Correlation test: 
r1 –·0866 ·1662 –·1077 –·2440 
T-ratio – ·67 1·29 – ·83 – 1·89 
r2 – ·0591 ·0211 – ·3756 ·0981 
T-ratio – ·46 ·16 –2·91 ·76 
r3 ·0658 – ·1378 ·0711 – 1886 
T-ratio ·51 – 1·07 ·55 – 1·46 

x2 test 
x2 71·14 57·51 66·20 66·00 
Deg. of freedom 56 56 56 56 
P(x2) ·0837 ·4190 ·1652 ·1696 

Specimen values of qx for integral ages, simulated standard errors, and standard errors as percentage 
of value of qx: 
Age 20 
(standard error) 
percentage s.e. 

Age 30 
(standard error) 
percentage s.e. 

Age 40 
(standard error) 
percentage s.e. 

Age 50 
(standard error) 
percentage s.e. 

Age 60 
(standard error) 
percentage s.e. 

Age 70 
(standard error) 
percentage s.e. 

Age 80 
(standard error) 
Perc. s.e. 

·000622 ·000807 
·000142 ·000162 

22·83 20·05 

·000695 ·000768 
·000099 ·000083 

14·28 10·83 

·000424 ·000493 ·000506 
·000145 ·000161 ·00087 

34·19 32·75 17·20 

·000550 
·000550 

10·04 

·000855 ·001042 ·001109 ·001099 
·000161 ·000178 ·000106 ·000073 

18·79 17·0 9·56 6·62 

·002476 ·003170 
·000174 ·000193 

7·03 6·07 

·003328 
·000142 

·003351 
·000120 

3·57 

·006333 ·008173 
·000287 ·000315 

4·54 3·86 

4·27 

·008830 
·000312 

3·53 

·009359 
·000311 

3·32 

·014382 
·001034 

7·19 

·018378 ·020948 
·001109 ·001231 

6·03 5·87 

·037884 ·046198 
·003535 ·004324 

9·33 9·36 

·023584 
·001317 

5·58 

·030205 
·003390 

11·22 

·055427 
·004966 

8·96 

Age 90 ·060190 ·073663 ·096683 ·123387 
(standard error) ·009467 ·009558 ·012744 ·015501 
percentage s.e. 15·73 12·98 13·18 12·56 

Age 100 ·115091 ·136765 ·192489 ·258103 
(standard error) ·023357 ·022701 ·032102 ·039914 
percentage s.e. 20·29 16·60 16·68 15·46 

Age 110 ·210921 ·242281 ·358468 ·488360 
(standard error) ·051003 ·047471 ·066994 ·078161 
percentage s.e. 24·18 19·59 18·69 16·00 
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Table 17.3. Male assured lives, permanent, U.K., Durations 4, 
2–4, 1–4 Statistics for graduations with GM(2,2) formula 

Function: µx, criterion: maximum likelihood 

Duration 4 

Values of parameters at optimum point: 
a0 × 100 – ·701247 
(standard error) ·186797 
T-ratio – 3·80 

a1 × 100 – ·687857 
(standard error) ·152356 
T-ratio – 4·51 

b0 – 3·564739 
(standard error) ·048345 
T-ratio – 73·74 

2–4 

– ·487122 
·071283 

– 6·83 

–·496613 
·061182 

–8·12 

– 3·634119 
·022500 

– 161·52 

b1 3·227393 3·647534 
(standard error) ·331559 ·186707 
T-ratio 9·56 19·54 

(Ages grouped so that each Ex 5): 
Signs test: 

Number of + 30 29 
Number of – 29 36 
p(pos) ·6026 ·2285 

Runs test: 
Number of runs 34 34 
p(runs) ·8544 ·6359 

Kolmogorov–Smirnov test: 
Max deviation ·0101 ·0045 
p(KS) ·9993 1·0000 

Serial Correlation test: 
r1 – ·0739 –·3213 
T-ratio – ·57 – 2·59 
r2 – ·0524 –·0123 
T-ratio – ·40 –·10 
r3 –·1690 – ·0985 
T-ratio – 1·30 – ·79 

x2 test 
x2 58·94 73·30 
Degrees of freedom 
p(x2) 

55 61 
·3336 ·1344 

1–4 

– ·539786 
·066340 

–8·14 

– ·540869 
·055425 

– 9·76 

– 3·648090 
·019942 

– 182·94 

3·494553 
·162494 

21·51 

31 
35 

·.3561 

38 
·8755 

·0034 
1·0000 

– ·1532 
– 1·24 

– ·0739 
– ·60 
–·1255 

– 1·02 

85·12 
62 

·0274 

Specimen values of qx for integral ages, simulated standard errors, and 
standard errors as percentage of value of qx: 
Age 20 ·000867 ·000759 ·000775 
(standard error) ·000186 ·000046 ·000038 
percentage s.e. 21·45 6·03 4·86 

Age 30 ·000543 ·000532 ·000522 
(standard error) ·000173 ·000028 ·000023 
percentage s.e. 31·96 5·18 4·46 
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Duration 

Table 17.3 (cont.) 

4 2–4 

Age 40 
(standard error) 
percentage s.e. 

Age 50 
(standard error) 
percentage s.e. 

Age 60 
(standard error) 
percentage s.e. 

Age 70 
(standard error) 
percentage s.e. 

Age 80 
(standard error) 
percentage s.e. 

Age 90 
(standard error) 
percentage s.e. 

·001172 ·001129 ·001106 
·000195 ·000037 ·000031 

16·60 3·27 2·82 

·003614 
·000216 

5·98 

·003428 ·003372 
·000066 ·000056 

1·92 1·66 

·009492 ·009237 ·008998 
·000324 ·000177 ·000153 

3·42 1·91 1·70 

·021825 ·022223 ·021291 
·001196 ·000723 ·000609 

5·48 3·25 2·86 

·046110 ·049629 ·046602 
·004120 ·002605 ·002127 

8·93 5·25 4·57 

·091894 ·105003 ·096541 
·011730 ·007809 ·006223 

12·76 7·44 6·45 

Age 100 ·174228 ·210623 ·190101 
(standard error) ·028641 ·019782 ·015558 
percentage s.e. 16·44 9·39 8·18 

Age 110 ·311969 ·392273 ·350689 
(standard error) ·059491 ·040890 ·032524 
percentage s.e. 19·07 10·42 9·27 

115 

1–4 

For example, in the table above, when we commenced the search for the 
parameters for the GM(2,4) formula, we looked at its neighbours above and to 
the left, GM(1, 4) and GM(2, 3) respectively. The values of L1 for these two 
formulae are – 64·8 and – 37·4 respectively. The higher of these is – 37·4, given 
by the GM(2, 3) formula. We therefore began the search for GM(2, 4) at the 
point given by the optimum parameters for the GM(2, 3) formula, with the 
additional parameter b4 taken to be zero. If we had begun at some other point 
the optimisation routines we have used might have found a local maximum that 
gave a value of L1 less than – 37·4, which we know would not be the global 
maximum for GM(2, 4). We cannot be sure that we have in fact found global 
maxima everywhere, but our results are not inconsistent among themselves. 

A summary of the characteristics of each of these graduations is shown in 
Table 17.7. Because the question of whether a particular formula provides a 
‘good fit’ or not is more doubtful in this case, we give the values of p(runs) p(KS) 
and we indicate which of the first three serial correlation coefficients have 
T-ratios which are greater than 1·96. As it happens none is less than – 1·96. 
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Table 17.4. Male assured lives, permanent, U.K. Duration 0. Details of gradua- 
tion Aa1. Function: µx, GM(2, 2), criterion: maximum likelihood. 

Ages grouped so that each Ex ≥ 5. 

Rx µx Ax Ex Devx (Vx)½ Zx 100A/E 
Age 

10 208·7 ·00118518 0 ·25 – ·25 
11 222·7 ·00112142 0 ·25 – ·25 
12 295·2 ·00105941 0 ·31 – ·31 
13 588·7 ·00099927 0 ·59 – ·59 
14 665·2 ·00094113 0 ·63 – ·63 
15 1242·5 ·00088512 1 1·10 – ·10 
16 6539·2 ·00083139 3 5·44 – 2·44 

10–16 9762·5 4 8·56 – 4·56 

17 
18 
19 

14 19·18 – 5·18 4·38 
26 22·48 3·52 4·74 
30 25·94 4·06 5·09 

20 
21 
22 
23 
24 

27 27·83 – ·83 5·28 
31 29·60 1·40 5·44 
32 31·56 ·44 5·62 
37 32·01 4·99 5·66 
38 31·61 6·39 5·62 

25 
26 
27 
28 
29 

28 30·68 – 2·68 5·54 
29 29·83 – ·83 5·46 
33 2840 4·60 5·33 
17 27·79 – 10·79 5·27 
30 27·24 2·76 5·22 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

24585·5 ·00078006 
30739·0 ·00073132 
37844·5 ·00068533 

43326·7 ·00064226 
49138·7 ·00060231 
55786·2 ·00056569 
60102·2 ·00053261 
62813·2 ·00050331 

64179·2 ·00047804 
65263·5 ·00045705 
64451·5 ·00044064 
64758·5 ·00042911 
64444·2 ·00042276 

66706·2 ·00042196 
69428·7 ·00042705 
71226·5 ·0003843 
71684·0 ·00045652 
67905·2 ·00048175 

63846·7 ·00051458 
58683·0 ·00055554 
53938·0 ·00060514 
48587·5 ·00066395 
44699·7 ·00073259 

42337·2 ·00081169 
39369·7 ·00090195 
36762·5 ·00100410 
35261·0 ·00111892 
33190·5 ·00124725 

25 28·15 – 3·15 5·31 
24 29·65 – 5·65 5·45 
28 31·23 – 3·23 5·59 
34 32·73 1·27 5·72 
34 32·71 1·29 5·72 

35 32·85 2·15 5·73 
39 32·60 6·40 5·71 
38 32·64 5·36 5·71 
26 32·26 – 6·26 5·68 
32 32·75 – ·75 5·72 

40 
41 
42 
43 
44 

36 34·36 1·64 5·86 
30 35·51 – 5·51 5·96 
49 36·91 12·09 6·08 
29 39·45 – 10·45 6·28 
46 41·40 4·60 6·43 

45 
46 
47 
48 
49 

31962·2 ·00138997 
28744·2 ·00154803 
26603·7 ·00172244 
24809·5 ·00191427 
23961·7 ·00212468 

36 44·43 – 8·43 6·67 
42 44·50 – 2·50 6·67 
50 45·82 4·18 6·77 
50 47·49 2·51 6·89 
58 50·91 7·09 7·14 

50 23864·5 ·00235488 69 
51 21059·5 ·00260617 55 

56·20 12·80 
54·88 ·12 

2·93 – 1·56 46·7 

– 1·18 73·0 
·74 115·7 
·80 115·7 

– ·16 97·0 
·26 104·7 
·08 101·4 
·88 115·6 

1·14 120·2 

– ·48 91·3 
– ·15 97·2 

·86 116·2 
– 2·05 61·2 

·53 110·1 

– ·59 88·8 
– 1·04 81·0 

– ·58 89·7 
·22 103·9 
·23 103·9 

·37 106·5 
1·12 119·6 

·94 116·4 
– 1·10 80·6 

– ·13 97·7 

·28 104·8 
– ·92 84·5 

1·99 132·7 
– 1·66 73·5 

·72 111·1 

– 1·26 81·0 
– ·37 94·4 

·62 109·1 
·36 105·3 
·99 113·9 

7·50 1·71 122·8 
7·41 ·02 100·2 
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Rx µx Ax Ex Devx 

Age 

52 

53 
54 

55 

56 
57 
58 
59 

60 
61 

62 
63 

64 

65 
66 
67 
68 

69 

70 
71 

72 
73 

74 
75 

74–75 

76 
77 

78 
79 

80 
81 

82 
83 
84 

85 
86 
87 

88 

89–99 

100 
76–100 

17616·5 ·00287994 
16093·7 ·00317768 
14846·5 ·00350095 

14686·5 ·00385144 
11385·2 ·00423093 

7664·5 ·00464134 
5771·0 ·00508469 
5031·7 ·00556316 

4162·7 ·00607905 
3282·7 ·00663483 
2166·5 ·00723312 
1734·2 ·00787671 
1747·0 ·00856859 

2874·0 ·00931192 
2157·2 ·01011010 
1225·5 ·01096674 

865·7 ·01188567 
729·2 ·01287100 

613·2 ·01392709 
471·0 ·01505860 
380·5 ·01627048 
324·5 ·01756802 

256·0 ·01895687 
243·0 ·02044301 
499·0 

109·3 ·02203286 
50·8 ·02373324 
47·5 ·02555141 
23·5 ·02749511 

22·5 ·02957262 
10·5 ·03179273 

6·5 ·03416481 
3·0 ·03669887 
1·0 ·03940556 

2·0 ·04229623 

1·0 ·04538298 
3·0 ·04867871 
1·5 ·05219717 

no data 

1·0 ·11822877 
283·0 

T. 1799039·7 

71·14 

Table 17.4 (cont.) 

35 50·73 – 15·73 
49 51·14 – 2·14 
52 51·98 ·02 

55 56·56 – 1·56 
64 48·17 15·83 
25 35·57 – 10·57 
23 29·34 – 6·34 
37 27·99 9·01 

36 28·95 7·05 
17 21·78 – 4·78 
11 15·67 – 4·67 
12 13·66 – 1·66 
12 14·97 – 2·97 

21 26·16 – 5·76 
18 21·81 – 3·81 
12 13·44 – 1·44 

6 10·29 – 4·29 
12 9·39 2·61 

12 8·54 3·46 
7 7·09 – ·09 

13 6·19 6·81 
3 5·70 – 2·70 

4 4·85 – ·85 
8 4·91 3·03 

12 9·82 2·18 

3 2·41 ·59 
1 1·20 – ·20 

6 1·21 4·79 
0 65 – ·65 

0 
0 

0 
0 
0 

0 

0 
0 

0 

0 
10 

1795 

·67 – ·67 
·33 – ·33 
·22 – ·22 
·11 – ·11 
·04 – ·04 

·08 – ·08 
·05 – ·05 
·15 – ·15 
·08 – ·08 

·12 – ·12 
7·31 2·69 

1795·02 – ·02 

(Vx)½ 

7·12 

7·15 
7·21 

7·52 

6·94 
5·96 
5·42 
5·29 

5·38 
4·67 

3·96 

3·70 
3·87 

5·17 

4·67 
3·67 
3·21 

3·06 

2·92 
2·66 

2·49 

2·39 

3·13 

2·70 

Zx 100A/E 

– 2·21 69·0 
– ·30 95·8 

·00 100·0 

– ·21 97·2 
2·28 132·9 

– 1·17 70·3 
– 1·17 78·4 

1·70 132·2 

1·31 124·3 

– 1·02 78·0 
– 1·18 70·2 

– ·45 87·8 
– ·77 80·2 

– 1·11 78·5 
– ·82 82·5 
– ·39 89·3 

– 1·34 58·3 

·85 127·8 

1·18 140·5 

– ·03 98·7 

2·74 210·0 
– 1·13 52·6 

·70 122·2 

·99 136·7 

100·0 
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Table 17.5. Male assured lives, permanent, U.K., Durations 2–4. Details of 
graduation Aa1. Function: µx, GM(2. 2), criterion: maximum likelihood. 

Ages grouped so that each Ex 5 

Age 
10 
11 
12 
13 
14 

15 
16 
17 

10–17 

0 
0 
3 
4 

18 
19 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 
52 
53 
54 

55 

Rx µx 
410·7 ·00141988 

72·3 ·00134566 
160·2 ·00127335 
474·7 ·00120307 
834·2 ·00113500 

1160·0 ·00106929 
1328·5 ·00100612 
1950·2 ·00094569 
6390·9 

8899·5 ·00088820 
33660·0 ·00083388 
59836·5 ·00078296 
84059·0 ·00073571 
96024·0 ·00069240 

110277·7 ·00065332 
125642·5 ·00061881 

141821·7 ·00058920 
158482·2 ·00056486 
171814·5 ·00054621 
182738·2 ·00053365 
190361·0 ·00052766 

196849·7 ·00052874 
204916·2 ·00053741 
218434·7 ·00055426 
224663·0 ·00057989 
218113·5 ·00061499 

206441·1 ·00066025 
188728·7 ·00071646 
172812·2 ·00078444 
159564·2 ·00086508 
145668·0 ·00095934 

134140·0 ·00106824 
126663·2 ·00119291 
122415·0 ·00133453 
117218·2 ·00149438 
109732·7 ·00167384 

100713·5 ·00187441 
92700·2 ·00209766 
87354·2 ·00234533 
82443·5 ·00261926 
77393·0 ·00292143 

71289·0 ·00325399 
65584·0 ·00361924 
62054·5 ·00401964 
57247·2 ·00445786 
51081·0 ·00493675 

43519·2 ·00545941 

Ax 
0 
1 
0 
0 
0 

9 
30 
54 
64 
75 
73 
81 

64 
75 

118 
95 
91 

102 
106 
121 
120 
133 

154 
135 
134 
147 
133 

171 
135 
178 
136 
196 

203 
206 
204 
198 
253 

217 
226 
240 
245 
258 

240 

Ex Devx 

·58 –58 
·10 ·90 
·20 – ·20 
·57 – ·51 
·95 – ·95 

1·24 – 1·24 
1·34 – 1·34 
1·84 1·16 
6·82 – 2·82 

7·90 1·10 
28·07 1·93 
46·85 7·15 
61·84 2·16 
66·49 8·51 
72·05 ·95 
77·75 3·25 

83·56 – 19·56 
89·52 – 14·52 
93·85 24·15 
91·52 – 2·52 

100·45 – 9·45 

104·08 – 2·08 
110·12 –4·12 
121·07 – ·07 
130·28 – 10·28 
134·14 – 1·14 

136·30 17·70 
135·22 – ·22 
135·56 – 1·56 
138·04 8·96 
139·74 – 6·74 

143·29 27·71 
151·10 – 16·10 
163·37 14·63 
175·17 – 39·17 
183·68 12·32 

188·78 14·22 
194·45 11·55 
204·87 – ·87 
215·94 – 17·94 
226·10 26·90 

231·97 – 14·97 
231·36 –11·36 
249·44 – 9·44 
255·20 – 10·20 
252·17 5·83 

237·92 2·08 

(Vx)1/2 zx 100A/E 

2·61 –1·08 

2·81 ·39 
5·30 ·36 
6·84 1·04 
7·86 ·27 
8·15 1·04 
8·49 ·11 
8·82 ·37 

9·14 –2·14 
9·46 – 1·53 
9·69 2·49 
9·88 – ·26 

10·02 –·94 

10·20 –·20 
10·49 –·39 
11·00 –·01 
11·41 –·90 
11·58 –·10 

11·67 1·52 
11·63 –·02 
11·64 –·13 
11·75 ·76 
11·82 –·57 

11·97 2·31 
12·29 –1·31 
12·78 1·14 
13·24 –2·96 
13·55 ·91 

13·74 1·04 
13·94 ·83 
14·31 –·06 
14·69 –1·22 
15·04 1·79 

15·23 –·98 
15·41 –·74 
15·79 –·60 
15·97 –·64 
15·88 ·37 

15·42 ·14 

58·6 

113·9 
106·9 
115·3 
103·5 
112·8 
101·3 
104·2 

76·6 
83·8 

125·7 
97·4 
90·6 

98·0 
96·3 
99·9 
92·1 
99·2 

113·0 
99·8 
98·8 

106·5 
95·2 

119·3 
89·4 

109·0 
77·6 

106·7 

107·5 
105·9 
99·6 
91·7 

111·9 

93·5 
95·2 
96·2 
96·0 

102·3 

100·9 



Age 
56 
57 
58 
59 

Rx µx 
38207·0 ·00602914 

60 
61 
62 
63 
64 

35992·0 ·00664949 
32170·0 ·00732431 
26721·2 ·00805772 

18951·2 ·00885415 
12914·5 ·00971836 
9769·7 ·01065549 

65 
66 
67 
68 
69 

7476·5 ·01167106 
5801·2 ·01277100 

4530·2 ·01396170 
3821·7 ·01525002 
4393·2 ·01664336 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 

80–81 

4473·0 ·01814965 
3790·5 ·01977746 

2441·5 ·02153597 
1557·0 ·02343507 
1256·7 ·02548542 
1026·7 ·02769844 
760·5 ·03008646 

513·7 ·03266271 
391·7 ·03544144 
314·5 ·03843798 
219·2 ·04166880 
111·8 ·04515165 

77·5 ·04890558 
57·3 ·05295111 

134·7 

82 
83 
84 

85 
86 
87 
88 
89 

90 
91 
92 
93 
94 

50·8 ·05731032 
28·8 ·06200694 
21·0 ·06706650 

8·5 ·07251647 
7·0 ·07838640 
3·5 ·08470807 
1·5 ·09151566 
2·0 ·09884595 

1·5 ·10673850 
no data 

0·5 ·12438377 
1·0 ·13423151 

no data 

95 ·3 ·15624224 
96 ·8 ·16852349 
97 ·5 ·18174168 

98–99 no data 
100 0·5 ·22775409 

82–100 128·0 

T. 4925676·8 
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Table 17.5 (cont.) 

Ax Ex 
231 230·36 
228 239·33 
248 235·62 
217 215·31 

177 167·80 
111 125·51 
102 104·10 
87 87·26 
80 74·09 

Devx (Vx)1/2 

51 63·25 
57 58·28 
80 73·12 
79 81·18 
73 74·97 

53 52·58 
36 36·49 
40 32·03 
21 28·44 
36 22·88 

15 16·78 
12 13·88 
19 12·09 
9 9·14 
3 5·05 

5 3·79 
0 3·03 
5 6·82 

3 2·91 
3 1·78 
2 1·41 

0 ·62 
0 ·55 
0 ·30 
0 ·14 
0 ·20 

1 ·16 

0 
0 

0 
0 
0 

0 
9 

7503 

·06 – ·06 
·13 –·13 

·04 
·13 
·09 

·11 
8·62 

7503·00 

·64 
– 11·33 

12·38 
1·69 

9·20 
– 14·51 
–2·10 

– ·26 
5·91 

– 12·25 
– 1·28 

6·88 
–2·18 
– 1·97 

·42 
– ·49 
7·97 

– 7·44 
13·12 

– 1·78 
– 1·88 

6·91 
–·14 

– 2·05 

1·21 
– 3·03 
– 1·82 

·09 
1·22 
·59 

– ·62 
– ·55 
– ·30 
–·14 
–·20 

·84 

–·.04 
–·13 
–·09 

–·11 
·38 

·00 

15·18 
15·47 
15·35 
14·67 

12·95 
11·20 
10·20 
9·34 
8·61 

7·95 
7·63 
8·55 
9·01 
8·66 

7·25 
6·04 
5·66 
5·33 
4·78 

4·10 
3·73 
3·48 
3·02 
2·25 

Zx 100A/E 

·04 100·3 
– ·73 95·3 

·81 105·2 
·12 100·8 

·71 105·5 
– 1·29 88·4 
– ·21 98·0 
– ·03 99·7 

·69 108·0 

– 1·54 80·6 
–·17 97·8 

·80 109·4 
– ·24 97·3 
– ·23 97·4 

·06 100·8 
– ·08 98·7 
1·41 124·9 

– 1·40 73·8 
2·74 157·3 

– ·43 89·4 
–·51 86·4 
1·99 157·2 

– ·04 98·5 
–·91 59·5 

2·61 – ·70 73·3 

2·94 ·13 104·4 

100·00 

119 

x2 = z2x = 73·30 
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Figure 17.3. Male assured lives Duration 0. Sheaf for µx = GM(2, 2). 

Figure 17.4. Male assured lives Durations 2–4. Sheaf for µx = GM(2,2). 



Age 
10 
11 
12 
13 
14 

Original data 

Rx 
117·0 
33·5 
49·7 
56·8 
79·7 

Ax 
0 
0 
0 
0 
1 

Variance ratio 
rx 

1 ·00 
1·00 
1·00 
1·00 
1·00 

R’x A’x 
117·00 ·00 
33·49 ·00 
49·74 ·00 
56·75 ·00 
79·74 1 ·00 

15 238·0 1 1·00 237·99 l·00 
16 538·7 1 1 ·00 538·74 1 ·00 
17 860·5 0 1 ·00 860·49 ·00 
18 1137·5 2 1 ·00 1137·49 2·00 
19 1433·5 0 1·00 1433·50 ·00 

20 2330·0 3 1 ·00 2329·99 3·00 
21 9149·5 4 1·67 5478·74 2·40 
22 29954·0 29 1·21 24755·37 23·97 
23 50989·7 46 1·12 45526·55 41·07 
24 74643·0 52 1·00 74642·99 52·00 

25 100433·0 73 1·18 85112·70 61·86 
26 129037·0 81 1·34 96296·27 60·45 
27 163196·8 95 1·22 133767·83 77·87 
28 202341·0 99 1·27 159323·62 77·95 
29 247811·5 153 1·31 189169·08 116·79 

30 300754·5 160 1·26 238694·05 126·98 
31 363992·8 186 1·23 295929·07 151·22 
32 437952·7 247 1·54 284384·90 160·39 
33 500565·5 338 160 312853·44 211·25 
34 539011·8 343 1·35 399267·96 254·07 

35 563449·0 431 1·55 363515·48 278·06 
36 565514·0 398 1·54 367216·88 25844 
37 557513·0 446 1·48 376697·97 301·35 
38 550015·2 537 1·82 302206·18 295·05 
39 533139·2 480 1·68 317344·79 285·71 

40 518725·0 533 1·58 328306·96 337·34 
41 516972·2 649 1·72 300565·26 377·33 
42 526998·2 719 1·80 292776·81 399·44 
43 536894·2 771 1·79 299940·92 430·73 
44 537019·8 939 1·71 314046·64 549·12 

45 528910·8 1015 1·67 316713·02 607·78 
46 520267·2 1146 1·87 278217·78 612·83 
47 513590·7 1189 1·69 303899·85 703·55 
48 509219·0 1327 1·74 292654·60 762·64 
49 505844·5 1702 1·80 28 1024·72 945·56 

50 498936·0 1868 1·82 274140·65 1026·37 
51 489236·5 2095 1·74 281170·40 1204·02 
52 477414·2 2242 1·80 265230·13 1245·56 
53 465926·2 2508 1·66 280678·46 1510·84 
54 453919·0 2656 1·65 275102·42 1609·70 
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Table 17.6. Male assured lives (U.K. Permanent). Duration 5 + 
Original data, variance ratios and adjusted data 
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Adjusted data 
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Table 17.6 (cont.) 

Variance ratio Adjusted data 

Age 

Original data 

Rx Ax rx 

55 434168·7 2861 1·67 
56 416652·2 3105 1·79 
57 402193·2 3277 1·74 
58 391892·8 3560 1·69 
59 381495·5 4037 1·73 

R’x A’x 
259981·28 1713·17 
232766·62 1734·64 
231145·55 1883·33 
231889·20 2106·51 
220517·63 2333·53 

60 319429·5 3550 1·55 206083·55 2290·32 
61 265730·0 3341 1·55 171438·71 2155·48 
62 230875·0 3311 1·55 148951·61 2136·13 
63 201601·0 3265 1·46 138082·88 2236·30 
64 179806·5 3016 1·53 117520·58 1971·24 

65 100538·2 1876 1·37 73385·58 1369·34 
66 56673·0 1115 1·25 45338·40 892·00 
67 46895·0 1014 1·39 33737·40 729·50 
68 40987·2 1033 1·48 27694·09 697·97 
69 36769·8 1011 1·32 27855·87 765·91 

70 32995·0 1022 1·32 24996·21 774·24 
71 30145·5 1074 1·50 20097·00 716·00 
72 28037·5 1054 1·47 19073·12 717·01 
73 25884·5 1127 144 17975·34 78264 
74 23618·5 1125 1·41 16750·70 797·87 

75 20875·0 
76 18290·7 
77 16143·5 
78 14128·2 
79 12380·0 

1154 
1098 
1099 
957 

1025 

1·44 14496·53 801·39 
1·44 12701·90 762·50 
1·48 10907·77 742·57 
1·51 9356·46 633·77 
1·46 8479·45 702·05 

80 10255·0 967 1·43 7171·33 676·22 
81 8607·0 875 1·59 5413·20 550·31 
82 7304·8 762 1·40 5217·68 544·29 
83 6173·2 752 1·33 4641·54 565·41 
84 5035·2 648 1·39 3622·48 466·19 

85 4203·2 545 1·41 2981·03 386·52 
86 3480·7 508 1·35 2578·33 376·30 
87 2925·2 453 1·27 2303·34 356·69 
88 2384·5 394 1·22 1954·50 322·95 
89 1955·0 384 1·32 1481·06 290·91 

90 1622·0 314 1·36 1192·65 230·88 
91 1307·8 284 1·33 983·27 213·53 
92 1028·5 229 1·30 791·15 176·15 
93 771·2 185 1·50 514·17 123·33 
94 568·5 141 1·45 392·07 97·24 

95 418·0 115 1·60 261·25 71·87 
96 295·0 87 1·33 221·80 65·41 
97 208·8 43 1·19 175·42 36·13 
98 157·0 30 1·08 145·37 27·78 
99 122·8 21 1·00 122·75 21·00 

100 147·8 13 1 ·00 147·75 13·00 
101 40·0 9 1·29 31·01 6·98 
102 19·0 6 1·00 19·00 6·00 
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Table 17.6 (cont.) 

Original data Variance ratio 
Rx Ax rx 

10·0 1 1 ·00 
4·5 0 1·00 

3·0 0 1·00 
1·0 0 1·00 
·0 0 1·00 

4·5 0 1 ·00 

17313471·2 83438 

Adjusted data 

R'x A'x 
10·00 1·00 
4·50 ·00 

3·00 ·00 
1 ·00 ·00 
·00 ·00 

4·50 ·00 

10827135·99 53239·27 

Age 
103 
104 

105 
106 
107 
108 

Tot. 

An indication of which formulae have their final r-parameter and s-parameter 
both significant is shown below. 

s 2 
r 

0 Yes 
1 Yes 
2 Yes 
3 No 
4 No 
5 No 
6 No 
7 No 
8 No 
9 No 

3 4 5 6 7 8 9 10 11 

Yes Yes Yes Yes Yes Yes Yes No No 
Yes Yes Yes No No Yes No No 
No Yes No Yes No No No 
No No Yes Yes No No 
Yes Yes No No No 
Yes No No No 
No No No 
No No 
No 

Figure 17.5. Male assured lives Duration 5+. Crude rates and gates: 
µx = GM(2, 2). 
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Table 17.7. Male assured lives (U.K. Permanent) Duration 5 +. Comparison of 
GM(r, s) formulae for graduating µx 

Order 
(r, s) 

0, 2 

0, 3 
1, 2 

Value p 
of L1 (runs) 

–293·4 ·00 

p 
(KS) 

·00 

–278·1 ·00 ·00 
–277·7 ·00 ·00 

0, 4 
1, 3 
2, 2 

0, 5 
1, 4 
2, 3 
3, 2 

0, 6 
1, 5 
2, 4 
3, 3 
4, 2 

0, 7 
1, 6 
2, 5 
3, 4 
4, 3 
5, 2 

0, 8 
1, 1 
2, 6 
3, 5 
4, 4 
5, 3 
6, 2 

0, 9 
1, 8 
2, 7 
3, 6 
4, 5 
5, 4 
6, 3 
7, 2 

0, 10 
1,9 
2, 8 
3, 7 
4, 6 
5, 5 
6, 4 
7, 3 
8, 2 

–156·1 ·00 ·00 
–94·5 ·00 ·03 
–37·5 ·01 ·85 

–736 ·00 ·13 
–·64·8 ·04 ·57 
–37·4 ·04 ·80 
–37·5 ·01 ·85 

–47·0 ·00 ·47 
–31·8 ·45 ·93 
–35·6 ·00 ·57 
– 36·7 ·05 ·65 
–37·2 ·05 ·74 

–24·1 ·32 1·00 
–30·8 ·64 ·99 
–30·0 ·36 ·82 
–35·6 ·00 ·56 
–33·8 ·10 ·71 
–37·2 ·05 ·75 

–20·1 ·34 ·99 
–24·1 ·33 ·99 
–24·1 ·34 ·96 
– 19·3 ·52 1·00 
–27.6 .24 .84 
–20.4 .34 .98 
–37.2 .05 ·76 

–17·9 ·79 1.00 
–18·6 ·84 1.00 
–23·4 ·33 ·99 
– 17·0 ·52 190 
– 18·0 ·33 1.00 
– 17·5 ·89 1.00 
–20·4 ·33 ·98 
– 36·9 ·02 ·84 

– 17·7 ·78 1.00 
–17·9 ·63 1.00 
– 17·3 ·70 1.00 
– 17·0 ·52 1.00 
–17·0 ·52 1.00 
–17·5 ·89 1.00 
–17·4 ·89 1·00 
–19·0 ·65 1·00 
–32·8 ·10 ·85 

0, 11 – 15·9 ·89 140 
1, 10 – 17·6 ·78 1 ·00 

ser 
cor(1) 

123 

123 
123 

123 
123 

1 

123 
123 

1 
1 

123 
1 
1 

13 
13 
– 

1 
– 

1 
1 

13 
– 
– 
_ 
– 

– 
13 
– 

– 
– 
– 
– 
– 

1 
– 
– 
– 
– 

– 
– 
– 

1 
– 
– 

χ ² p( χ ²) 
759·2 ·000 

Sig. Good 
par. shape(2) 

Yes No 

Tight 
sheaf(3) 

Yes 

800·5 ·000 Yes No Yes 
648·7 ·000 Yes No ? 

377·5 ·00 Yes No ? 
235·6 ·000 Yes No Yes 
109·0 ·001 Yes Yes Yes 

183·2 ·000 Yes ? ? 
168·8 ·000 Yes No Yes 
108·9 ·001 No Yes Yes 
109·0 ·001 No Yes ? 

124·2 ·000 Yes No No 
98·8 ·003 Yes No No 

106·1 ·001 Yes Yes No 
108·2 ·001 No Yes No 
109·3 ·000 No Yes No 

85·0 ·041 Yes No No 
97·3 ·004 No No No 
94·3 ·007 No No No 

106·0 ·001 No Yes No 
101·2 ·002 Yes Yes ? 
109·3 ·000 No Yes No 

75·2 ·139 Yes Yes No 
84·2 ·038 No No No 
83·7 ·041 Yes No No 
73·9 ·163 Yes No No 
89·4 ·016 Yes No ? 
76·2 ·123 Yes Yes ? 

109·3 ·000 No Yes No 

71·1 ·200 Yes No No 
72·8 ·163 Yes ? No 
82·4 ·042 No No No 
69·4 ·242 Yes ? No 
71·6 ·188 No No No 
70·2 ·222 No ? No 
76·1 ·107 No Yes No 

109·0 ·000 No Yes No 

70·9 ·180 No No ? 
71·1 ·177 No No ? 
69·9 ·203 No ? ? 
69·4 ·216 No ? No 
69·4 ·215 No ? No 
70·2 ·197 No ? No 
70·6 ·187 No ? No 
73·5 ·150 No Yes No 

100·7 ·001 No Yes No 

68·2 ·218 No No No 
70·8 ·161 No No No 



Order 

(r, s) 

2, 9 
3, 8 
4, 7 
5, 6 
6. 5 
7, 4 
8, 3 
9, 2 

Value 
of L1 

– 17·0 
– 17·0 
– 17·0 
– 17·0 
– 17·4 
– 16·6 
– 16·9 
– 32·2 
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Table 17.7 (cont.) 

p p ser Sig. 
(runs) (KS) cor(1) χ 2 p( χ ²) par. 

·32 1·00 – 68·9 ·202 No 
·52 1·00 – 69·3 ·191 No 
·52 1·00 – 69·4 ·190 No 
·52 1·00 – 69·4 ·191 No 
·89 1·00 – 70·6 ·164 No 
·96 1·00 – 68·5 ·211 No 
·71 1·00 – 69·2 ·196 No 
·12 1·00 – 99·7 ·016 No 

Good Tight 
Shape(2) sheaf(3) 

? No 
? No 
? No 
? No 
? No 
? No 
? No 
Yes No 

Notes (1) The digits indicate which serial correlation coefficients have T-ratios that exceed 1·96. 
(2) ? indicates that µX rises very sharply at very high ages. (3) ? indicates a sheaf of intermediate 
tightness. 

The following table shows the values of p( χ ²) for each formula. 

s 2 3 4 5 6 7 8 9 10 11 

r 

0 000 ·000 ·000 ·000 ·000 ·041 ·139 ·200 ·180 ·218 
1 ·000 ·000 ·000 ·003 ·004 ·038 ·163 ,177 ·161 
2 ·001 ·001 ·001 ·007 ·041 ·042 ·203 ·202 
3 ·001 ·001 ·001 ·163 ·242 ·216 ·191 
4 ·000 ·002 ·016 ·188 ·215 ·190 
5 ·000 ·123 ·222 ·197 ·191 
6 ·000 ·107 ·187 ·164 
7 ·000 ·150 ·211 
8 001 ·196 
9 001 

In Table 17.7 we classify the shape of some of the low order formulae as poor, 
because they do not recognize the higher mortality at the youngest ages. We 
query the shape when the values of µx rise too sharply at advanced ages. We 
query the sheaf when it is tight over most of the age range, only bursting out at 
the very ends of the range. 

Of the low order formulae, GM(2, 2) has the highest value of L1 , and there 
is little improvement in the value of L1 in the immediately neighbouring orders 
of formula. However, the GM(2, 2) formula has a significantly low number of 
runs, and the T-ratio of its first serial correlation coefficient is 2·67, significantly 
large. The value of χ 2 is also large, and p( χ ²) is only ·0007. Inspection of the 
detailed results show significantly low values of zx (less than – 2·0) at ages 47, 
48, 66 and 67, and significantly high values (more than 2·0) at ages 35, 38 and 
80. The highest absolute value of zx is 2·65 (at age 80). The two pairs of 
neighbouring large negative values help to contribute towards the high value of 
the first serial correlation coefficient. 

All the parameters of the GM(2, 2) formula are very significantly non-zero, 
the shape of the curve is satisfactory, and the sheaf is very tight. It therefore has 
many good features, even though the fit is not ideal. 

When the order of the formula is increased the value of L1 increases sharply. 
Many of the formulae with high values of L1 have poor shapes or non-significant 
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Table 17.8. Male assured lives, permanent, U.K., Duration 5 + . Statistics for 
graduations with various formulae. 

Function: µ x, criterion: maximum likelihood 

Formula GM, (2,2) GM(0, 8) 
Value of criterion at optimum point: 

L1 – 285637·5 – 285620·1 

Values of parameters at optimum point: 
a0 x 100 – ·378772 – 

(standard error) ·02245 1 
T-ratio – 16·87 – 

a1 x 100 –·431902 – 

(standard error) ·024536 – 

T-ratio – 17·60 – 

a3 x 100 
(standard error) – – 

T-ratio – – 

b0 – 3·329023 – 1·500793 
(standard error) ·108608 3·801014 
T-ratio – 386·74 – ·39 

b1 4·595701 8·232312 
(Standard error) ·042362 7·104652 
T-ratio 108·49 1·16 

b2 
(Standard error) – 

T-ratio – 

b3 
(Standard error) 

– 

T-ratio – 

B4(STANDARD error) 

– 
– 

T-ratio – 

B5 ( Standard error) 

– 
– 

T-ratio – 

B6(STANDARD error) 

– 
– 

T-ratio 

b7 – 

(standard error) – 

T-ratio 

(Ages grouped so that each Ex ≥ 5): 
Signs test: 

Number of + 36 
Number of – 34 

3·754954 
5·782655 

·65 

2·583607 
4·059745 

·64 

2·576161 
2·408545 
1·07 

1·350736 
1·169434 
1·16 

1·497015 
·136683 

10·95 

2·021917 
·194400 

10·40 

·628555 
·065005 

9·67 

– 11·045274 
1·378611 

–8·01 

24·092333 
9·155591 
2·63 

– 9·639479 
1·878418 

–5·13 

9·559850 
4·862410 
1·97 

–2·381718 
,525176 

–4·54 

2·207383 
1·120549 
1·97 

·780707 – 

,425578 – 

1·83 – 

·293572 – 

·105665 – 

2·78 – 

32 
39 

p(pos) ·6399 ·2383 
Runs test: 

Number of runs 26 34 
p(runs) ,0109 ·3449 

GM(3, 6) 

– 285617·0 

33 
38 

·3177 

36 
·5171 

– 

– – 

– 

– 

– 

– 
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Formula 

Kolmogorov–Smirnov test: 
Max deviation 

p(KS) 

Serial Correlation test: 

Table 17.8 (cont.) 

GM(2, 2) GM(0, 8) 

·0038 ·0028 

·8491 ·9872 

GM(3, 6) 

·0022 
·9995 

r1 
T-ratio 

·3191 ·0467 
2·67 ·39 

r2 ·2312 – ·0833 
T-ratio 1·93 – ·70 
r3 ·2245 ·0166 
T-ratio 1·88 ·14 

χ 2 test 
χ 2 109·01 75·21 
Degrees of freedom 60 63 
p( χ ²) ·0007 ·1393 

– ·0286 
– ·24 
–·1567 

– 1·32 
– ·0353 
–·30 

6·40 
62 

·2421 

Specimen values of qx for integral ages, simulated standard errors, and standard errors as percentage 
of value of qx: 
Age 20 ·000867 ·001011 ·000988 
(standard error) ·00004 1 000120 ·000073 
percentage s.e. 4·74 11·89 7·34 

Age 30 ·000574 ·000567 ·000557 
(standard error) ·000015 ·000014 ·000018 
percentage s.e. 2·66 2·41 3·17 

Age 40 ·001141 ·001128 ·001144 
(standard error) 000014 ·000016 ·00002 1 
percentage s.e. 1·23 1·38 1·86 

Age 50 ·003859 ·003891 ·00388 1 
(standard error) ·000024 ·000034 ·000048 
percentage s.e. ·63 ·88 1·23 

Age 60 ·011929 ·011888 ·011874 
(standard error) ·000063 ·000077 ·000094 
percentage s.e. ·53 ·65 ·79 

Age 70 ·033134 ·032568 ·032524 
(standard error) ·000196 ·000306 ·000337 
percentage s.e. ·59 ·94 1·04 

Age 80 ·085510 ·089476 ·089660 
(standard error) ·000756 ·001053 ·001135 
percentage s.e. ·88 1·18 1·27 

Age 90 ·205722 ·175560 ·180145 
(standard error) ·002646 ·010149 ·008852 
percentage s.e. 1·29 5·78 4·91 

Age 100 442872 ·216909 ·342699 
(standard error) ·006748 ·225091 ·233789 
percentage s.e. 1·52 103·77 68·22 

Age 110 ·771310 ·984405 ·999945 
(standard error) ·009306 ·46608 1 ·406370 
percentage s.e. 1·21 47·35 40·64 
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Table 17.9. Male assured lives, permanent, U.K., Duration 5+. Details of 
graduation Aa1. Function: µx, GM(2, 2), criterion: maximum likelihood. 

Ages grouped so that each Ex ≥ 5. Age range 10–90 only 

Age 

10 
11 
12 
13 
14 

A'x Ex Devx (Vx)½ 

·00 ·18 –·18 
·00 ·05 – ·05 
40 ·07 – ·07 
·00 ·08 – ·08 

1·00 ·10 ·90 

15 
16 
17 
18 
19 
20 

10–20 

R'x µx 

117·0 ·00153937 
33·5 ·00146688 
49·7 ·00139572 
56·8 ·00132603 
79·7 ·00125795 

238·0 ·00119163 
538·7 ·00112724 
860·5 ·00106497 

1137·5 ·00100502 
1433·5 ·0009476 1 
2330·0 ·00089299 
6874·9 

1·00 ·28 
1 ·00 ·61 

40 ·92 
2·00 1·14 

·00 1·36 
3·00 2·08 
8·00 6·86 

21 5478·7 ·00084143 240 4·61 
22 24755·4 ·00079322 23·97 1964 

21–22 30234·1 26·36 24·25 

23 
24 

41·07 34·09 
52·00 52·86 

25 
26 
27 
28 
29 

61·86 57·20 
60·45 61·71 
77·81 82·26 
77·95 94·76 

116·79 109·92 

30 
31 
32 
33 
34 

126·98 137·08 
151·22 170·22 
160·39 166·23 
211·25 188·68 
254·07 252·22 

35 
36 
37 
38 
39 

278·06 244·07 
25844 265·60 
301·35 297·00 
295·05 262·37 
285·71 305·89 

40 
41 
42 
43 
44 

337·34 353·64 
377·33 363·58 
39944 399·12 
430·73 461·87 
549·12 547·03 

45 
46 
47 
48 
49 

45526·6 ·00074869 
74643·0 ·00070818 

85112·7 ·00067210 
96296·3 ·00064085 

133767·8 ·00061491 
159323·6 ·00059479 
189169·1 ·00058105 

238694·0 ·00057430 
295929·1 ·00057522 
284384·9 ·00058454 
3 12853·4 ·00060308 
399268·0 ·00063171 

363515·5 ·00067142 
367216·9 ·00072327 
376698·0 ·00078843 
302206·2 ·00086817 
317344·8 ·00096390 

328307·0 ·000107717 
300565·3 ·00120966 
292776·8 ·00136322 
299940·9 ·00153988 
3 14046·6 ·00174186 

316713·0 ·00197160 
278217·8 ·00223 178 
303899·8 ·00252532 
292654·6 ·00285543 
281024·7 ·00322564 

607·78 624·43 
612·83 620·92 
703·55 76744 
76264 835·66 
945·56 906·48 

50 
51 
52 
53 

274140·7 ·00363981 
281170·4 ·00410216 
265230·1 ·00461734 

1026·37 997·82 
1204·02 1153·41 
1245·56 1224·66 

280678·5 ·00519044 1510·84 1456·84 54·00 38·17 1·41 103·7 

·72 
·39 

– ·92 
·86 

– 1·36 
·92 

1·14 2·62 

– 2·21 
4·33 
2·12 4·92 

6·99 5·84 
– ·86 7·27 

4·66 7·56 
– 1·26 7·86 
– 4·39 9·07 

– 16·81 9·73 
6·88 10·48 

– 10·10 11·71 
– 19·00 13·05 

– 5·85 12·89 
22·57 13·74 

1·85 15·88 

33·99 15·62 
–7·16 16·30 

4·35 17·23 
32·69 16·20 

– 20·18 17·49 

– 16·30 18·81 
13·74 19·07 

·32 19·98 
–31·15 21·49 

2·10 23·39 

– 16·65 24·99 
– 8·09 24·92 

– 63·89 27·70 
– 73·01 28·91 

39·07 30·11 

28·55 31·59 
50·62 33·96 
20·90 35·00 

zx 100A/E 

·43 116·6 

·43 108·7 

1·20 120·5 
–·12 98·4 

·62 108·1 
–·16 98·0 
– ·48 94·7 

– 1·73 82·3 
·66 106·3 

– ·86 92·6 
– 1·46 88·8 

– ·45 96·5 
1·64 112·0 

·I2 100·7 

2·18 113·9 
– ·44 97·3 

·25 101·5 
2·02 112·5 

– 1·15 93·4 

– ·87 95·4 
·I2 103·8 
·02 100·1 

– 1·45 93·3 
·09 100·4 

–67 97·3 
– ·32 98·7 

–2·31 91·7 
– 2·53 91·3 

1·30 104·3 

·90 102·9 
1·49 104·4 

·60 101·7 
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Age 

54 

R'x µx A'x 4 

275102·4 ·00582702 1609·70 1603·03 

55 259981·3 ·00653320 1713·17 1698·51 
56 232766·6 ·00731568 1734·64 1702·85 
57 231145·5 ·00818181 1883·33 1891·19 
58 231889·2 ·00913963 2106·51 2119·38 
59 220517·6 ·01019799 2333·53 2248·84 

60 
61 
62 
63 
64 

206083·5 ·01136654 
171438·7 ·01265591 
148951·6 ·01407773 
138082·9 ·01564474 
117520·6 ·01737092 

2290·32 2342·46 – 52·13 48·40 
2155·48 2169·71 – 14·23 46·58 
2136·13 2096·90 39·23 45·19 
2236·30 2160·27 76·03 46·48 
1971·24 2041·44 – 70·20 45·18 

65 73385·6 ·01927160 1369·34 1414·26 
66 45338·4 ·02136357 892·00 968·59 
61 33737·4 ·02366525 729·50 798·40 
68 21694·1 ·02619684 697·97 725·50 
69 27855·9 ·02898046 765·91 807·28 

70 
71 
72 
73 
74 

24996·2 
20097·0 
19073·1 
17915·3 
16750·7 

·03204037 714·24 800·89 
·03540318 716·00 711·50 
·03909805 717·01 145·72 
·04315694 782·64 175·76 
·04761489 797·87 797·58 

75 
76 
77 
78 
79 

14496·5 
12701·9 
10907·8 
9356·5 
8479·5 

·05251033 801·39 
·05788538 762·50 
·06378620 142·57 
·07026341 633·71 
·07737250 702·05 

761·22 
735·25 
695·77 
657·42 
656·08 

80 7171·3 ·08517430 676·22 610·81 
81 5413·2 ·09373550 550·31 507·41 
82 5217·7 ·10312921 544·29 538·10 
83 4641·5 ·11343557 565·41 526·52 
84 3622·5 ·12474245 466·19 451·88 

85 2981·0 ·13714617 386·52 
86 2578·3 ·15075231 376·30 
87 2303·3 ·16561664 356·69 
88 1954·5 ·18204606 322·95 
89 1481·1 ·19999969 290·91 
90 1192·6 ·21969004 230·88 

T. 10823308·0 52379·83 

408·84 
388·69 
381·61 
355·81 
296·21 
262·01 

52379·83 

Table 17.9 (cont.) 

Devx (Vx)½ 

6·67 40·04 

14·66 41·21 
31·79 41·27 

– 7·86 43·49 
– 12·87 46·04 

84·69 47·42 

– 44·91 37·61 
–76·59 31·12 
– 68·91 28·26 
–21·52 26·94 
–41·37 28·41 

–26·65 28·30 
4·50 26·67 

–28·72 27·31 
6·88 27·85 

·29 28·24 

–·94 
·17 

–1·05 
·25 
·01 100·0 

40·17 27·59 1·46 105·3 
21·25 27·12 1·00 103·7 
46·80 26·38 1·77 106·7 

–23·64 25·64 –·92 96·4 
45·98 25·61 1·80 107·0 

65·41 24·71 
42·91 22·53 

6·19 23·20 

2·65 110·7 
1·90 108·5 

·27 101·2 
1·70 107·4 

·67 103·2 
38·90 22·95 
14·31 21·26 

–22·31 20·22 
–12·39 19·72 
–24·92 19·53 
–32·86 18·86 

–5·30 17·21 
–31·13 16·19 

·00 

zx 

·17 

·36 
·77 

–·18 
–·28 

1·79 

– 1·08 
–·31 

·86 
1·64 103·5 

–1·55 96·6 

–1·19 96·8 
–2·46 92·1 
–2·44 91·4 
–1·02 96·2 
–1·46 94·9 

96·7 
100·6 
96·1 

100·9 

–1·10 94·5 
–·63 96·8 

–1·28 93·5 
–1·74 90·8 

–·31 98·2 
–1·92 88·1 

100A/E 

100·4 

100·9 
101·9 
99·6 
99·4 

103·8 

97·8 
99·3 

101·9 

100·0 

χ ² = z2x = 109·01 

added parameters. None meets all the desired criteria, but GM(0, 8) 

(L1 = – 20·1) and GM(3, 6) (L1 = – 17·0) meet many of them. The GM(3, 6) 

formula has the highest value of p( χ ²) of any formula, but it must be remem- 

bered that the value of χ ² is affected by our adjustment for duplicates, and it is 

by no means certain that our adjustment (being based only on the deaths) is 

correct. 
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Table 17.10. Male assured lives, permanent, U.K., Duration 5 +. Details of 
graduation Aa1. Function: µx, GM(3, 6), criterion: maximum likelihood. 

Ages grouped so that each Ex ≥ 5. Age range 10–90 only 

Age 

10 
11 
12 
13 
14 

A'x Ex Devx 

·00 ·30 – ·30 
·00 ·08 –08 
·00 ·11 –·11 
·00 ·11 –·11 

1·00 ·14 ·86 

15 
16 
17 
18 
19 

10–19 

R'x µx 

117·0 ·00252398 
33·5 ·00232998 
49·7 ·00214603 
56·8 ·00197214 
79·7 ·00180831 

238·0 ·00165454 
538·7 ·00151082 
860·5 ·00137716 

1137·5 ·00125356 
1433·5 ·00114002 
4544·9 

1·00 ·39 ·61 
1·00 ·81 ·19 

·00 1·19 – 1·19 
2·00 1·43 ·57 

·00 1·63 – 1·63 
5·00 6·19 – 1·19 

20 2330·0 ·00103653 3·00 2·42 ·58 
21 5478·7 ·00094309 2·40 5·17 – 2·77 

20–21 7808·7 5·40 7·58 –2·19 

22 
23 
24 

25 
26 
27 
28 
29 

24755·4 ·00085972 
45526·6 ·00078640 
74643·0 ·00072314 

85112·7 ·00066993 
96296·3 ·00062679 

133767·8 ·00059370 
159323·6 ·00057066 
189169·1 ·00055768 

23·97 21·28 2·68 
41·07 35·80 5·27 
52·00 53·98 – 1·98 

61·86 57·02 4·84 
60·45 60·36 ·09 
77·87 79·42 – 1·55 
77·95 90·92 – 12·97 

116·79 105·50 11·30 

30 
31 
32 
33 
34 

238694·0 ·00055476 
295929·1 ·00056190 

126·98 132·42 – 5·43 
151·22 166·28 – 15·06 
160·39 164·69 – 4·30 
211·25 189·70 21·55 
254·07 256·99 – 2·92 

35 
36 
37 
38 
39 

278·06 251·21 26·85 
258·44 274·90 – 16·46 
301·35 307·55 – 6·20 
295·05 270·44 24·61 
285·71 312·49 – 26·78 

40 
41 
42 
43 
44 

284384·9 ·00057910 
312853·4 ·00060635 
399268·0 ·00064366 

363515·5 ·00069106 
367216·9 ·00074860 
376698·0 ·00081643 
302206·2 ·00089490 
317344·8 ·00098471 

328307·0 ·00108717 
300565·3 ·00120439 
292776·8 ·00133947 
299940·9 ·00149656 
314046·6 ·00168069 

316713·0 ·00189740 
278217·8 ·00215230 
303899·8 ·00245050 
292654·6 ·00279626 
281024·7 ·00319271 

274140·7 ·00364188 

337·34 356·93 – 19·58 
377·33 362·00 15·33 
399·44 392·17 7·28 
430·73 448·88 – 18·15 
549·12 527·82 21·31 

45 
46 
47 
48 
49 

607·78 600·93 6·85 
612·83 598·81 14·03 
703·55 744·71 – 41·16 
762·64 818·34 – 55·70 
945·56 897·23 48·32 

50 
51 

1026·37 998·39 27·99 
281170·4 ·00414487 1204·02 1165·41 38·61 34·14 1·13 103·3 

(Vx)½ zx 100A/E 

2·49 – ·48 80·8 

2·75 –·79 

4·61 ·58 
5·98 ·88 
7·35 – ·27 

7·55 ·64 
7·77 ·01 
8·91 –·17 
9·54 – 1·36 

10·27 1·10 

11·51 – ·47 
12·90 – 1·17 
12·83 –·33 
13·77 1·56 
16·03 –·18 

15·85 1·69 
16·58 – ·99 
17·54 – ·35 
16·45 1·50 
17·68 – 1·51 

18·89 – 1·04 
19·03 ·81 
19·80 ·37 
21·19 – ·86 
22·97 ·93 

24·51 ·28 
24·47 ·57 
27·29 – 1·51 
28·61 – 1·95 
29·95 1·61 

31·60 ·89 

71·2 

112·6 
114·7 
96·3 

108·5 
100·1 
98·1 
85·7 

110·7 

95·9 
90·9 
97·4 

111·4 
98·9 

110·7 
94·0 
98·0 

109·1 
91·4 

94·5 
104·2 
101·9 
96·0 

104·0 

101·1 
102·3 
94·5 
93·2 

105·4 

102·8 
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Age 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 
90 

T. 

R'x µx 
265230·1 ·00470226 
280678·5 ·00531452 
275102·4 ·00598253 

259981·3 ·00670799 
232766·6 ·00749381 
231145·5 ·00834442 
231889·2 ·00926605 
220517·6 ·01026692 

206083·5 ·01135740 
171438·7 ·01255022 
148951·6 ·01386059 
138082·9 ·01530638 
117520·6 ·01690828 

73385·6 ·01868996 
45338·4 ·02067812 
33737·4 ·02290260 
27694·1 ·02539627 
27855·9 ·02819485 

24996·2 ·03133647 
20097·0 ·03486105 
19073·1 ·03880935 
17975·3 ·04322171 
16750·7 ·04813643 

14496·5 ·05358780 
12701·9 ·05960400 
10907·8 ·06620464 
9356·5 ·07339851 
8479·5 ·08118152 

7171·3 ·08953512 
5413·2 ·09842568 
5217·7 ·10780499 
4641·5 ·11761219 
3622·5 ·12777739 

2981·0 ·13822704 
2578·3 ·14889092 
2303·3 ·15971085 
1954·5 ·17065051 
1481·1 ·18170652 
1192·6 ·19292030 

10823308·0 

x2= = 69·40 

Table 17.10 (cont.) 

A'x Ex Devx (Vx)½ 
1245·56 1247·18 –1·62 35·32 
1510·84 1491·67 19·17 38·62 
1609·70 1645·81 –36·11 40·57 

1713·17 1743·95 –30·78 41·76 
1734·64 1744·31 –9·67 41·76 
1883·33 1928·78 –45·44 43·92 
2106·51 2148·70 –42·19 46·35 
2333·53 2264·04 69·49 47·58 

2290·32 2340·57 –50·25 48·38 
2155·48 2151·59 3·89 46·39 
2136·13 2064·56 71·57 45·44 
2236·30 2113·55 122·75 45·97 
1971·24 1987·07 –15·83 44·58 

1369·34 1371·57 –2·23 37·03 
892·00 937·51 –45·51 30·62 
729·50 772·67 –43·18 27·80 
697·97 703·33 –5·35 26·52 
765·91 785·39 –19·48 28·02 

174·24 783·29 –9·05 27·99 
716·00 700·60 15·40 26·47 
717·01 740·22 –23·21 27·21 
782·64 776·93 5·71 27·87 
797·87 806·32 –8·45 28·40 

801·39 776·84 24·55 27·87 
762·50 757·08 5·42 27·52 
742·57 122·14 20·42 26·87 
633·77 686·75 –52·98 26·21 
702·05 688·37 13·68 26·24 

676·22 642·09 34·14 25·34 
550·31 532·80 17·52 23·08 
544·29 562·49 –18·21 23·72 
565·41 545·90 19·51 23·36 
466·19 462·87 3·32 21·51 

386·52 412·06 –25·53 20·30 
376·30 383·89 –1·59 19·59 
356·69 367·87 –11·18 19·18 
322·95 333·54 –10·59 18·26 
290·91 269·12 21·79 16·40 
230·88 230·09 ·80 15·17 

52379·83 52379·83 ·00 

Zx 100A/E 

–·05 99·9 
·50 101·3 

–·89 97·8 

–·74 98·2 
–·23 99·4 

–1·03 91·6 
–·91 98·0 
1·46 103·1 

–1·04 97·9 
·08 100·2 

1·58 103·5 
2·67 105·8 

–·36 99·2 

–·06 99·8 
–1·49 95·1 

–1·55 94·4 
–·20 99·2 
–·70 97·5 

–·32 98·8 
·58 102·2 

–·85 96·9 
·20 100·7 

–·30 99·0 

·88 103·2 
·20 100·7 
·76 102·8 

–2·02 92·3 
·52 102·0 

1·35 105·3 
·76 103·3 

–·77 96·8 
·84 103·6 
·15 100·7 

–1·26 93·8 
–·39 98·0 
–·58 97·0 
–·58 96·8 
1·33 108·1 
·05 100·3 

100·0 

The value of L1 for GM(3, 6) is 20·5 higher than that for GM(2, 2). The 
likelihood ratio test (see § 10.2) compares twice the difference between the values 
of L1 with x2(5), since there are five extra parameters in the GM(3, 6) formula. 
There is a very significant improvement. Strictly the likelihood ratio test should 
not be used to compare the GM(0, 8) with either the GM(0, 2) nor the GM(3, 
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Figure 17.6. Male assured lives Durations 5 +. Sheaf for µx = GM(2, 2). 

Figure 17.7. Male assured lives Durations 5 +. Sheaf for µx = GM(3, 6).70. 
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6) formulae, since it is not strictly of a higher or lower order in both dimensions 
(r and s) than either of them. 
Although the final s-parameter of the GM(3, 6) formula is only marginally 

significant, the shape of the formula makes it worth considering. Statistics for 
the GM(2, 2), GM(0, 8) and GM(3, 6) graduations are shown in Table 17.8. 
Details of the GM(2, 2) and GM(3, 6) graduations are shown in Tables 17.9 and 
17.10. The calculated values of µx according to the GM(2, 2) formula are shown 
in Figure 17.5, and the corresponding sheaf is shown in Figure 17.6. The sheaf 
for GM(3, 6) is shown in Figure 17.7. 

The methods used for graduating duration 5 + are equally appropriate for 
graduating duration 2 + , and the results are very similar. This is discussed in the 
accompanying CMI Report. 

The ‘distance’ between the parameters of the GM(2, 2) graduation for dura- 
tion 5 + can be compared with those for the select durations, as was done when 
comparing the select durations among themselves. The resulting values of D are 
all very large, so the parameters for 5 + are clearly different from those for any 
of the select durations. 
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APPENDIX 1 

Derivation of the information matrix H( ) 
for each of the models described in § 6. 

Al Remark on notation 
For notational simplification throughout this appendix we write A, R, r, q, µ, 

and m for respectively. We write qi 
and qij to denote and respectively, while µi, µij, mi and mij are 
similarly defined. 

A2 q-type rates (initial exposures - see § 6.2) 
In this situation L*( ) is defined in terms of the values of q at each age. (See 

equations (6.2.4), (6.2.15), and (6.2.16.)) Lets be a typical term in the sum which 
defines L*(a). 

Note that 

(1) 

and 

Thus (see equation (8.2.1)) 

(2) 

(3) 

the summation being over the range of ages appropriate to the definition of 
L*(a). 

(i) L*( ) = L,(a) (binomial model with no duplicates) 
In this case (see equation (6.2.4)) 

s = A log q + (R – A) log (1 – q) 

Now 

(4) 

and 

(5) 

Combining equations (3), (5), and (6), we obtain 

(6) 

(7) 
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Since at each age E[A] = Rq, on taking expected values we find 

(8) 

It should be noted that this last expression does not require the calcula- 
tion of the second order partial derivative qij. 

(ii) L*( ) = L,(a) (normal approximation and allowance for duplicates) 
In this case (see equation (6.2.15)) 

Now 

and 

Combining equation (3), (10), and (11), we obtain 

(9) 

(10) 

(11) 

(12) 
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Now 

E[A] = Rq 

and 

Hence 

Var [A] = rRq(1 – q) 

and 

E[A²] = R²q² + rRq(1 – q) (13) 

E[(R – A)² = R² – 2RE[A] + E[A²] 

= R² – 2R²q + R²q² + rRq(1 – q) 

= R²(1 – q)² + rRq(1 – q) (14) 

To determine the information matrix, H( α ), we take expected values of 
equation (12). Using equations (13) and (14) we find by simple algebra 
that the expected value of the coefficient of qij in equation (12) is zero, 
while the coefficient of qiqj has expected value 

(15) 

Hence, taking expected values of equation (12), we obtain 

(16) 

Again it should be noted that this last equation does not involve any 
second order partial derivatives. 

(iii) L*( α ) = L3( α ) (further approximation and allowance for duplicates) 
In this case (see equation (6.2.16) 

This is simply the final term in equation (9) above. Hence 

(17) 

(18) 

and 



On Graduation by Mathematical Formula 139 

(19) 

Equations (3), (18), and (19) above imply that 

(20) 

Taking expected values, we obtain 

(21) 

Note that, in contrast to equations (8) and (16) above, this last expression 
does involve the second order partial derivative qij 

A3 µ-type rates (cental exposures - see § 6.3) 
In this model L*(a) is defined in terms of µ and (cf equation (3) above) 

(22) 

where s is a typical term in the sum which defines L*(a). 
(i) L*( ) = L1( ) (Poisson model with no duplicates) 

In this case (see equation (6.3.5) 

(23) 

Clearly 

(24) 

and 

(25) 

Combining these last two equation with equation (22) above, we obtain 

(26) 



(32)

(31)

(29)
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Since, at each age, E[A] = Rµ, on taking expected values we have 

(27) 

(ii) L*( ) = L2( ) (normal approximation and allowance for duplicates) 
In this case (see equation (6.3.16)) 

Now 

and 

(28) 

(30) 

Combining these last two equations with equation (22) above, we obtain 

Since at each age E[A] = Rµ and Var[A] = rRµ, 

E[A2] = R2µ2 + rRµ 

Accordingly, on taking expected values in equation (31) we find 

(iii) L*( ) = L3( ) (further approximation and allowance for duplicates) 
In this case (see equation (6.3.17) 

(33) 

This is simply the second term in equation (28) above and (cf. equation 
(29) and (30)) therefore 

and 

(34) 
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(35) 

Combining these last two equations with equation (22) above, we obtain 

(36) 

Taking expected values, we get 

(37) 

A4 m-type rates (central exposures - see § 6.4) 
Here L*(a) is defined in terms of the values of m at each age. We repeat the 

discussion of §A3 above, simply replacing µ by m throughout. Thus 
(i) L*( ) = L1( ) (Poisson model with no duplicates) 

(38) 

(ii) L*( ) = L2( ) (normal approximation and allowance for duplicates) 

(39) 

(iii) L*( ) = L3( ) (further approximation and allowance for duplicates) 

(40) 

A5 q-type rates (central exposures - see § 6.5) 
In this case the log-likelihood L*(a) is defined in terms of the values of q at 

each age. In evaluating the partial derivatives of L*(a) we find it convenient to 
make use of the results in § A3 above. Note that L*(a) may be defined in terms 
of the values of µ at each age, where 

Hence 

µ = – log (1 – q) (41) 

(42) 

and 

(43) 
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Let s be a typical term in the sum which defines L*( ), s being expressed in terms 
of µ = – log (1 – q). Then (cf. equation (2) above) 

Combining this last equation with equations (42) and (43), we have 

(44) 

Thus (see equation (8.2.1)) 

(45) 

In this last equation, for each model the partial derivatives are those determined 
in § A3 above, but in their evaluation we must substitute – log (1 – q) for µ. 
These remarks lead immediately to the following results. 

(i) L*( ) = L1( ) (Poisson model with no duplicates). 
(See equation (6.5.2).) 
It follows from equations (24) and (25) that 

and 

Combining these last two equations with equation (45), we obtain 

(46) 

Since E[A] = Rµ = – R log (1 – q), on taking expected values we 
obtain 

(47) 
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(ii) L*( ) = L2( ) (normal approximation and allowance for duplicates). 
(See equation (6.5.4).) 
In this situation equations (29) and (30) imply that 

and 

Substituting these partial derivatives in equation (45), we obtain 

As before we have 

E[A] = Rµ = – R log (1 – q) 

and 

(48) 

E[A2] = R2µ2 + rRµ 

= R2[log (1 – q)]2 – rR log (1 – q). 

Using these values for E[A] and E[A2], on taking expected values of 
equation (48) we find 

(49) 

(iii) L*( ) = L3( ) further approximation and allowance for duplicates) 
(See equation (6.5.5).) 
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Here equations (34) and (35) give 

and 

Substituting these partial derivatives in equation (45) we obtain 

(50) 

Using the above values of E[A] and E[A2], on taking expected values of 
this last equation we obtain 

(51) 



145 On Graduation by Mathematical Formula 

APPENDIX 2 

Equality of the moments of ‘actual’ and ‘expected’ deaths and of 
matrices H( ) and H*( ) under certain conditions 

A. Maximum likelihood graduation of q-type rates using initial exposures (See 

§ 6.2) 
Suppose that the graduation formula is 

(1) 

where p1(x), . . . , ps(x) are given independent functions of x (which do not 
depend on ), not necessarily polynomials. Note that the formula 

qx+d( ) = LAM (2) 

is a particular case of formula (1). 
As in Appendix 1, for notional simplification we write q, qi, qij, A and R for 

qx+b( ), ( q/ i), ( 2q/ i j), Ax, and Rx respectively. In addition we write E for 
exp and pi for pi(x). Equation (1) may then be written in the form 

(3) 

(4) 

from which it follows that 

Thus 

qi = piq(1 – q) 

(from equations (3) and (4)). 
Partial differentiation of this last equation with respect to j gives 

qij = pi(1 – 2q)qj = pipj(1 – 2q)q(1 – q) 

(5) 

(6) 

(from equation (5)). 
Consider now the likelihood function when there are no duplicates. From 

equation (6.2.4) this is 

(7) 
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(8) 

by (5) above. 
If the graduation is by maximum likelihood, then at the solution each of the 

partial derivatives ( L/ i) (i = 1, . . . , s) will be zero. Our last equation 
therefore implies that a maximum likelihood graduation will have 

(9) 

Suppose now that an LGM(0, s) formula is used—i.e. equation (2) applies. 
Then, for i = 1, 2, . . . , s, pi(x) is a polynomial in x of degree i – 1. In 
particular, putting i = 1 in equation (9), we obtain (since p1(x) = c 0) 

(10) 

Thus the total ‘actual’ and ‘expected’ deaths are equal. 

Putting i = 2 in equation (9), we have 

where e 0. This last equation, in combination with equation (10), implies that 

Using a similar argument successively for i = 3, . . . , s we see that with a 
graduation formula of type LGM(0, s) 

(11) 

This establishes the important fact that for an LGM(0, s) graduation the first 
s moments of the ‘actual’ and ‘expected’ deaths are equal. 

Consider now the matrices H( ) and H*( ). 
Equation (7) of Appendix 1 is 

Substituting the values of qij, qi, and qj (from equations (5) and (6)) in this last 
equation, we obtain 



On Graduation by Mathematical Formula 147 

Thus 

(12) 

It should be noted that this last expression does not depend on the actual deaths 

{Ax}. 
Equation (8) of Appendix 1 is 

by equation (5) above. 
Hence, with a graduation formula given by equation (1) (and in particular for 

an LGM(0, s) formula) it follows that 

i.e. the matrices H*(a) and H(a) are equal. 

B Maximum likelihood graduation of µ-type or m-type rates using central 
exposures. (See §§6.3 and 6.4) 

(For brevity we consider only a graduation of µ-type rates, but our remarks 
can readily be extended to cover the case of m-type rates.) 

Suppose that the graduation formula is 

(14) 

where, as before, p1(x), . . . , ps(x) are given independent functions of x (which 
do not depend on a), not necessarily polynomials. In particular, if 

(15) 

equation (14) is valid. 
Consider now the likelihood function when there are no duplicates. From 

equation (6.3.5) this is 

where, as before, we write µ for µx+b+½( ). 
Writing equation (14) in the form 

µ = E 

we obtain, on differentiating with respect of i, 

(16) 
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µi = piE = piµ (17) 

and, by further differentiation, 

µij = piµj = pipjµ (18) 

Equation (16) implies that 

(19) 

(on substitution for µi from equation (17)). 
At the maximum likelihood solution , L/ i = 0 (i = 1, . . . , s), 
Hence in a maximum likelihood graduation with the graduation formula 

given by equation (14) above, we have 

(20) 

In particular, if the graduation formula is of type GM(0, s), p,(x) is a polynomial 
in x of degree (i – 1). In this case, by using an argument almost identical to that 
§A above, we see that 

(21) 

Thus, with a GM(0, s) formula for µ (or m) the first s moments of the ‘actual’ 
and ‘expected’ deaths are equal. 

Consider now the matrices H( ) and H*( ). Equation (26) of Appendix 1 is 

Substituting the values of µij, µi, and mj (from equation (17) and (20), we obtain 

Thus 

Note that this does not depend on the actual deaths {Ax}. 
Equation (27) of Appendix 1 is 

(22) 

Thus 
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Hence, if the graduation formula is of the type given by equation (14), the 
matrices H( ) and H*( ) are equal. In particular, for a formula of type GM(0, s) 
these matrices are equal. 
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