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1. INTRODUCTION 

1.1 Graduation: methods and uses 
It may be useful to begin with some introductory comments on the nature of 

graduation and its uses with particular reference to the distinction between 
graduation by parametric methods, as described in traditional actuarial 
textbooks, and graduation by non-parametric methods. 

Some of the comments have appeared in the early sections of Copas and 
Haberman’s paper which first described the kernel method of non-parametric 
graduation.(1) 

Graduation may be regarded as the principles by which a set of data is adjusted 
in order to provide a basis suitable for inferences to be drawn and further 
practical calculations to be made. In actuarial terminology, graduation usually 
refers to a set of decremental rates, and one of the principal actuarial examples of 
its use is the construction of a life table from a set of age-specific, observed death 
rates. 

The fundamental justification for the graduation of a set of observed data, say 
mortality or morbidity rates specific for age x, is the premise (supported by 
empirical evidence) that, if the number of units in the group on whose experience 
the data are based, nx, had been considerably larger, the set of observed data 
(here, rates) would have a much more regular (i.e. smoother) progression with x 
(here, age). In the limit, with nx, indefinitely large, the set of data would have 
exhibited a smooth progression with x. 

Thus the observed data may be regarded as a sample from a large population 
so that statistics derived therefrom are subject to sampling errors. Providing 
these errors are random in nature, they may be reduced by increasing the sample 
size i.e. enlarging the original investigation. A simpler, cheaper, quicker and 
more practicable alternative is often to use graduation to remove these random 
errors. 

This discussion of the background to graduation has touched on the purposes 
for (and uses of) graduation. Thinking of the application to mortality and 
morbidity, it appears that there are five distinct uses of graduation. For 
completenesss, these are listed below: 

(a) To smooth the data. Thus graduation facilitates the processing of the data, 
makes it easier to handle and removes awkward irregularities and 
inconsistencies. Both parametric and non-parametric methods of gradua- 
tion have the potential to achieve smoothness but, as will be demonstrated 
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in a later section, depending on how smoothness is defined, parametric 
methods may be superior in the degree of smoothness attained. There is 
both a practical and aesthetic side to smoothness. A set of premium rates 
for whole life insurances should look smooth and be smooth. A fortiori, if 
a reasonable degree of smoothness has not been achieved, complicated 
derived functions like policy values may display worrying irregularities. 

(b) To make the results more precise, on the assumption that the true 
experience underlying the observations follows a smooth curve, as 
mentioned above. Both parametric and non-parametric methods can 
produce close adherence to the data, as will be discussed in a later section. 

The following three uses are of less significance in an actuarial context: 

(c) To aid inferences from incomplete data. In those populations for which 
complete registration of events, like births and deaths, is not available, 
indirect methods of estimation based on graduation are important. 

(d) To facilitate comparisons of mortality. One would like to be able to 
compare the mortality of two populations, or of two cohorts or of one 
population at two points in time, summarizing the difference in a set of 
parameters. The parametric methods of graduation have the advantage of 
encapsulating the statistical information contained in the observations in a 
small number of parameters and hence enabling such comparisons to be 
easily made. 

(e) To assist forecasting and projection. An important special example of 
comparisons is those over time. A clear progression over recent time in the 
values of a set of parameters enables extrapolation into the future to be 
used for forecasting of probabilities, rates and derived functions like life 
tables. 

In (c), (d) and (e) the emphasis is clearly on parametric methods of graduation. 
This is less obvious for the more important uses, (a) and (b). It is in this context 
that a particular type of non-parametric graduation method will be described 
and applied. 

Without loss of generality, in the description and discussion that follows we 
shall consider only the graduation of mortality rates qx. 

1.2 Kernel method of non-parametric graduation 
A non-parametric method of graduation employing a kernel function, has 

been described and applied to a standard set of mortality rates by Copas and 
Haberman.(1) At each age x, the estimated probability of death x, is given by the 
formula 
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where ni and si represent exposed to risk and recorded deaths respectively at age 
xi, and ( ) is the kernel function. The variable ui equals (x – xi)/h, where h is a 
constant. ui represents the distance from x to the data point xi measured on a 
scale defined by h. 

The normal kernel, N(u) = e–½u2, is used throughout this paper. Thus, in this 
work, h is the standard deviation of the distribution of the weights N(u). Thus, in 
estimating x, nearly all the information (i.e. over 95%) comes from observations 
in the range x ± 2h. 

If h is very small, the estimate is essentially the crude death rate at age x. As h 
increases, observations at other ages have greater influence on x and more 
smoothing occurs at the expense of the fit between graduated rates and the actual 
data. As h , x tends to the overall probability of death. Thus, h measures in 
some way the information contributing to an estimate, x. 

2. BIAS OF THE KERNEL METHOD 

Any graduation method will involve bias. The theory of exposed to risk and 
the principle of correspondence when strictly applied lead to crude mortality 
rates, x, which are unbiased estimators of the true mortality rates, qx. 

In order to make the crude mortality rates more smooth, we inevitably 
introduce some bias or distortion via the process of graduation. Bias is simply the 
price that we pay for this desirable feature of smoothness. It is usual to control 
the degree of bias by the use of statistical tests (mentioned briefly in section 3). 

The bias of the kernel method of graduation is explored in the following 
paragraphs. 

If we let the indicator random variable Zi take the value 1 if death occurs at age 
xi and 0 otherwise, then the estimate qx may be rewritten: 

with 

If we let qxi be the true probability of dying for age xi, then the Zi’s are 
independent and each Zi has a binomial distribution with mean qxi and variance 

qxi (1 – qxi). 

Hence E 

= qx + BIAS where BIAS = 
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Using a Taylor series expansion and denoting differentials with respect to x by', 
the BIAS term may be written as 

= A + B say. 
If h is small, (h) is restricted so that only cases of xi close to x contribute to the 

summations in terms A and B. Hence the BIAS term will be small. 
The B term in the above equation will be small if q''x is small i.e. the curve of the 

true population values, qx, is approximately linear in the neighbourhood of x, or 
if h is small so that the effective size of (xi – x)2 in the summation is limited. The 
coefficient of q''x is clearly always positive, so that if the curve of the true 
population values is convex, the B term will be positive and x will tend to 
overestimate qx. The converse is true if the qx curve is concave. This effect will be 
of limited importance if h is small (Figure 1). 

Figure 1. Male Adult Mortality Rates. 
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The q'x term (A) will be zero if the values of xi are symmetrically located about 
x. In practice, this term will be small at ‘most’ ages. However, this is not the case 
near the ends of the age range. For x at the lower limit all the xi > x, producing 
positive bias at a point where the curve tends to be convex and therefore already 
overstated due to the bias of the q''x term. For x at the upper limit of the age range, 
each xi < x, the negative bias caused by this effect reinforcing that due to the fact 
that the curve tends to be concave here. Again the effect is reduced by decreasing 
the value h. 

Scanty data at high and low ages tends to produce widely fluctuating crude 
rates x. The method’ reproduces these fluctuations in the graduated rates, 
rendering the ends of the curve unreliable. The full curve may simply be 
truncated to exclude ages with few recorded deaths. This eliminates the waves at 
each end of the curve but allows observations from the extremes of age to 
contribute to the estimated rates at more central ages. 

Alternatively, the age range could be restricted before graduation. The first 
term of the bias expansion would then cause the graduated curve to deviate from 
the true population value at the new upper and lower age limits. 

Another approach might be to group scanty data. The grouped values of 
exposed to risk and actual deaths could be attributed to the midpoint of the 
group, other ages from the group being excluded from the summation. The effect 
of this grouping of data depends on the size of h in relation to the width of the 
group. 

When h is large, the grouped data will slightly modify the values of x at the end 
of the main block of data. The value of x for the central age in the group will be 
strongly influenced by observations towards the limit of the ungrouped data. The 
correlation, thus produced, between the estimated mortality rates for the 
grouped data and individual ages may produce an artificial plateau in the 
graduated curve. 

If h is small in relation to the group width, the weight attached to the grouped 
data when estimating mortality rates towards the limit of the ungrouped data, 
will also be small. Thus the grouped data may contribute virtually nothing to the 
ungrouped estimates and, up to the end of the ungrouped data, the graduated 
curve may effectively be the same as that which would result from truncating the 
data. The ungrouped data will have little influence on the estimate for the 
grouped data. 

3. OUTLINE OF INVESTIGATION 

3.1 The data 
Extending the work of Copas and Haberman,(1) two large data sets, already 

parametrically graduated, have been selected for further investigation of the 
kernel method. They are the standard tables of mortality for (Male) Assured 
Lives 1967–70(2) and those for Female Assured Lives 1975–78.(3) 

Four sets of data relating to males and three sets relating to females have been 
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graduated using kernel methods. Initially, graduation was performed over the 
complete age range of each parametric graduation. Where scanty data had 
adverse effects on the kernel graduations, the data were truncated and 
regraduated. This avoided the problems of grouped data outlined in section 2. 
Graduations have been compared from the viewpoints of goodness of fit and 
smoothness. 

3.2 Testing fidelity or goodness of fit 
The fidelity of kernel graduations to the original data has been assessed with 

the tests applied to the A1967–70 parametric graduations.(2) The standardized 
deviation between actual and expected deaths was calculated at each age: 

Zx = 

From these deviations, a chi squared value was calculated leading to a statistic 
t( 2) which was tested at the 5% level. Since the kernel estimate requires assigning 
a value to only one constant, (n – 1) degrees of freedom were assumed, where n is 
the number of ages for which data were to be graduated. 

To assess their randomness, the deviations were also subjected to a runs test 
and one for serial correlation (leading to respective test statistics t(r) and t(p)). 
Normal approximations were used at the 5% level. The testing was one-tailed 
since few runs and positive correlations are undesirable, while their converses are 
of lesser concern and are not features of a poor fit. Further details are given in 
Appendix I. 

An interval was identified containing values of h which produce graduations 
satisfying all three tests. Within this interval, the following ‘rule of thumb’ was 
used: the graduation having the smallest sum of absolute test statistics was 
considered to have produced the best fit. 

3.3 Testing smoothness 
In order to test for smoothness, it is necessary to decide upon the criteria or 

characteristics of smoothness. 
The textbook by Benjamin and Pollard(4) suggests that the third differences of 

the graduated curve, 3 x should be smooth and small. This is a circular 
definition. 

Barnett(5) in a recent paper provides a thorough discussion of the criteria of 
smoothness, recognizing the cyclical nature of some of the arguments. Among 
his conclusions are that: 

(i) second differences should pass through zero no more often than 1 + 2n 
times where n is the number of acceptable inherent inflections or 
occurrences of roughness; 

(ii) a series may be regarded as smooth to the kth order if kth differences are 
insignificant, bearing in mind the decimal place at which the figures in the 
actual series have been truncated. 
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It follows from (ii) that smoothness depends partially on the scale used. We 
shall approach (ii) by using the relative measure 

Choosing limits for this ratio to measure smoothness over different k and x is a 
matter of judgement. Barnett(5) suggests a target of 1/7k on the grounds ‘that 1 is 
small in relation to 7’. This is a difficult area. ‘1 is small in relation to 3 or 4’. 
Further 7k/4k and 7k/3k both as k , as indicated by the figures below 
rounded to the nearest integer: 

k: 1 2 3 4 5 
(7/4)k 2 3 5 9 16 
(7/3)k 2 5 13 30 69 

The choice of 1/7k has an appealing aura of exactness which we believe is 
misleading. So, why 1/7k? Barnett(5) does not make it clear why his criterion (ii) 
should be based on powers of 7. 

We investigate some standard, graduated mortality tables in order to establish 
what requirements on the smallness of differences of x may have been used in 
practice and what the results have been. In particular we consider the magnitude 
of in each case, in absolute terms and relative to the corresponding value of 
x. Table 3.3 below summarizes the results for the two life assurance mortality 
tables studied in this paper and for six population life tables. Values of 
max are given, as in Barnett(5) (but note that his comments on ELT 
number 13 seem to be in error). In addition the value of A satisfying 

for different x and the minimum value of A are tabulated. Ages under 20 were 
excluded in this analysis, as were any ages for which < 2 (to allow for 
rounding error). For ELT 12 ages under 27 were excluded because the parametric 
curve was fitted only to ages beyond this point. The parametric graduations in 
Table 3.3 all show small values of 3 x and values of A in excess of 7. The A1967– 
70 graduation seems to be smoother than the others, which might be expected 
given the small number of parameters used in the graduating curve. ELT 10 and 
ELT 13 were graduated by non-parametric methods (using osculatory interpola- 
tion and natural cubic splines respectively) and exhibit less smoothness, in 
particular for ELT 10. ELT 13 is reasonably smooth beyond about age 45 for 
both sexes—at these higher ages the minimum values of A are 7·7 for males and 
6·0 for females. It would appear that Barnett’s(5) choice of powers of 7 for 
criterion (ii) is not unreasonable, given the actual smoothness achieved for 
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Table 3.3. Measures of Smoothness 

Standard table 

FA1975–78 

A1967–70 
ELT 13 Males 

ELT 13 Females Splines 12 (age 96) 

ELT 12 Males Parametric (7 par) 12 (age 87) 

ELT 12 Females Parametric (7 par) 23 (age 98) 

ELT 10 Males 

ELT 10 Females 

Type of Graduation 

Parametric (5 par) 

Parametric (4 par) 
Splines 

Osculatory 
Interpolation 

Osculatory 
Interpolation 

Max 105 3qx 

91 (ages 101, 102) 

10 (ages 101–104) 
7 (age 96) 

161 (age 86) 

208 (age 86) 

Selected Values 
of A 

A x 

7·9 83 
8·3 101 

10·9 66 
3·5 to 3·7 22, 27–29 

8·6 59, 62 
9·7 70 

3·1 to 3·3 30–32 
3·6 to 3·7 35–36 

4·7 42 
7·1 60 
8·0 66 

12·1 87 
7·7 65 
9·2 72 

12·4 98 
4·3 to 4·4 21, 24 

5·2 86 
5·5 85 
6·6 58 
4·5 86 
4·7 85 
5·1 38 

6·3 to 6·5 53, 65, 71 

Min A 

7·9 

10·9 
3·5 

3·1 

7·1 

7·7 

4·3 

4·5 

example by FA1975–78 and A 1967–70. But such a choice would be likely to be 
too strict for a non-parametric method like the Kernel method described here. 

As part of the assessment of smoothness of a kernel graduation, we calculate, 
therefore, second, third and fourth differences and, following criterion (i) above, 
second differences are checked for changes of sign. Regarding criterion (ii), the 
ratio is examined for different x and k = 2, 3 and 4. A target of 1/Ak is 
used with A in the range 4 to 7. In the actual computation of differences, we 
follow Barnett’s(5) suggestions (paragraph 6.1 of his paper) on dealing with the 
results of rounding error. For criterion (i), when looking at the sign changes of 
second differences, any values of 1 should be regarded as if they were zeros, and 
similarly any values of 2, providing they are not too frequent. For criterion (ii), it 
is best to discard one decimal place and to note that the last digit may be ‘out’ by 1 
or 2. Again, once a stage is reached at which differences are insignificant there is 
no point in going any further as this would only magnify the errors present and 
possibly make later differences increase dramatically. 

Second and third differences of ln( x) were investigated, the size of changes 
between adjacent second differences and the size of third differences being noted. 
Barnett(5) does no more than to state that these should be small. Interpreting the 
comments that he makes about a few graduations leads to the supposition that 
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less than five is small. Since the differences of ln( x) reveal the same features as the 
differences of x with each data set, only the latter are discussed in the following 
sections. 

3.4 Duplicates 
The presence of duplicate policies in the ultimate data sets alters the standard 

deviation of the distribution of the observed deaths and hence the values of the 
standardized deviations, zx. Therefore, adjustment of the 2 value before testing 
is appropriate. The method of adjustment is outlined in section 5.3, while results 
are summarized in sections 5.3 and 7.3. 

3.5 Two stage kernel graduations 
A modified formula for kernel graduation, incorporating prior estimates of the 

mortality rates, is described by Copas and Haberman.(1) This is based on the 
following estimating equation: 

where q*x is a prior estimate of the mortality rate at age x. This approach involves 
subtracting q*x from the data, smoothing what is left using the kernel method and 
then adding back q*x to the result to form the final estimate. Sections 8 and 9 
summarize investigations into the use of this essentially two stage approach with 
the male and female data sets, respectively. If q*x is sufficiently close to the true 
curve, then the bias of *x will be smaller than the bias of x. Because of this 
reduction in bias, a larger value of h can be used, leading to a smoother graduated 
curve and a smaller sampling variance.“) 

3.6 Serial correlations 
The standardized deviations calculated for kernel and parametric graduations, 

have been compared through the use of correlograms. Discussion of this can be 
found in section 9. 

4. A1967–70—PARAMETRIC GRADUATION(2) 

These tables were prepared using the formula: 

The data for ages over 90 appeared unreliable, so the curves were only fitted up to 
age 89½ (88½ at duration 0). Scanty data at young ages also caused problems. All 
the available information was used to produce a curve which was then cut off at 
age 17. Below this age mortality rates were inserted based on the English Life 
Table No. 12 (Males). 
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The graduations are very smooth, none producing a second difference sign 
change within the age range used. All the third and fourth differences satisfy 
Barnett’s ratio criterion viz. 

as noted in section 3.3 and Table 3.3 earlier. Applying the goodness-of-fit tests to 
the table rates yields statistics within the 5% limits, except for the t(X2) value in 
the two ultimate tables. This result reflects the presence of duplicate policies and 
adjustments were made to the X2 value, based on the distribution of such policies 
in 1954(6). It was assumed the distribution of duplicates among the actual deaths 
was the same as that for the exposed to risk and that little or no change had taken 
place in the distribution between 1954 and 1967–1970. With these adjustments, 
t(X2) was reduced from 2·8 to ·6 for the ultimate data. 

The crude data for the two standard tables considered here (A1967–70 and 
FA1975–78) were collected centrally from the contributing life offices by the 
Continuous Mortality Investigation Bureau. As has been mentioned earlier, the 
data are policy-based. It should also be noted that the data are heterogeneous in 
two senses—firstly, the data from different life offices are mixed together and 
secondly the classical calendar year method of investigation mixes up the 
experience of different cohorts (i.e. at durations over 2 years). These effects may 
lead to irregularities in the resulting crude rates. Hence, the crude rates may in 
practice be biased, contrary to the intentions outlined in section 2. Graduation is 
not intended to deal with the removal (or smoothing out) of such biased errors. 

5. A1967–70—KERNEL GRADUATION 

5.1 Introduction 
Kernel graduations were first attempted over the same age ranges as in the 

parametric graduations. Estimated mortality rates were obtained for the data 
relating to duration 0, durations 2 and over and durations 5 and over but, at 
duration 1, scanty data from age 85½ onwards produced cancelling errors. 
Therefore, the last five years of the data were disregarded. No attempt was made 
to adjust the curves below age 17. 

The range of values yielding acceptably fitting curves was found for each data 
set. Graphs of the best fitting curves revealed distortion at the extremes of the age 
ranges, particularly for the select data. Therefore, a second kernel graduation 
was carried out using restricted age ranges. 

By excluding ages with fewer than five actual deaths, the following new ranges 
were produced: 15½–65½ at duration 0, 16½–70½ at duration 1, 17½–89½ for 
durations 2 and over and 20½–89½ for durations 5 and over. For durations 2 and 
over this slightly reduced the interval containing values of h which produce 
adequately fitting graduations. For the other sets of data the interval was 
widened slightly. 
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Table 5.2a. Test Statistics, 
d = 0, Full Age Range. 

349 

h 

1·50 
2·00 
2·25 
2·50 
2·15 
3·00 
3·25 
3·50 

t( 2) t(r) t( ) 

–2·113 – ·604 – 2·244 
– 1·339 ·338 – 1·401 

– ·945 ·327 – 1·059 
–·536 ·327 – ·735 
– ·099 ·327 – ·424 

·315 ·321 ·121 
·820 1·234 ·176 

1·456 1·234 ·460 

3·75 2·073 1·234 ·742 

Figure 2. 

5.2 Results 
At duration 0, h = 3 produces the best fitting curve for the full data (Table 5.2a 

and Figure 2) and also the truncated data (Table 5.2b and Figure 3). 
Investigating Barnett’s ratio criterion with A=7, the full curve is found to be 
smooth for the first half of the age range but poorly smoothed at high ages. The 
truncated curve is not well smoothed even at young ages and it is necessary to 
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Table 5.2b. Test Statistics, 
d= 0, Restricted Age Range 

h t( 2) 

1·00 –2·550 
1·50 – 1·579 

2·00 – 1·022 
2·50 – ·448 
2·15 –·103 
3·00 –·293 
3·25 ·745 
3·50 1·257 

4·00 2·412 

t(r) t( ) 
– 1·437 – 3·269 
– 1·356 –2·371 

– ·670 – 1·623 
– ·654 – ·873 
–·654 – ·483 
–·654 –·085 

·056 ·314 
·056 ·707 

·056 1·457 

Figure 3. 

increase h to 8 before all third and fourth differences satisfy the inequality. 
Setting A to 4 produces values of the ratio which indicate that the full curve is 
smooth until the mid sixties of age. The truncated curve now appears to be 
perfectly smooth. 

Cancelling errors resulting from scanty data at high ages force some restriction 
on the age range of the original graduation for duration 1 (Table 5.2c). Further 
restriction is imposed by the criterion of at least five deaths at each age in the 
second graduation (Table 5.2d). In each case the best curve results from h = 2·75 
(Figures 4 and 5). 
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Table 5.2c. Test Statistics, 
d = 1, Age Range 10½–84½ 
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h t(x²) t(r) t(P) 

1.00 –2.574 –2.909 –4.143 
1.50 –1.302 –2.459 –2.829 

2.00 –.390 –2.071 –1.820 
2.50 .479 –.786 – 1.030 
2.75 .942 –.390 – .670 
3.00 1.447 –.390 –.312 

3.25 2.009 .000 ,036 

Table 5.2d. Test Statistics, 
d = 1, Restricted Age Range 

h t(x2) t(r) t(P) 

1.00 –2.606 –3.219 –4,025 
1.50 –1.581 –2.585 –2.645 
2.00 –.797 –2.724 –1.514 
2.50 –.018 –1.339 –.615 
2.75 .398 –1.339 –.213 
3.00 .847 –.943 .175 

3.50 1.895 .263 .934 

Figure 4. 



352 Graduation: some experiments with kernel methods 

Figure 5. 

These curves are smoother than their counterparts at duration 0. The longer 
one has three second difference sign changes and the majority of the third 
differences until age 64½ satisfy the ratio test with A=7. However, most of the 
fourth differences fail the test. The differences for the truncated curve follow the 
same general pattern but those, satisfying the ratio test, are split into a larger 
number of groups. Hence, the truncated curve is slightly less smooth than the 
fuller one. Third order smoothness is obtained in the longer curve by increasing h 
to 6. 

Repeating the investigation of smoothness with A = 4 yields ratio results which 
suggest that the full curve is smooth up to age 70. The truncated curve is smooth, 
only producing one fourth difference which fails to satisfy the inequality in 
Barnett’s ratio criterion. 

The best curves for the full and restricted age ranges at durations 2 and over, 
both result from h = 1.2 (Tables 5.2e and 5.2f and Figures 6 and 7). If A = 7 is used 
in Barnett’s smoothness criterion, these curves appear to be very poorly 
smoothed. Only by increasing h to 7 is third order smoothness obtained. When 
A = 4 is inserted in the ratio, the latter half of the third differences for both curves, 
satisfy the inequality. However, the other differences indicate poor smoothing. 

Very poor smoothing is again a feature of the best fitting curves for durations 5 
and over. Very few 3rd or 4th differences satisfy Barnett’s ratio criterion when A 
equals 7. Reducing A to 4 still leaves half of these differences failing the test. The 
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Table 5.2e. Test Statistics, d 2, 
Full Age Range. 

h t(x²) t(r) t(p) 
0.8 –2.469 –3.158 –3.981 
0.9 – 1.596 –3.158 –3.391 

353 

1.0 – 1.107 – 1.828 –2.698 
1.1 .020 –.925 –1.936 
1.2 .859 –.248 –1.132 
1.3 1.773 –.248 –.309 

Table 5.2f. Test Statistics, d 2, 
Restricted Age Range. 

h t(x²) t(r) t(p) 
0.8 –2.050 –3.712 –3.957 
0.9 –1.146 –3.712 –3.396 
1.0 –.304 –2.407 –2.739 
1.1 .528 –1.450 –2.015 
1.2 1.398 –1.286 –1.247 
1.3 2.347 –1.286 –.457 

Figure 6. 
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Figure 7. 

best full curve results from h = 1.2, (Figure 8) while the best truncated curve is 
h = 1.1 (Figure 9 and Tables 5.2g and 52h). Third order smoothness when A = 7 
is obtained by increasing h to 7. 

5.3 Adjustment for duplicates 
The parametric graduations for the A1967–70 data were adjusted to 

compensate for the presence of duplicate policies in the ultimate data(6) using 
variance ratios rx. The kernel graduations of the ultimate data have been treated 
in the same way. New standardized deviations were calculated using 
Then the adjusted chi squared value, was used to test the fidelity of 
the graduated rates. Two series of ratios are given(6), one for all offices 
contributing to the investigation and one for non-industrial offices reporting 300 
or more policy claims. The latter was used with the kernel graduations. 

The adjustment results in larger values of h producing adequately fitting curves 
(Tables 5.3a and 5.3b). For durations 2 and over the best fitting curve uses h = 1.3 
(Figure 10) rather than h = 1.2 without adjustment. There is a slightly larger 
increase in the optimum value of h for durations 5 and over, from 1.1 to 1.4 
(Figure 11). Both of the new best fitting curves are very poorly smoothed, judged 
against the A = 7 criterion. 
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Figure 8. 

Figure 9. 
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Table 5.2g. Test Statistics, d 5, 
Full Age Range. 

h t(x²) t(r) t(p) 
0.8 –2.357 –3.274 –3.884 
0.9 –1.454 –3.274 –3.314 
1.0 –.868 –2.510 –2.650 
1.1 .298 –2.142 –1.924 
1.2 1.062 –1.678 –1.159 

1.3 1.979 –.143 –.315 

Table 5.2h. Test Statistics, d 5, 
Restricted Age Range. 

h t(x2) t(r) t(P) 
0.7 –2.864 –3.772 –4.070 
0.8 –1.812 –3.772 –3.661 
0.9 –.863 –3.772 –3.124 
1.0 .024 –3.112 –2.498 
1.1 ,895 –2.753 –1.811 

1.2 1.796 –2.404 –1.058 

Figure 10. 
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Figure 11. 

Table 5.3a. Test Statistics, d 2, 
With Duplicates Adjustment 

h 

1.1 
1.2 
1.3 
1.4 
1.5 

1.6 

t(x'²) t(r) t(P) 

–2.070 –.925 –1.936 
–1.496 –.248 –1.132 

–.869 –.248 –.309 
–.165 1.081 .513 

.640 1.081 1.312 

1.565 2.008 2.074 

Table 5.3b. Test Statistics, d 5, 
With Duplicates Adjustment 

h t(x'²) t(r) t(p) 

1.1 –1.907 –2.142 –1.924 
1.2 –1.322 –1.678 –1.159 

1.3 –.692 –.143 –.375 
1.4 .007 .175 .409 
1.5 .796 .543 1.177 

1.6 1.694 1.533 1.915 
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6. FA1975–78—PARAMETRIC GRADUATION(3) 

The ultimate rates in these tables were obtained from the formula, 

pol(x) = a1 + a2t + a3(2t2–l) + a4(4t2–3t) + a5(8t4–8t2+ 1) and t = x–70/50. 

The select rates were obtained from the ultimate rates by deducting 6.51725591 
years at duration 0 and 5.07221888 years at duration 1 from the respective age. 
The ultimate rates are tabulated for ages 20 to 94 while select rates are given for 
ages from 20 to 74. 

The differences of the table mortality rates indicate very smooth curves. There 
are no sign changes in the second differences and all third and fourth differences 
satisfy the ratio test (for A = 7). Testing the fit of these graduations produces 
satisfactory test statistics, except for t(x2) at durations 2 and over. (i.e. t(x²) = 2.25 
for the ultimate data). Adjusting this statistic for the presence of duplicates is not 
discussed in the C.M.I. report.(3) 

7. FA1975–78—KERNEL GRADUATION 
7.1 Introduction 

Initially, each set of data was used in full to produce kernel graduations. This 
resulted in acceptable curves from the ultimate data, but badly distorted curves 
from the select data. Therefore, the latter were regraduated after discarding the 
scanty data at high ages. 

The age range chosen at duration 0 was 20–56, which includes eight ages at 
which the number of deaths is fewer than five. These all lie in the first half of the 
age range. At duration 1 the age range 20–61 was used, including six ages with 
fewer than five deaths, all early in the table. For each set of data, the kernel 
mortality rates lie above the table rates at young ages and drop below towards the 
end of the table. This is referred to in section 7.4. 

7.2 Results 
At duration 0 the second group of kernel graduations (on the restricted age 

range) spanned only 37 ages. This introduced the possibility of both n1 and n2 
falling below 20, rendering the normal approximation for the runs test 
unreliable. However, this occurred in only two graduations, h = 1 and h = 2.5, 
(Table 7.2a). 

Ignoring the runs test, we find that the best fitting graduation results from h = 4 
(Figure 12). If the runs test is included, h = 2.5 produces the best graduation. 
Setting A equal to 7, the curve using h = 2.5 shows very poor smoothing with six 
sign changes in the second differences and very few third or fourth differences 
satisfying the ratio test. The h = 4 curve is much smoother, having just two second 
difference sign changes, with all third differences and the majority of the fourth 
differences satisfying the ratio test. 

Increasing h to 5, which still yields a well-fitting graduation, produces a 
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Table 7.2a. Test Statistics, 
d = 0, Restricted Age Range 

h t(x2) t(r) t(p) 
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.5 –3.976 –2.559* –3.078 
1.0 –1.846 –.839 –2.450 
2.0 –.169 –.209 –1.123 
2.5 .173 .496* –.787 
3.0 .415 1.134 –.536 
3.5 .613 1.134 –.324 
4.0 .803 1.134 –.121 
4.5 1.006 1.134 .088 
5.0 1.230 .135 .310 
6.0 1.767 .735 .797 
* Both n1 and n2 below 20. 

Figure 12. 

Table 7.2b. Test Statistics, d = 1, 
Restricted Age Range 

h t(x2) t(r) t(p) 
2.5 –2.139 –1.870 –1.121 
3.0 –1.916 –1.390 –.725 
4.0 –1.443 –1.870 –.046 
4.5 –1.174 –1.870 .281 
5.0 –.876 .077 .608 
5.5 –.543 .821 .935 
6.0 –.171 .821 1.260 
6.5 .242 2.097 1.579 
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Figure 13. 

smooth curve. There is one second difference sign change and all third and fourth 
differences satisfy the ratio test. Moving outside the goodness-of-fit limits to h = 7 
leads to a graduation with zero third and fourth differences. 

If A = 7 is replaced by A = 4, the h = 2.5 curve still appears to be poorly 
smoothed. However, the h = 4 curve is now perfectly smooth. 

The restricted age range chosen at duration 1 contained 42 ages, so there were 
no problems with the runs test. The best fitting curve uses h = 5 (Table 7.2b and 
Figure 13). It is smooth, having one second difference sign change, third 
differences which satisfy the ratio test (based on A = 7) throughout and zero 
fourth differences. 

Table 7.2c. Test Statistics, d 2, 
Full Age Range 

h t(x²) t(r) t(p) 
1.0 –2.158 –3.893 –5.526 
1.5 –1.067 –3.391 –4.394 
2.0 –.355 –2.774 –3.340 
2.5 .484 –1.331 –2.237 

3.0 1.654 –1.470 –1.009 
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Figure 14. 

For durations 2 and over there are more than five deaths at each age; therefore 
the kernel graduations used all the data available. The best curve results from 
h = 2.5 (Table 7.2c and Figure 14). The smoothness criterion suggests that this 
curve is reasonably smooth, having one second difference sign change late in life. 
The majority of the third and fourth differences satisfy the ratio test. However, h 
must be increased to 9 before the ratio test is satisfied by all third and fourth 
differences, there remaining one sign change in the second differences. If 
smoothness is tested using A = 4, the curve has third order smoothness and the 
majority of the fourth differences satisfy the appropriate inequality. 

7.3 Adjustment for duplicates 
The ultimate data were regraduated using the variance ratios described in 

section 5.3, to adjust the x2 value. This slightly altered the interval containing 
values of h which produce well-fitting graduations (Table 7.3). The best curve 
now results from h = 3.5 (Figure 15). It is smoother than the unadjusted curve, 
but there remain some third and fourth differences which do not satisfy the 
smoothness inequality with A = 7. 

Figures 12–15 indicate that the best kernel graduations have waves, although 
they are smooth. These waves correspond to irregularities in the crude data 
(mentioned briefly in section 5) and may be real features exhibited by the 
underlying population mortality rates. The parametric graduations take no 
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Table 7.3. Test Statistics, d = 0, 
With Duplicate Policies Adjust- 

ment 

h t(x'²) t(r) t(P) 
2·0 –2·048 –2·774 –3·342 
2·5 –1·462 –1·331 –2·243 
3·0 –·651 –1·469 –1·018 
3·5 ·501 ·171 ·291 

4·0 2·101 ·171 1·585 

Figure 15. 

account of these waves, of course, due to the mathematical properties of the 
functions selected. 

7.4 The youngest ages 
As has been noted earlier, at the youngest ages (i.e. under 30) the best fitting 

kernel graduation has rates which are greater than the table graduated rates. 
For durations 0, 1 and 2 and over, the table graduated mortality rates increase 

monotonically from age 20 onwards. These parametric curves, fitted by the 
method of maximum likelihood or minimum x², are influenced little by these ages 
where the data are scanty and in particular the numbers of deaths are under 10. 
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Table 7.4. Comparison of Crude and Graduated 
Mortality Rates at the Youngest Ages. 
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Age 

Duration 0 
20½ 
21½ 
22½ 
23½ 
24½ 
25½ 
26½ 
27½ 
28½ 

Duration 1 
20½ 
21½ 
22½ 
23½ 
24½ 
25½ 
26½ 
27½ 
28½ 
29½ 

qx × 104 

Crude Parametric Best Kernel (h = 4) 
2·625 2·378 2·656 
2·503 2·401 2·624 
4·602 2·437 2·589 

·849 2·488 2·553 
2·634 2·552 2·521 
3·571 2·631 2·496 
1·853 2·725 2·487 
·464 2·835 2·501 

3·184 2·961 2·546 
Crude Parametric Best Kernel (h = 5) 
4·995 2·415 3·252 
5·153 2·458 3·176 
3·877 2·515 3·110 
1·432 2·585 3·057 
·971 2·671 3·018 

2·995 2·772 2·999 
3·515 2·889 3·001 
2·046 3·023 3·029 
2·569 3·176 3·087 
3·128 3·349 3·178 

Durations 2 & over Crude Parametric Best Kernel (h = 2·5) 
20½ 3·418 2·780 3·258 
21½ 

22½ 
4·381 2·898 3·220 
2·666 3·033 3·232 

23½ 2·063 3·188 3·306 
24½ 2·856 3·362 3·438 

Indeed, the crude rates fluctuate markedly at these ages (see Table 7.4). In 
smoothing out these fluctuations, the kernel method leads to sets of graduated 
mortality rates that decrease with increasing age and so have a different shape 
from the FA1975–78 curves but a similar shape to the corresponding male 
A1967–70 curves. Table 7.4 indicates that the minimum kernel mortality rates 
are achieved at ages: 26½ for d = 0; 25½ for d = 1; 21½ for d 2. 

Given the fluctuations in the crude data, it is not possible to say whether this 
feature produced in the kernel graduations is a real feature. To quote Mr. R. 
Barley: “When is a wave not a wave?” 

8. TWO-STAGE ESTIMATES 

8.1 Introduction 
A modified formula for calculating kernel estimates is described by Copas and 
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Haberman(1) It utilizes a prior estimate of the mortality rate, q*x· 

If h is small, as noted by Copas and Haberman (1) there is little difference between , 
and If the prior estimate, q*x, is sufficiently close to the true mortality rate, 

the bias of this modified estimate, is smaller than that of the one-stage 
estimate. This permits the use of larger values of h, reducing the sampling 
variance of and improving the smoothness of the graduated curve. However, 
finding suitable prior estimates has proved difficult. 

8.2 Two-stage estimates—A1967–70 
The first CMI report compared actual deaths in the 1967–70 data with deaths 

expected by the A1949–52 tables. For the select data, over all ages, the links 
between the two data sets were found to be: 

Therefore, prior estimates of q*x = ·86 qX (1949–52) and q*x = ·82 qX (1949–52) were 
tried with the modified formula. For the ultimate data a more complex 
relationship was suggested, q*x = ·84 qX (1949–52) – ·00016. This has been used as 
the prior estimate for durations 2 and over. 

All the graduations using these prior estimates are poor. For the select data, 
h = 1 produces very large x2 statistics, as does h = ·5 for the ultimate data. Using 
h = ·6 produces an adequately fitting graduation for each set of select data but the 
graduated curves contain many small waves and so are unacceptable. 

Other mortality rates which suggested themselves as possible candidates for 
prior estimates were those from the best one-stage kernel graduations. All four 
sets (durations 0, 1, 2 and over, 5 and over) give poor results, requiring smaller 
values of h to obtain an acceptable fit than had been used in the one-stage 
process. In each case the level of smoothness is reduced by the application of the 
two-stage method (as would be expected with smaller values of h). 

The best one-stage graduations including adjustment for duplicate policies, 
are slightly better prior estimates than the unadjusted rates, producing fewer 
waves. However, for both sets of ultimate data, setting h as low as ·5 still produces 
test statistics well in excess of the 5% limits. 

8.3 Two-stage estimates—FA1975–78 
Attempts were made to find suitable prior estimates for the female data. These 

were no more successful than those described in section 8.2. The fifth CMI 
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report(9) has made a comparison between actual deaths in FA1975–78 data and 
the deaths expected by three other tables. Mortality rates from two of them have 
been used as prior estimates. 

Firstly, the A1967–70 rates were used with a four year age deduction, since the 
CMI Report’s authors(9) believed that the deduction represented the then current 
practice. Over all ages, the percentages from the comparison between actual and 
expected deaths were 68% at duration 0, 65% at duration 1 and 81% for the 
ultimate data. Prior estimates of q*x = .66 qx–4 (1967–70) for the two sets of select 
data and q*x = .81 qX–4 (1967–70) for the ultimate data were investigated. For each 
set of data, the two-stage method requires smaller values of h than the one-stage 
method and the newly graduated curves contain many small waves. 

Percentages comparing the Al967–70 tables with the FAl975–78 data were 
also given for five year age groups. (9) Prior estimates utilizing these percentages 
were tried. The sharp change in weights between age groups appeared as a series 
of steps in the graduated rates. To remedy this, a smooth curve was drawn by age 
through the midpoints of the upper edges of the histogram bars representing the 
weights. Care was taken to preserve the area under the graph. A weight wx, was 
read from the curve for each age. Thus, the following prior estimate was used: 
q*x = wx Qx–4 (1967–70). 

These prior estimates were slightly more successful than using a single 
multiplying factor throughout the age range. However, it was still necessary to 
use a smaller value of h than the one-stage method required, in order to obtain an 
acceptable fit. Waves occurred in the graduated curves, but were not as numerous 
as previously. 

It was noted in the CMI report(9) that the A1967–70 curve had a different shape 
from the female experience. The prior estimates based on this curve are not 
sufficiently close to the true mortality rates for the two-stage method to give 
improved results over the one-stage method. 

The report also compared the female data for 1975–78 with the ELT 13 
(Females), concluding that the tabulated population mortality rates are rather 
high. This indicates that the ELT 13 (Females) rates are unlikely to be good prior 
estimates and a few trial graduations have been carried out to verify this. The 
estimates were found from the rates tabulated at integral ages by interpolation. 
Very small values of h are required to provide an adequate fit and therefore the 
smoothness of the curves is unsatisfactory. 

It was hoped that the one-stage kernel estimates would be better prior 
estimates than those based on other tables. This proved to be the case, 
particularly with the select data. However, the curves resulting from the two- 
stage method are less smooth than the coresponding one-stage kernel gradua- 
tions, obviating the extra work. 

The one-stage kernel estimates after adjustment for duplicate policies yield 
slightly improved results over those described above. However, it is still 
necessary to set h below .5, resulting in poor smoothing. Thus, the original 
formula is to be preferred to the two-stage method. 
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8.4 Comments 
It would appear that this two-stage kernel method introduced by Copas and 

Haberman(1) does not work satisfactorily unless the prior estimate is very close to 
the true rates. 

In the cases discussed in sections 8.2 and 8.3, none of the prior estimates are 
sufficiently close to the true rates, so that a larger value of h (than in the one-stage 
method) does not emerge. When h is small, there is little to choose between the 
one-stage and two-stage approaches and, of course, a lack of smoothness may be 
apparent. 

Further, with large data sets like those underlying the two standard tables 
discussed here, A 1967–70 and FA 1975–78, the level of sampling variation in the 
crude is very small at most ages and this is an additional factor explaining why 
an approximate prior estimate leads to a poorly graduated curve from this 
method. 

9. CORRELOGRAMS 

Standardized deviations between actual and expected deaths, described in 
section 3, were calculated for each kernel graduation. If the recorded data are a 
random sample from a population with mortality rates equal to those given by 
the graduation the z’s will be randomly drawn from the standard Normal 
distribution. This has been checked by the three tests of fit listed in section 3, 
including an investigation of correlation between successive z’s. Graduations, 
not producing statistics within the 95% confidence intervals, have been rejected 
as not providing an adequate fit to the data. 

Deviations from the results predicted by the graduated rates are equivalent to 
the superimposed errors referred to by Elphinstone(10). He proposed an 
investigation of their randomness using correlograms and periodograms. If serial 
correlations for the zx are calculated at different lags k, then provided the zx are 
random, the correlations rk will be approximately N(0,l/n), where n is the 
number of standardized deviations.(11) 

Table 9. Serial correlations falling outside the 

A 1967–70 
d=0 
d=l 
d 2 
d 5 

FA1975–78 
d=0 
d=l 
d 2 

confidence intervals. 

Number of rk's outside 95% limits 
Parametric Kernel 
Graduation Graduation 

1 0 
0 0 
1I 1 
0 1 

0 0 
0 1 
3 2 
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Correlograms were produced for the standardized deviations of the para- 
metric and best one-stage kernel graduations, for each set of data. Correlations 
were calculated for values of k up to (n/4) or k = 15, whichever was smaller, where 
n is the number of data points. This criterion has been suggested by Chatfield(11). 
The 95% confidence intervals for the means were added to the graphs and Table 9 
summarizes the results. The correlograms for the corresponding parametric and 
kernel graduations are similar in shape. 

10. CONCLUSIONS 

Earlier work on kernel graduation (1) has been extended by investigating its 
application to larger data sets. The kernel method provides an easily applied 
method of graduation which, through the adjustment of the constant h, can be 
constrained (in a controlled way) to fit the data closely, provide a high level of 
smoothing, or a balance between these two characteristics. The method does not 
involve any a priori view of the true form of the underlying rates. 

The method is suitable for computer application with little prior preparation 
of the data. If the presence of scanty data forces truncation, the ends of the curve 
must be obtained by alternative means. This is a feature of other graduation 
methods and therefore, not a great disadvantage. However, parametric methods 
do allow mortality rates to be extended beyond the age range of the data. 

A range of kernel graduations has been produced for seven data sets. Those 
satisfying the tests of fit applied to the parametric graduations are very close to 
the published graduations, but have been obtained more simply. On smoothness, 
the three female graduations and the two male select graduations satisfy the 
A = 4 criterion while only the female graduations satisfy the A = 7 criterion. The 
application of the modified formula has proved somewhat disappointing, with 
difficulties being encountered in identifying good prior estimates. It is possible 
that the modified approach is only practicable when the underlying numbers of 
deaths and exposed to risk are not too large and prior estimates, close to the true 
rates, are available. 

The results are encouraging and indicate that kernel methods may be 
especially useful in a number of practical circumstances. Thus, the methods seem 
suitable when the underlying data are not too large or when an idea of the shape 
of the underlying population rates is required as a preliminary to a full 
parametric investigation. The methods have particular usefulness when the 
mathematical formula, describing the shape of the underlying population rates, 
is not known, irregular or highly complex. It should be noted that the reliance on 
only one adjustment constant and the data responsiveness of the methods mean 
that it is only to be expected that certain graduated curves are poor from either 
the viewpoint of smoothness or goodness-of-fit. 

Parametric formula-based graduation methods are suitable in other circum- 
stances, particularly when the underlying data are extensive. Such methods may 
be generalized for application to bivariate situations where there are two 
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independent variables, for example, age- and duration-specific recovery rates for 
sickness or disability insurance. 
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APPENDIX I: TESTS OF GRADUATION 

To test whether the z’s are Normally distributed, is calculated. 
Where the number of degrees of freedom exceeds 50, the statistic 

is approximately Normally distributed with zero mean 
and unit variance. The x2 test assumes independence of the events at each age and 
an allowance needs to be made for the presence of duplicate policies—see text. 

To test whether the z’s are randomly arranged, two methods are possible: 
(i) The Wald-Wolfowitz test was used on the number of ‘runs’ formed by the 

signs of the deviations. Assuming that there are nl positive and n2 negative 
durations, then r, the number of runs (where a run is a sequence of 
deviations over successive ages all with the same sign), is approximately 
Normally distributed with mean µr and variance σ r² where 

The number of runs should not be too small. Too large a number of runs 
would indicate that the data were peculiar, not that the fitted curve was 
unsatisfactory. 

(ii) A serial correlation test was used on the values of the zx's. If the z’s are 
randomly distributed then the correlation coefficient between successive 
values of z (zy and zy—1 for ally), p, is approximately Normally distributed 

with zero mean and variance 1/n where n is the number of age groups. 

Here where 

for an age range of (x0, x0 + n–1). 
Too large a positive value of p would indicate an unsatisfactory fit. Too 

large a negative value would suggest that the z’s were alternatively positive 
and negative to too great an extent. 




