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GRADUATION TESTS AND EXPERIMENTS 

BY H. A. R. BARNETT, F.I.A., A.S.A. 
Actuary, British-American Tobacco Company, Ltd. 

[Submitted to the Institute, 27 November 1950] 

I. INTRODUCTORY 
LITTLE space in the Journal has been devoted in the past specifically to 
graduation tests, and nowhere have the tests generally applied been concisely 
set out and fully discussed. The only papers during the last forty years on the 
subject have been by Seal(3) and Daw(2); both these papers were submitted 
and discussed during the war years, with the result that many actuaries were 
unable to be present and state their views; indeed, many of us did not even 
know of them until the numbers of the Journal in question were published, and 
an opportunity to study them did not arise until after the war. 

2. Neither of these papers sets out to state or discuss all the tests. The purpose 
of Seal’s paper is to describe two tests in particular, the PQ, and x2 tests, and 
after reading the first few pages one is left with the impression that the only 
tests commonly employed by actuaries are the mean deviation test and the 
examination of deviations in five-year groups! Daw’s paper does state briefly 
some of the customary tests, but he does not pursue the matter, as his paper is 
concerned primarily with the validity of the assumption that the sampling 
variations of qx follow the binomial distribution. 

3. Since work was started on the preparation of this paper, a further paper by 
L. Solomon (4) has appeared in the Journal, but here again the subject is 
specialized, and does not deal with the general question of graduation 
tests. 

4. Frequent reference will be made to these papers, and to the discussions 
on the first two; this is partly to collect together the relevant considerations, 
and partly because the war-time discussions may not have been very widely 
read. On the other hand, it is felt that Seal’s now well-known paper and 
closing remarks (as opposed to the discussion itself) have been too widely 
read, especially by students; it is alarming to observe the number of them who 
are given the impression that no graduation tests are necessary except the 
x 2 test and a sign-change test. The mischief may be traced to J.I.A. LXXI, 
61, where Seal stated: 

any actuary, and indeed anyone who had passed Part I, could carry out the X 2 
graduation test. . . . It was then necessary to test for sequences of positive and negative 
signs and the work was almost finished. 

The reading of Seal’s paper by a student is often like trying to run before he 
can walk, and one of the purposes of the present paper is to state concisely 
just how to ‘walk’; for this reason, it might be considered that this should be 
a Students’ Society paper, but the author feels that, since the pages of the Journal 
lack a complete paper on graduation tests, its correct place is as an Institute 
paper. It is hoped that an instructive discussion will be provoked, especially 
on the more controversial questions arising. 

Richard Kwan
JIA  77  (1951)  0015-0074 



16 Graduation Tests and Experiments 

II. THE PURPOSE OF GRADUATION 
5. Before turning to the problem of which tests should be carried out, 

we must consider what a graduation sets out to do, and why we need 
graduated rates. Our investigation of a body of data will have given us crude 
rates (of mortality, or of whatever decrement or happening we are investi- 
gating). Why, then, need we go any further? What will graduated rates do that 
crude rates will not? 

6. We require tables of rates to enable us to calculate premiums, contribution 
rates, policy values, actuarial liabilities, values of reversions, etc., in fact, 
values of any functions dependent on the probability of the particular event 
under investigation. The crude rates will exhibit irregularities which would 
be inconvenient in practice, and which would not be consistent with the 
conception that the ‘true underlying rates’ should progress smoothly from 
age to age. Several examples of the possible inconveniences could be given, 
the most obvious one being whole-life premium rates decreasing at certain 
ages. There is no reason why the graduated mortality rate should not show a 
regular decrease to a minimum, followed by a regular increase. What our 
conception of underlying rates will not admit, however, is a jerky series of 
increases and decreases from age to age, thereby causing further irregular 
series in premium rates, policy values, and any other functions calculated from 
the original series of crude rates. 

7. The purpose of graduation may therefore be stated to be to obtain a 
smooth series of rates exhibiting the same general features as the jerky series 
given by the crude rates. 

8. The calculations for which such rates might be used would assume either 
( a ) that the proportionate frequency of the event in question (e.g. death) 

will be that of a sample drawn from the same universe as that from which 
the sample giving rise to the crude rates was drawn; or 

( b ) that the proportionate frequency will be that of a sample drawn from 
a universe whose properties have been estimated by means of a forecast 
based on projection into the future of trends observed in- the past. 

9. Assumption (b ) above i nvolves some process of extrapolation and will 
not be considered in detail for the purpose of this paper; the problem therefore 
reduces itself to the estimate of the universe required for assumption ( a ). We 
require a smooth series of rates from which the crude rates do not differ to 
an extent which is statistically significant; unfortunately, there might be an 
infinite number of such series, of varying degrees of smoothness, and we have to 
choose the best of these, bearing in mind their relative smoothness and the 
significance of the resulting deviations between the crude and graduated rates 
It is these considerations which give rise to the necessity for graduation tests, 

10. Now, even when an actuary makes assumption ( a ), he will not have 
assumption ( b ) far out of mind, because he knows that his estimate of the 
universe from which his data have been drawn will be used as a forecast 01 
expected future experience. It might therefore be argued that assumption (a 
should be dropped completely; but the idea of a purely hypothetical fore. 
cast table has not been generally accepted, and even if we had sufficient 
mortality tables from past experiences to enable us to project into the future 
(as was done for the a ( f ) and a ( m ) tables) we could get so many different series 
by slightly varying the method of extrapolation that the forecast table would 
contain a large element of guesswork. 
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11. For this reason, actuaries generally prefer to be able to use graduated 

rates which have been based on some definite experience, even if it involves 
when such rates become out of date, making some estimate of the changes 
which have since taken place or which might be expected to take place in the 
future. (An exception to this is, of course, annuitants’ mortality tables con- 
structed in the present century, which have been produced with assumption 
( b ) in mind in view of the adverse effect of the improving trend of mortality 
on a company granting annuities. A similar consideration might be applic- 
able to tables for use in pension fund valuations.) 

12. If it is borne in mind, however, that although the actuary’s tool-kit can 
only contain past experiences (it being impossible to foresee the future) what he 
really needs is a good forecast, it is small wonder that from time to time a high 
degree of adherence to data has been dispensed with in favour of a graduated 
series convenient for use in practice. It is not suggested that the data should 
be deliberately distorted beyond the limits of statistical significance merely to 
facilitate the fitting of a convenient curve, but in the case of graduations by a 
formula the general rule should be to make the simplest possible universe 
hypothesis consistent with the data. In other words, we would not want a curve 
with six parameters if we could fit one with four; we would not want one with 
four if three would do; we would not want a series of three blended Makeham 
curves when one such curve could be fitted to the whole of the data. 

13. The expressions ‘limits of statistical significance’ and ‘consistent with 
the data’ have been used in the preceding paragraph; this presupposes the 
setting down of some limit of acceptance or rejection, and the 5% probability 
limit is the line frequently drawn. There is no particular magic in 5%, and 
some actuaries may prefer to draw the line at some other limit, but, for the 
purpose of this paper, it will be the limit taken; the principles involved would 
be no different were it required to use any other rejection limits. 

III. TESTS OF A GRADUATION 
14. Having made a graduation, as suggested in the previous section, either 

by fitting a curve of the simplest possible type consistent with the data or by 
some other method, we need to test whether the resulting series is sufficiently 
smooth, and whether the deviations shown between crude and graduated rates 
are within the acceptable limits. An infinite number of tests could conceivably 
be devised, and we would scarcely expect our graduation to satisfy every one; 
indeed, some actuary of the future might well discover a series showing the 
distribution of the number of tests passed by a successful graduation! The 
possible tests, however, may be grouped into the following broad categories 
which we will consider one at a time in the sections which follow: 

Smoothness, 
Adherence, individual deviations, 
Adherence, groups of deviations regarding sign, 
Adherence, groups of deviations disregarding sign, 
Signs and sign-changes of deviations and accumulated deviations. 

15. To illustrate the tests under these five main headings, a graduation of 
the duration o select data of the A 1924-29 experience over age 19½ has been 
made by a Makeham minimum- x 2 method. Appendix 1 shows the graduated 
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values of qx and the deviations required for the illustration of the tests. An 
outline of the theory and method of the Makeham minimum- X 2 fit is given in 
Appendix 2, together with a short account of the experiments which were 
made in the derivation of this method, and some comments on Cramér and 
Wold’s (1) method. 

16. It will be assumed throughout the consideration of these tests, except 
where otherwise stated, that the exposed to risk is the sample, that the sampling 
variations of qx follow the binomial distribution, and that this distribution 
approximates sufficiently closely to the normal; the data should therefore be 
grouped so that for no group would the ‘expected' fall below, at the very least, 7. 
The validity of these assumptions has been fully dealt with in Daw’s paper, 
and will not be considered further; it is worth mentioning here the rx test, 
described in that paper, which does in fact test the validity of the binomial 
assumption. 

17. To avoid use of the symbol ‘E’, which sometimes stands for ‘Exposed’ 
and sometimes for ‘ Expected ’, nx will be used to denote the exposed to risk 
from age x to ( x +1); the number of ages or groups will be denoted by the 
symbol m. 

18. A general word of warning may be uttered here, in connexion with 
the assumptions in paragraph 16; the presence of a large proportion of 
duplicates in the data will upset the assumptions, and unless appropriate 
adjustments (which are difficult to assess) are made the basis on which we 
define our rejection limits will break down. The exclusion of duplicates is 
therefore strongly advocated wherever possible. It is too late to do anything 
with the A 1924-29 data, and presumably it is too late to do anything about 
the data which will give rise to the next standard table; but it is suggested that 
suitable modifications should be made in the method of collecting data to 
enable the next-but-one standard mortality table to be graduated in the full 
knowledge that the variance of the number of deaths will really approximate to 
npq. 

19. Daw and Solomon have both made suggestions as to the adjustments 
which might be made to allow for the effect of duplicates, and an attempt has 
been made to apply these adjustments to the ultimate data of the A 1924-29 
experience. A regraduation of these data by a Makeham formula over the range 
of ages from 22 to 65 is given in Appendix 3; the author has not yet applied 
the Makeham minimum- X 2 method to this section of the data, but the gradua- 
tion shown is the best Makeham graduation he has so far obtained. Appendix 3 
also shows the application to this graduation of the suggested tests which 
follow. 

IV, SMOOTHNESS 
Test 1. Inspection of differences. 

20. Smoothness is a property which actuaries and others believe they can 
recognize in a somewhat undefined manner. Indeed, the recognition of such 
a quality is implicit in the necessity for graduating a crude series. The criteria 
frequently accepted in the past have been that the first and second differences 
should progress smoothly and the third differences should be small; but this 
is tantamount to saying that the curve must approximate to a polynomial of 
the second or third degree, and places far too much restriction on the shape of 
the curve to be chosen. Tetley(6) has amplified this by stating that smoothness 
in the successive orders of differences is more important than smallness, but 
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this brings us back to our undefined quality of ‘smoothness’. If we say that 
a series is smooth if its third differences are smooth, are we not then saying 
that the sixth differences must be smooth, and so on ad infinitum? If this were 
to be accepted, then, to graduate, for example, a series of forty-nine values, it 
would be possible to fit a forty-eighth difference curve which would reproduce 
the original series, and to state that it must be ideally smooth. Clearly, this 
would not fulfil our conception, still undefined, of smoothness. Further, we 
should be no better off in defining a smooth curve as one approximating to the 
curve of any mathematical function; the series sin x, at intervals of 3 /5 
though apparently far from smooth, follows a definite mathematical law. 

21. Taking all these points into consideration, the following rather vague 
definition may be made of the quality implied by the word ‘smooth’: 

A series is smooth if it displays a tendency to follow a course similar to 
that of a simple mathematical function. 

The inclusion of the word ‘simple’ is intended to cut out polynomials of 
a very high degree (such as the forty-eighth difference curve already suggested) 
and the irregular series which can be produced by complicating a mathematical 
formula with trigonometrical functions. It would not necessarily exclude 
exponential functions. 

22. This definition of smoothness may be said to be fulfilled if successive 
differences of the graduated rates tend to diminish; this would include any 
Makeham graduation where the function c is less than 2, and, indeed, all the 
usual shapes of curves which are likely to be met in practice in the analysis of 
those events usually investigated by actuaries. 

A more comprehensive criterion is that changes in sign should be rare within 
each column of differences. Such a criterion as the basis of a test, however, 
suffers from the disadvantage that it is difficult to lay down limits of acceptable 
frequencies of sign changes. 

23. The first test of graduation, the test for smoothness, may therefore be 
stated to be to take out the differences, up to a certain order, to ascertain whether 
there is a tendency for differences up to that order to diminish, or alternatively 
whether each column of differences up to that order is nearly free of sign 
changes (beyond that order, they might show signs of tending to increase 
again or to change sign frequently merely because of the restriction on the 
number of figures to which the original series has been expressed). A graduation 
would not, however, be rejected if it fails the smoothness test merely because 
it has retained an irregularity known or believed to be a feature of the universe, 
such as might occur at the end of the child-bearing range of ages in a table of 
mortality rates of females. 

24. If the proportionate frequency of the event under investigation is known 
to contain properties such that this test would not be applicable (e.g. if it may 
be expected to approximate to a sinusoidal function) then the tester would 
merely have to satisfy himself as to the shape of the graduated curve and the 
usual smoothness test would not be applied. 

25. If the differences of the series shown in Appendix 1 are taken out it will 
be found that they tend to diminish up to the fourth order, and therefore the 
series passes the smoothness test, as indeed it is bound to do, being a Mskeham 
curve with c equal to 1.1045704. The fourth differences will be found to be 
somewhat irregular, due to the cutting down of the graduated values to eight 
places of decimals. 

2-2 
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V. ADHERENCE, INDIVIDUAL DEVIATIONS 

Test 2. Approximately half of the actual deviations disregarding sign should be 
less than the probable error of the expected number of events 

26. On the assumptions stated, the chance of an observed deviation 
( - nq ) being less than the probable error (.6745 npq ) of the expected number 
of events (e.g. deaths) is one-half. Therefore, if the investigation covers m ages 
or groups (the grouping having been made as described in paragraph 16 to 
permit the binomial-normal approximation) and we regard ‘less than probable 
error’ as a ‘success’ and ‘greater than probable error’ as a ‘failure', we have 
another binomial distribution, this time of the form (.5+.5) m, the mean of 
which is m /2 and the standard deviation ( m/4) = .5 m At the 5% probability 
level of acceptance the graduation would pass the test if the observed number 
of ‘successes’ were within the range m /2 ± m ; Table 1 shows these limits of 
acceptance for quinary values of m from 30 to 80. This paragraph assumes, for 
the second time, the approximation of the binomial to the normal distribution, 
but as the ‘50% success’ binomial is symmetrical, the assumption is reasonable 
without specifying any minimum value for m. 

Table 1. Limits of acceptance for Test 2 at 5% probabiIity level 

Number of 
graduated Lower limit Upper limit 

values m /2– m m/2+ m 
m 

30 9 21 
35 11 24 
40 13 27 
45 15 30 
50 17 33 
55 20 35 
60 22 38 
65 24 41 
70 26 44 75 28 47 80 31 49 

Note. The lower and upper limits in this table are expressed to the next lower and 
next higher integers respectively, so that not more than one-twentieth of true hypotheses 
would be rejected. 

27. If the number of ‘successes’ falls well within or well outside the ac- 
ceptance limits we would respectively accept or reject the graduation on this 
score without hesitation. Where, however, the number of ‘successes’ is near 
the borderline it is suggested that we should test the frequencies with which 
the function ( – nq ) / npq exceeds values other than .6745. After all, we only 
take .6745 as the basis of this test because of the simplicity of a 50% chance 
of ‘success’, and, if it exceeds .50, .75 and 1.0 an acceptable number of times 
each but because of a number of near misses narrowly fails to satisfy the 
.6745 test outlined above, it is unlikely that the graduation would be rejected 
provided it satisfies all the other tests described in this paper. 

28. In the graduation shown in Appendix 1, it is seen from column (7) of 
Table 6 that only 16 of the 49 values are less than the probable error, whereas the 
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acceptable limits are 17-32. If we then make similar tests with reference to 
npq (32% expected to exceed), ·75 npq (45% expected to exceed) and ·5 npq 
(38% expected to fall below), the acceptable frequencies of these happenings 
would respectively be 9-23, 15-30 and 12-25 ; the observed frequencies, 
22, 29 and 12, are all just acceptable, and the graduation should therefore not 
be rejected on this test of the actual deviations, although it is undoubtedly 
a borderline case. 

29. If the number of ‘successes’ is greater than the upper acceptance limit, 
then the conclusion is that the ungraduated series has been too closely adhered 
to, either by a poor graphic graduation, by a weak summation graduation, or 
by the fitting of a curve with too many parameters. 

Test 3. Approximately 95% of the actual deviations disregarding sign should 
be less than twice the standard error of the expected number of events 

30. This is similar to Test 2, and the data must be grouped in the same 
way to enable the figure of 95% to hold. If we regard a ‘success ’ as ‘less 
than twice the standard error’ the binomial distribution underlying the test is 
(·95 + ·05) m ; the mean of this distribution is ·95 m and the standard deviation 
(I9 m /400) = ·05 19 m. Clearly, the assumption that the binomial approxi- 
mates to the normal is open to criticism in this case. Whereas Test 2 and 
its suggested subsidiaries could not be criticized on these grounds, because in 
each case the chance of ‘success’ was not very different from the chance of 
‘failure’, in this case the binomial distribution is too skew to make the 
assumption without further investigation. 

31. Table 2 shows the probabilities of different numbers of failures when 
m is equal to 20, 40, 60 and 80, and compares these probabilities with the 
limits of acceptance on the basis of the binomial-normal assumption. An 
examination of this table will show that if we take the narrow instead of the 
broad view of the fractional portions of these limits of acceptance, so that the 
lower limit is taken to the higher integer and the upper limit to the lower 
integer, we will not accept any hypotheses which we would reject on the true 
binomial probabilities. For example, column (4) of the table shows that if 
m = 60, on this basis we would accept any value of r between o and 6, and from 
column (3) we see that ·970 of true hypotheses would thus be accepted; but 
if we do not accept r= 6 we would be reducing our proportion accepted to 
·921. 

32. On the other hand, taking the narrow limits would, in fact, reject a 
number of borderline cases, as an examination of the figures for m = 20 and 
80 will show. We may therefore devise the following rule for the application of 
Test 3 : find the acceptance limits by means of the binomial-normal approxima- 
tion, expressing the lower limit to the higher integer and the upper limit to the 
lower integer; if the observations are within these limits of acceptance the 
graduation passes the test; if the observations are near but just outside these 
limits, a more accurate calculation based on binomial probabilities must be 
made. 

33. For borderline cases we might also apply a subsidiary test based on the 
number of deviations (if any) exceeding two and a half or three times the 
standard error. 

34. The figures in column (7) of Table 6 exceed 2 in only two cases out of 49, 
and the graduation easily passes this test. 
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Table 2. Probability of r failures when chance of any 
observation showing a failure is ·05 

Number of 
observations 
(i.e. values to 
be graduated) 

m 
(1) 
20 

40 

60 

80 

Number of 
failures 

r 

(2) 
0 
1 
2 
3 

Over 3 

0 
1 
2 
3 
4 

Over 4 

0 
1 
2 
3 
4 5 
6 

Over 6 

0 
1 
2 
3 
4 
5 
6 
7 8 

Over 8 

Probability of Limits of acceptance 
r failures if binomial assumed to mr ·95( m-r )·05 r approximate to normal 

(3) (4) 

·358 0 to 2·95 
·377 
·189 
·060 
·016 

·128 0 to 4·76 
·270 
·278 
·185 
·090 
·049 

·046 0 to 6·38 
·145 
·226 
·230 
·172 
·102 
·049 
·030 

·017 ·10 to 7·90 
·069 
·144 
·198 
·200 
·260 
·1O5 
·059 
·028 
·020 

VI. ADHERENCE, GROUPS OF DEVIATIONS 
REGARDING SIGN 

Test 4. Examination of consecutive runs of deviations of the same sign 

35. The extraction of the figures necessary for the previous two tests 
will show up the signs of the observed deviations. A later test will deal with 
the question whether the signs change sufficiently frequently, but without 
anticipating that test it can quite clearly be stated that we would scarcely 
expect the deviations to be alternately positive and negative; we shall therefore 
be confronted with runs of two, three or more consecutive deviations of the 
same sign, and it is necessary to determine whether the total deviation of 
such a run is within the acceptable limits. The square of the standard error 
of a run of deviations is equal to the sum of the squares of the individual 
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standard errors, provided there is no correlation between the deviations, and 
we may therefore compare the total deviation of a group with its standard error 
in a similar way to the previous two tests. 

36. Some comment is necessary on the proviso just made. Admittedly, 
a summation graduation would cause a systematic connexion between the 
smoothed-out errors at successive ages, and therefore a constraint on the size of 
the deviations. If this is considerable the appropriate tests based on the 
assumption of no such connexion should indicate under-graduation. It is also 
appreciated that correlation between successive deviations is quite likely 
when a graphic graduation is made, but this would depend on the skill of the 
graduator, and again suitable tests should disclose too close adherence to the data. 

37. In the example, column (6) of Table 6 shows that there are three 
suspect groups where the total deviation exceeds twice its standard error, 
namely, the groups 34-37,51-53 and 57-58; in two of these the excess is very 
small, but for age-group 34-37 the total deviation is about two and a half times 
its standard error. 

38. If we repeat Test 3, but substitute these three groups in place of the 
nine individual ages constituting them, we are left with 43 samples or ‘cells ’, 
instead of 49, in four of which the deviation exceeds twice its standard error; 
this is within acceptable limits. 

39. If we then make the very severe test of treating every run of deviations 
of the same sign as a separate cell, so that 23–26,27–28,31–33, etc., would each 
form a cell, we find there are 23 cells, and three of the deviations exceed twice 
their standard error; this is also within acceptable limits. It appears, therefore, 
that the graduation would not be rejected on the consideration of suspect 
groups. 

Test 5. Sum of deviations regarding sign should not be large 

40. This is really only a special case of Test 4, the group examined being 
the whole of the data. In the past, the description of this test has usually been 
that the sum should be approximately equal to zero, but the modification 
made by the above heading is deliberate. It has been usual for actuaries to aim 
at a zero value for this sum in the case of a formula graduation and an approxi- 
mately zero value in a graphic graduation. In the discussion on Seal’s paper, 
Longley-Cook stated that ‘in almost every graduation the difference between 
the total actual and expected deaths should be approximately zero, and not the 
amount expected on the assumption of random sampling’. Seal himself, 
however, was of the opinion that the equalization of the actual and expected 
deaths (and of their accumulated deviations) was quite an arbitrary procedure, 
and few will disagree with him. It is felt that, in the past, actuaries have been 
far too stringent over this test, and possibly a broader outlook would have 
avoided much difficulty in graduation. 

41. On the basis of the proviso discussed in paragraph 36, the sum of the 
deviations between actual and expected events having regard to sign would 
be distributed with a mean of zero and a standard error of npq, and if we 
accept the 5% probability level as our yardstick, there is no reason why any 
graduation should be rejected on this test if the sum differs from zero by less 
than twice its standard error. In practice, it may be found that if we let it 
differ by anything approaching the borderline the graduation will fail several of 
the other tests, but this is not necessarily the case, and if this test is to have any 
value at all it must surely be made on the same statistical basis as the other tests. 
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42. One reason why the zero value has been adhered to so frequently in the 

past for formula graduations has been the employment of the method of 
moments and similar methods; a possible alternative to these methods is 
examined in the appendices to this paper. 

43. In the example in Appendix 1, the sum of the deviations is –29·53 
against a standard error of 44·8, and is therefore well within the acceptable 
limits of ± 896. 

Test 6. Examination of second sum of deviatiotions regarding sign 

44. It is doubtful whether this test has any great value, but it is included 
for the sake of completeness. Just as it has been customary to stipulate 
that the first sum should be approximately zero, it has been usual to say that 
the second sum must be ‘small’, without any definition of just how small 
it need be. It is probable that this test has also grown up with the method 
of moments, and that its too stringent application has tended to encourage 
under-graduation. If we permit the first sum its full scope on a statistical basis, 
it is consistent that the second sum should be treated likewise. 

45. The test is best described by illustration from our example. The sum 
of column (9) of TabIe 6 is ·681.64. This is a combination of the 49 values 
shown in column (5), the first value being weighted 49 times, the second 
value 48 times, and so on. The standard deviation of this function is equal to 

{492 × (npq)19 ½+482 × (npq)20 ½+... + 22 × (npq)66 ½+ I2 × (npq)69½} 
= 1,638,501= 1280. 

The value is therefore within the limits of acceptance. 

VII. ADHERENCE, GROUPS OF DEVIATIONS 
DISREGARDING SIGN 

Test 7. The mean deviation test; sum of deviations disregarding sign should 
approximately equal ·8 npq 

46. For any particular age or sample, the mean deviation disregarding sign 
is approximately ·8 npp since by the grouping outlined in paragraph 16 
conditions have been produced under which the distribution of the deviations 
approximates to the normal. The sum of the deviations should therefore 
approximate to ·8 npq, and Perks has suggested (see J.I.A. LXXII,199) 
that the standard error of this sum would be approximately ·6 npq. 

47. This test is of limited value as it attempts to judge the whole graduation 
by a single-value function ; it has been considered a useful summary test when 
merely regarded as supplementary to the other tests, but it has now been 
somewhat superseded by the X2 test. 

48. Perks also suggested in the discussion on Daw’s paper a possible 
modification of this test by standardizing the deviations; if each deviation is 
divided by npq, the average of these standardized deviations may be ·8. This 
expected average should be adjusted for constraints and an approximate 
adjustment would be to reduce it in the proportion ƒ/ m, where ƒ is the 
number of degrees of freedom; this adjustment would not be worth while 
making if (m–ƒ) is small compared with m. The standard error of this 
expected average approximates to ·6/ m. 

24
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49. In the example, the sum of column (5) disregarding sign is 298·5, 

compared with a mean value of ·8 x 310·63 = 248·5 and an approximate standard 
error of ·6 x 44·8 =26·9. This is just within the acceptable limits, at the 5% 
level,of194·7–302.3. For the modified test, the sum of the standardized 
deviations irrespective of sign (column (7)) is 46·04, giving an average of ·94 
as compared with ·8 ± ·17. 

Test 8. x2 test 

50. Much has been written on this test, and there seems no point in de- 
scribing in detail the theory and method which have been so admirably ex- 
pounded in Seal’s paper. It will be sufficient to state that the function X 2, 
which is equal to {( – nq)2/npq}, is one whose distribution is known, and for 
which the probabilities of obtaining a value at least as great as any given figure 
are available. 

51. The data required for this test are the observed value of x 2 and the 
number of groups or samples observed, again on the basis of the grouping 
mentioned in paragraph 16 ; the only qualification to this is that the number of 
groups, which we have termed m, must be reduced by (m–ƒ), the number of 
constraints. The function f is known as the number of ‘ degrees of freedom’, and 
a linear constraint may be imposed, for example, if it is stipulated in the gradua- 
tion that the total number of actual deaths must exactly fit the total number of 
expected deaths, since after (m–1 ) of the values have been fixed there is no 
freedom of choice left in the fixing of the m th value; similarly, if it is also 
stipulated that the second sum of the deviations must be zero, a second 
constraint would be imposed. If a 48th difference curve were fitted to a series 
of 49 values (see paragraph (20)), there would be no degrees of freedom, since 
the original series would be reproduced and there would be no scope for any 
value of x 2 ; the first 49 summations would all have to agree, and there would 
therefore be 49 constraints imposed. 

52. In the example in Appendix 1, so far as the author is aware, no con- 
straints have been imposed, and with 49 degrees of freedom the chance of 
obtaining a value of X 2 equal to or greater than the observed value of 59·80 is, 
by interpolation in the table on p. 45 of Seal’s paper, about 21%. Since, at 
the 5% probability level, we would accept any value of this probability between 
2½% and 97½% the graduation passes this single-value test. 

53. A very valuable use of this test is to estimate whether a small experience 
can be regarded as having been drawn at random from the universe giving rise 
to the rates of a certain standard table. 

54. A frequent disadvantage is that it is not always certain what deduction, 
if any, should be made from the number of ‘cells’ to obtain the number of 
degrees of freedom. For example, when a graphic graduation is made, probably 
a partial constraint is imposed in trying to make the actual deaths approximately 
equal to the expected ; possibly a fractional constraint may be imposed when 
the graph is hand-polished to make the graduation satisfy more fully one of the 
other tests, although if so, it is impossible to tell the extent of this constraint. 
Similarly, the number of constraints is doubtful when a summation graduation 
is made; the different opinions expressed in the discussion on Seal’s paper with 
regard to the number of constraints for the Kenchington formula are evidence 
of the difficulties. For this reason alone it would be dangerous to follow Seal 
and hitch our wagon to the X 2 test to the exclusion of all other adherence tests. 
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55. No one test by itself can be regarded as conclusive, and this applies as 

well to the x 2 as to any other test. In the discussion on Seal’s paper, Haycocks 
described this test not as a complete test but ‘a piece of evidence, the importance 
of which varied considerably from problem to problem’. In the discussion on 
Daw’s paper, Prof. M. G. Kendall expressed the opinion that the four tests 
mentioned by Daw (which amount to a very condensed summary of a number 
of the tests described in this paper) were ‘at best a very poor substitute for 
the X 2 test ’; by the same token, the X 2 test is not a complete substitute for the 
other tests. In fact, it should be regarded as one method of testing a graduation; 
a valuable one, but not to the exclusion of all others ; perhaps the best summary 
test, but by no means the be-all and end-all of graduation testing. 

56. The limitation of this teat through being based on a single value is 
dealt with in paragraphs 60–64, introducing Test 9. 

57. It has been stated that the test would be passed if the probability found 
by entering the table in Seal’s paper were between 2½% and 97½%. Clearly, 
if the probability of the observed X 2, or of a greater value, were less than 2½%, 
then at the 5% level the graduation would be rejected; but it is not so clear 
what should be the interpretation if the probability is greater than 97½%, 
i.e. if the result of this test is ‘too good to be true ’. This brings us to a difference 
in outlook between the actuary and the statistician, due to a difference in 
purpose rather than to any real underlying difference. If a statistician obtained 
a ‘too good to be true’ result, it might, for example, mean that there was some- 
thing wrong with his method of sampling or that his instructions had not been 
carried out correctly. Similarly, an actuary would place a definite interpretation 
on a ‘ too good to be true’ result if the graduation had been by a graphic method, 
the conclusion being that the graduation had been made to adhere too closely 
to the original data; but in the case of a formula graduation such a result 
can have no meaning whatever, except perhaps that a formula has been 
chosen with too many parameters. It seems that a graduation would not be 
rejected merely because of a ‘ too good to be true ’ value of X 2, provided it passed 
all the other tests satisfactorily, and provided the graduated rates were ideally 
smooth (e.g. a Makeham graduation satisfying all the other tests); in other 
words, it would not be rejected wholly on account of being too probable to be 
probable. 

58. The foregoing paragraph might be summarized by saying that whereas 
a ‘ too good to be true’ result of this test may indicate too close an adherence in 
the case of a graphic graduation, or the choice of too complicated a formula in 
the case of a formula graduation, it should not be taken as a ground for the 
rejection of a graduation by a simple formula. 

Test 9. X2 sectional test 

59. This test is exactly similar to Test 8, but is applied only to suspect 
sections which may be detected under Test 2 by taking out runs of consecutive 
deviations exceeding their probable error. 

60. Before illustrating this test it will be as well to consider the necessity 
for it. It has already been pointed out that the X 2 test measures the adherence 
of the whole graduation by means of a single value, incurring the danger 
that over-graduation in one part of the table may be balanced by under- 
graduation in another part. In the discussion on Daw’s paper, Perks compares 
the criteria of both Tests 7 and 8 with such single-value functions as the 
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expectation of life and the ratio of total actual deaths to total expected deaths ; 
the net reproduction rate, the crude death-rate and the cost-of-living index 
might well be added to this ‘rogues gallery’. As an extreme example of the 
dangers, a graduation could be envisaged in which all the ages up to 50 show 
deviations less than their probable errors, while at all the older ages they are 
greater; such a graduation could conceivably satisfy the X 2 test without giving 
any grounds for suspicion. Admittedly, it would also satisfy Test 2 if applied 
blindly, but even a novice applying Test 2 should realize that the younger 
portion of the table had been under-graduated. A similar example would be 
a graduation in which all the negative deviations were less than their probable 
errors and all the positive deviations greater. 

61. To demonstrate these dangers of the X 2 test, we have no need to look 
further than the figures in Seal’s own paper; in fairness, it should be pointed 
out that Sea1 emphasized that it was not a test that fools could use-‘a certain 
amount of le bon sens was needed in applying any test’-nevertheless, it is 
suggested that one single probability value can give no more ‘firm judgment 
concerning the success of a graduation’ than the figures ‘ 29 below, 21 above’ 
which Seal criticizes so heartily. 

62. On pp. 12 and 13 of his paper are shown figures taken from Kenching- 
ton’s graduation of the OJF table. The value of X 2 is 41·425, with an estimated 
number of degrees of freedom of 44, and the table of probabilities, according to 
Seal, ‘ indicates that the graduation is excellent ’. If the figures in column (6) of 
the table are compared with their probable errors it will be found that 29 are 
greater (‘G’) and 21 less (‘L’); but if we examine the order of the ‘G’s’ and 
‘ L’s’ it will be found that there is a run of eleven successive ‘ G’s ’ from ages 37 
to 47, suggesting that this section may have been over-graduated. If we assume 
that the six constraints estimated by Seal to be imposed by the formula are 
equally spread over the whole range of ages, it will be found that the value of 
X 2 over this eleven-age section is 13·804 with f equal to 9·7, not an unsatisfactory 
result; however, if we examine the narrower range from ages 39 to 43 we find 
a X 2 of 9·689 with ƒ equal to 4·4, and this is rather near the limits of ‘doubtful 
improbability’ (Seal took 5% and 95% as his critical limits). Certainly the 
graduation would not be rejected on this account, but this sectional examination 
indicates that ‘excellent’ is scarcely the right word, and that perhaps the 
Kenchington formula was too powerful a wave-cutter. 

63. Now, since the summary X 2 test gave such an excellent result, it seems 
likely that the tendency to over-graduation in the early forties might have been 
counterbalanced somewhere by an under-graduation. It will be found that 
10 of the last 15 values in column (6) are ‘ L’s ’, and further examination will 
show that the value of X 2 for the range of seven ages from 65 to 71 is only 
1·863, the probability table on p. 45 telling us that this is ‘rather too probable’. 
Again, it is not suggested that the graduation should be rejected, but merely 
that the X 2 test applied to the whole range does not necessarily give the whole 
story, and that the graduator must collect together the other pieces of evidence 
before he can be satisfied that he has arrived at the best possible graduation 
for his purpose. 

64. Similar weaknesses can be found in the figures in Table 10 on p. 35 of 
Seal’s paper. Test 3 would show that, out of the thirty deviations, four are 
greater than twice their standard error, and this is very much a borderline case 
for acceptance; a sectional test applied to the range of twelve ages from 70 to 81 
shows a value of X 2 of 21·632, indicating ‘doubtful improbability’, although 
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Seal states that the test as a whole gives a good fit. As the figures tested were 
those of a graphic graduation it seems not unlikely that a better fit might have 
been obtained by a little further hand-polishing. 

65. In the example in Appendix 1, there is a predominance of ‘ G’s’, the 
worst run being from ages 45 to 58 inclusive; the value of X 2 for these 14 
values is 21·45, which is not unsatisfactory. Over the smaller range from 52 
to 57 the value of 13·31 indicates a possible weak feature in the graduation; 
again, it is suggested that this is an indication of weakness rather than a positive 
ground for rejection, but the lesson to be learnt is that should this test demon- 
strate several such weaknesses it is likely that a more satisfactory graduation 
could be found. 

VIII. SIGN AND SIGN-CHANGE TESTS 

Test 10. Sign-change test for deviations 

66. In an ideal graduation the deviations should change sign fairly frequently. 
Makeham suggested a method making use of the expected distribution of the 
number of runs of so many of the same sign. A far simpler, and just as satis- 
factory, test is that suggested by Haycocks in the discussion on Seal’s paper; 
this is based on the assumption that a sign-change is as likely as a non-change, 
giving rise to a binomial distribution exactly similar to that for Test 2, the 
number of observations being ( m - 1), and the acceptance limits being those 
shown in Table 1 for this number of observations. 

67. One difficulty in this test is what to do with ‘zeros’, where the deviation 
is neither positive nor negative; one solution would be to treat a change to or 
from zero (as opposed to a change through zero) as half a sign-change, but 
probably the simplest way would be to ignore all zeros and to reduce (m - 1 ) by 
the number of zeros before applying the test. Alternatively, they can usually 
be eliminated by calculating the relevant items to more decimal places. 

68. It is felt that a graduation would not be rejected merely because there 
were too many sign-changes, though such a result might indicate a bias on the 
part of the graduator; for example, if a graphic graduation had been made 
following strictly the principle ‘one up, one down’ over the whole range of 
ages, there would be no non-changes and the graduator would have chosen 
a wavy curve running in and out of the spaces between the points representing 
the ungraduated values. It is difficult to see, however, what bias could be in- 
dicated by too many sign-changes in a formula graduation, but it seems that 
such a situation is most unlikely to arise in practice. 

69. The application of the test can be summarized by the statement that 
the graduation fails the test if the number of sign-changes is less than the lower 
limit, while if it is greater than the upper limit it is desirable to examine for 
possible bias but not necessarily to reject the graduation. 

70. Column (5) of Table 6 shows 22 sign-changes out of a possible 48, and 
the graduation therefore satisfies this test. 

Test 11. Sign test for deviations 
71. In an observed sample of n years of exposure, the expected number of 

events would be nq and we should expect to have an equal chance of the actual 
number being above or below this figure; then over a series of m ages or groups 
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the number of positives would be distributed with a mean of m/2 and a standard 
error of ·5 m, in other words, a distribution exactly similar to that in Test 2 
with acceptance limits as given in Table 1. 

72. Column (5) of Table 6 has 26 positives and 23 negatives, well within the 
acceptance limits of 17-32. 

Test 12. Sign-change test for accumulated deviations 

73. This test has usually been carried out on exactly similar lines to Test 10, 
but certain modifications are desirable. In the first place, it has been stated 
under Test 5 that the sum of the deviations regarding sign need not neces- 
sarily be zero. Clearly, it is possible for this sum to be well within twice its 
standard error but still to be considerably in excess of the acceptable limits 
of the individual deviations; for example, in Table 6, the total of column (5) is 
about - 30, and we would have accepted any value up to about ± 90, whereas 
the individual standard errors of the last few deviations have values round 
about 4 or 5. We should therefore expect a longish run of accumulated devia- 
tions of the same sign at the end of our column of summations, reaching 
their climax, in the example, with a value of nearly -30. 

74. It is suggested that this test would therefore be better if the accumulated 
deviations, instead of being measured from zero in each case, were measured 
from successive points on a ‘balance line’, the first point on the balance line 
being (total deviations regarding sign)/m, the second point 2 x (total deviations 
regarding sign)/m, and so on, so that the adjusted series of the accumulated 
deviations is bound to end with a final value of zero, thus removing the bias 
in favour of non-changes at the end of the series. 

75. In Table 6, the balance line is given in column (11), and the adjusted 
series in column (13) ; the run of positives at the end of column (13) is not now 
due to any bias inherent in the test but to the fact that the last value in column 
(5) happens to be large. 

76. It will also be observed that the device of the balance line has ensured 
that the same adjusted series is obtained, whether the summation is made from 
the top or the bottom of the series. This is demonstrated in columns (10), (12) 
and (13). 

77. A far more serious defect of the test than the bias in favour of non- 
changes at the end of the series and the fact that we can carry out the summation 
in two ways is the fact that the expected number of sign-changes represents 
a difficult problem. The probability of a sign-change is certainly not one-half. 

78. The point is best demonstrated by regarding the graph of the accumu- 
lated deviations as a series of cycles; the cycles will be of varying heights and 
depths, but in view of the fact that an accumulated deviation has a much higher 
variance than a deviation (see Test 6) we should expect the height or depth 
of the longest cycles to be considerably greater than any individual deviation. 

79. At the top or bottom of a cycle a non-change is almost impossible; 
where the cycle passes through zero it would appear that a change or a 
non-change is equally likely; about half-way between the maximum or 
minimum and zero there will be an intermediate chance, perhaps a one in 
four chance of a change. If these three ‘regions ’ cover an approximately 
equal number of values, then the average chance of a non-change is ·25. 
It seems more likely that the cycles would rise and fall steeply in the regions 
of the maxima and minima, and if it is assumed that the ‘top-and-bottom- 
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region’ of each cycle only covers half the number covered by each of the 
other regions, the average chance of a change is (1 x 0 +2 x ·25 + 2 x ·5)/5 = ·3. 
Opinions may differ as to the average shape of a cycle, but it seems reasonable 
to state that the areas around the maxima and minima will always be sufficiently 
considerable to bring the chance of a change down to about one-third or one- 
quarter. 

80. The considerations of paragraphs 78 and 79 would appear to be ap- 
plicable to the adjusted series of accumulated deviations using the balance line, 
rather than the unadjusted series. The only difference is that the centre of the 
cycle would be the point where it crosses the balance line instead of the zero 
line, but the unadjusted series is further complicated by the bias at the end of 
the series with the result that the ‘ no chance of a change’ area is grossly enlarged. 

81. The diagram illustrates the conception of the three regions of the 
cycle, and Table 3 gives the acceptance limits, at the 5% probability level, 
on the assumption that the average chance of a sign-change is ·3. 

82. There seems no point in hazarding a guess at the average chance of 
a sign-change in the unadjusted series, caused by the assumed three-tenths 
chance reduced by the bias at the end of the run (for what it is worth, columns 
(9) and (10) of T a bl 6 e each show 6 changes out of a possible 48). The modified 
test suggested in paragraph 79 should be based on column (13), which shows 9 
changes out of a possible 47, the acceptable frequencies being 7 to 21. 
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83. Even on the adjusted basis, this is probably the least valuable of all the 

tests; it should merely be regarded as a possible means of indicating distortion. 
In our example, although the number of changes in column (13) passes the 
test, it may be considered that there is some lack of balance in the graduation 
inasmuch as the early and late values in column (13) tend to be on the positive 
side of the balance line, while the middle values tend to be on the negative 
side. 

84. In this test, too, a graduation could scarcely be rejected on the grounds 
that the accumulated deviations change sign too often, but such a case is most 
unlikely to be met in practice. 

85. Because of the doubtful value of this test, and the fact that it can do no 
more than give an indication of distortion, it is felt that it is not worth while 
to complicate it by weighting the successive points on the balance line pro- 
portionately to the exposed to risk. 

Table 3. Acceptance limits of number of sign-changes for Test 12 
on the assumption of an average chance of .3 

Number of 
graduated values 

m 

Upper limit 
.3 ( m -2) 

-2 {.21 ( m -2)} 

30 
35 
40 
45 

55 
50 

60 
65 
70 
75 
80 

Possible number 
of sign-changes 
in adjusted series 
of accumulated 

deviations 
m -2 

Lower limit 
.3 ( m -2) 

-2 {.21 ( m -2)} 

28 
33 
38 
43 
48 
53 
58 
63 
68 
73 
78 

3 
4 
5 
6 
8 
9 

10 
11 
12 
14 
15 

14 
16 
18 
19 
21 
23 
25 
27 
28 
30 
32 

Test 13. Sign test for accumulated deviations 

86. This would be on similar lines to Test 11, but, following a similar 
reasoning to that developed in the comments on Test 12, we should expect the 
run of non-changes at the end of the series to reduce the chance of the sign 
distribution being half and half; the mean proportion of positives would 
still be one-half over a large number of graduations, but the standard error 
would probably be incapable of evaluation, In order to use a series to which 
can be applied a normal test, this test should be applied to the adjusted series 
already produced for Test 12. The series in column (13) of Table 6 has 19 
negatives and 29 positives, the acceptance limits along the lines of Test 2 
being 17 to 31. 

IX. CONSTRAINTS 
87. In the discussion on Daw’s paper, one of Prof. Kendall’s complaints 

against the usual tests applied by actuaries was that they make no allowance 
for any constraints which may be imposed. Each of the tests outlined, with 
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the exception of the smoothness and x 2 tests, will now be considered in this 
connexion. 

88. It has been indicated in paragraph 48 that the expected average size of 
the standardized deviations is reduced in the proportion f/ m. The con- 
straints on the data have a similar effect on Tests 2 and 3, where we are testing 
the number of standardized deviations which exceed certain values (usually 
.6745 and 2.0), and these values should also be reduced in the proportion 
f/ m. 

89. In Test 4, if any systematic limitation has occurred in a graphic 
graduation we should nevertheless judge our acceptance as though no such 
constraint had occurred or we may be condoning under-graduation. It is, 
however, certain that constraints will have been imposed on combinations 
of groups by a summation graduation (see under Test 9). Also if constraints 
have been imposed in the course of a formula graduation there will be some 
effect on the grouped deviations. 

90. The data for Tests 5 and 6 are frequently constrained by the requirement 
that the sums must be zero, in which case the tests would not be made; it is 
difficult to see any other systematic constraint which might affect these tests. 

91. The constraints for Tests 7 and 8 have been dealt with under their 
respective sections, but it might be repeated that the number of constraints 
can only be estimated approximately, if at all, in the cases of graphic and sum- 
mation graduations. Similar considerations apply to Test 9; there will be 
partial constraints on the groups of deviations being tested if the graduation is 
by formula and constraints have been imposed. 

92. No allowance for constraints is likely to be necessary for Tests 10 and 11 
unless graduated rates have been produced which tend systematically to be 
generally above (or generally below) the observed rates, but such a table would 
be for a special purpose and would be a forecast table rather than a graduation. 

93. For Tests 12 and 13 a device has been suggested which allows for the 
artificial restriction on the figures. 

X. SUMMARY OF TESTS 
94. When the thirteen tests have been completed, an assessment of the 

graduation may be made by a general consideration of whether, on the whole, 
the tests have been satisfactory. Superstitious actuaries might like to regard 
this general appreciation as the fourteenth test. In the example we have been 
considering, the only unsatisfactory features are ( a ) that it is a borderline case 
for Test 2, ( b ) that Test 9 indicates a weakness over ages 52–57, and ( c ) that 
Test 12, though the graduation passes the test, possibly indicates some lack 
of balance in the deviations. 
tion is acceptable. 

On the whole, therefore, it is felt that the gradua- 

95. Table 4 summarizes the tests which have been described and shows 
when each would be applicable. 

XI. DEGREE OF ACCURACY 
96. It has been fashionable to express the expected deaths to one or ever 

two decimal places, but little consideration has been given in the past to whether 
the number of places could be justified. Admittedly, it is a small point and 
probably makes very little difference to the final results of a graduation, but i 
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is felt that this is a matter which should not be overlooked, since the profession 
should not lay itself open to criticism from without as a stickler for precision 
which it cannot attain. 

97. We might consider this question with regard to the example in 
Appendix 1. For age 51½ , the exposed to risk is about 10,000, and the graduated 
rate of mortality about .005. It will therefore be seen that the first decimal place 
can be justified only if the exposed to risk is accurate within 10 (accuracy 1 in 
1000), and the second place can be justified only if the exposed is accurate to 
the nearer unit (1 in 10,000). Although it is beyond the scope of this paper to 
consider the question of relative accuracies achieved by the census method, it 
seems quite possible that the approximations made would not justify even the 
first decimal place in the expected deaths; this means that the second significant 
figure of the deviations becomes suspect, and brings us to the question of how 
accurately we can claim to find the value of x2, and how many places we can 
take credit for in the estimate of the Makeham constants. 

98. The line taken in the experiments described in the appendices has been 
that the problem is to find the best possible fit to the observations as given, 
and that, especially in the case of the Makeham constant c, it is necessary to 
retain a considerable number of figures. This section is, however, included as 
a matter worthy of consideration, in the hope that a certain amount of un- 
necessary work and superfluous published figures may be avoided in the future. 

XII. ACTUARIES AND STATISTICIANS 
99. It has been suggested in paragraph 57 that a possible difference in 

outlook between actuaries and statisticians is the fact that a statistician can 
always assign a meaning to a ‘too good to be true’ result of a test, while such 
a result may not always have any meaning to an actuary. 

100. Perhaps, also, a statistician is more interested in historical facts than 
an actuary, while the latter, even if he does not in fact construct a forecast table, 
is always looking to the future; this is probably only a spurious difference 
between the two, since the majority of investigations made both by actuaries 
and by statisticians would be with the purpose of estimating something about 
the future. 

101. A further difference should be mentioned, which was referred to by 
Perks in the discussion on Daw’s paper; this is that statisticians usually deal 
with a comparatively small number of groups, whereas actuaries tend to deal 
with more groups and are thus more often able to make use of the normal 
distribution. 

102. This section may appear to be irrelevant to a paper purporting to deal 
with graduation tests. Unfortunately there has, of recent years, been a gulf 
between statisticians and actuaries, which can only have been widened by 
Prof. Kendall’s remarks on Daw’s paper. The present paper seems to give a 
suitable opportunity for airing the question and for showing that the differences 
between the two do not really go very deep; it is hoped, therefore, that this 
section and any discussion which may take place on it will help to bridge the 
gulf. 

XIII. CLOSING REMARKS AND ACKNOWLEDGMENTS 
103. No originality is claimed for much of the subject-matter of this paper, 

but no apologies are offered for the elementary terms in which the arguments 
are couched. 
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APPENDIX 1 

Regraduation of A 1924–29 select data (duration 0, ages 19½  and over) by 
Makeham’s formula 

105. Paragraph 12 refers to a graduated series convenient for use in 
practice; when we consider a mortality table convenient for use in practice 
our thoughts immediately turn to Makeham’s formula which, apart from the 
convenience resulting from mathematical relationships between certain func- 
tions, has a certain appeal to the actuary with a tidy mind. More complicated 
formulae, such as those suggested by Perks, have the same appeal but not the 
convenience. The same paragraph sets out the general rule that a graduation 
should aim at making the simplest possible hypothesis of the universe consistent 
with the data, and the logical outcome of this is a preference for curve-fitting 
methods of graduation; a graphic graduation is really only a short-cut attempt 
to fit a series of curves to the data, and it is felt that a summation graduation 
is a somewhat makeshift method which, while admittedly giving a quick answer, 
tends to retain certain irregularities which would be better ironed out. A com- 
bination of these considerations leads to the conclusion that wherever possible 
the graduation of mortality data should be by the fitting of a Makeham 
formula, in preference to other methods of graduation or more complicated 
formulae; further, the ‘simplest possible hypothesis’ rule leads to the pre- 
ference for, say, a Makeham curve just within the limits of acceptance rather 
than a Perks curve well within the limits. 

106. It was recalled, in dealing with Test 5, that in the past it has been usual 
for actuaries to employ the method of moments for curve-fitting graduations, 
giving rise to the custom of equating the actual and expected deaths. If the 
sum of the deviations regarding sign is permitted any acceptable value within 
the limits of statistical significance, the question arises as to how some limit 
might be placed on the number of curves which can be fitted to certain data. 
A possible answer is the employment of a minimum –x 2 method, and provided 
a suitable type of curve can be selected this seems to be the ideal solution. 
For example, if a Makeham graduation is being attempted, quite possibly 
a certain value of c combined with the fixed values of A and B resulting from 
the method of moments would not be satisfactory; all three constants could 
probably be improved by a method of hand-polishing, similar to the method 
used in a graphic graduation, but there would be no feeling of satisfaction that 
the graduation so obtained was the best possible in any one respect. If, how- 
ever, the value of c is combined with those values of A and B giving the mini- 
mum value of x 2 it is quite likely to give a better graduation than is obtainable 
by the method of moments, and this process can be carried further by also 
improving c until the Makeham curve is found which, when applied to the 
data in question, gives a lower value of x 2 than any other Makeham curve. 

3-2 
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Similarly, if a Makeham curve is found not to be suitable, it would be possible 
to use a Perks minimum- x2 method. 

107. I have never been convinced that all the results of the A 1924–29 
experience proved that Makeham’s formula no longer represents the approxi- 
mate shape of the curve of mortality, and this seemed to be suitable data on 
which to experiment with the minimum– x2 method. The duration 0 data 
was chosen since it is practically free from the complication of duplicates, on 
account of the practice of excluding duplicate policies effected concurrently 

Table 5. Values of colog ep [ x –½ ] and q [ x –½ ]; A 1924–29 regraduated by 
Makeham’s formula 

Age 
[x] colog ep [ x –½ ] q [ x –½ ] 

Age 
[ x ] colog ep [ x –½ ] 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
66 
67 
70 

.00125849 .00125770 
.00x27572 .00127490 
.00129475 .00129391 
.00131577 .00131490 
.00133898 .00133809 

.00136463 

.00139296 
.00142425 
.00145881 
.00149698 

.00136370 

.00139l99 

.00142323 

.00145774 

.00149586 

.00153915 .00153797 

.00158573 
.00163718 

.00158447 

.00163584 
.00169401 
.00175678 

.00169257 

.00175523 

.00182611 

.00190269 
.00182444 
.00190089 

.00198729 .00198531 

.00208073 .00207856 

.00218394 .00218155 

.00229794 

.00242386 
.00229530 

.00256296 
.00242093 
.00255968 

.00271659 .00271291 

.00288630 .00288214 

q [ x –½ ] 

.00307375 .00306903 
.00328080 .00327542 
.0035 095 0 
.00376212 

.00350335 
.003755 05 

.00404115 .00403300 

.00434936 

.00468980 
.00433992 

.00506585 
.00&882 

.00548121 
.00505304 
.00546622 

.00594001 .00592241 

.00644679 .00642605 

.00700656 .00698207 

.00762487 .00759587 

.00830783 

.00906221 
.00827342 
.00902127 

.00989548 

.01081588 
.00984668 
.01075760 

.01183253 .01176280 

.01295549 

.01419588 
.01287193 
.01409559 

.01556597 .01544545 

.01707934 

.01875096 
.01693431 

.02488966 
.01857626 
.02458247 

in the Same office; it must be comparatively rare for an assurer to complete 
two or more policies at different times in the same year, or through different 
offices in the same year, and the small number of duplicates resulting is unlikely 
to have any great effect on the validity of the usual assumptions, 

108. The Makeham fit giving approximately the smallest possible value of 
x2 is 

where 103 A= 1.0937349, 105 B = 2.2540558, and c = 1.1045704. The graduated 
values of colog ep [ x –½ ] and q [ x –½ ] are given in Table 5. 

109. The tests of this graduation are shown in Table 6, which for con- 
venience is divided into two sections. The required figures for Tests 2–11 
inclusive are shown in the first section, and the second section deals with the 



Graduation Tests and Experiments 37 
accumulated deviation tests 12 and 13. The conclusion of these tests is that a 
Makeham graduation is quite suitable for the data in question, and it seems not 
unlikely that if only we could remove the duplicates from the ultimate data 
a considerable part of the resulting ungraduated rates could be graduated by 
a similar curve. 

APPENDIX 2 
Makekam true minimum-x2 method 

110. Hitherto, so far as I am aware, no method of fitting a Makeham curve 
to give the absolute minimum x2 has yet been devised. The method of Cramér 
and Wold(1) has been referred to from time to time in the Journal, but that 
method does not, in fact, give the minimum possible value. The imperfections 
of their method may be summarized as follows. 

( a ) It assumes that the expected deaths are equal to E cxµx, and that px may 
be taken as unity, so that x2 becomes 

( b ) This expression is, however, discarded in favour of the function x12 
where and it is the fit giving a minimum value 
to this function which the method obtains. 

( c ) The method finds the fit giving the minimum x21 consistent with the 
fist and second summations of equalling zero. It may be 
noted that it would be quite easy to make an absolute minimum x21 fit, 
although Cramér and Wold express the opinion that it is too complicated 
for practical work; it is worth mentioning that, in one of the experiments 
I made, such a fit gave a higher value of x2 than the first trial Makeham 
curve which initiated the experiment! 

( d ) Cramér and Wold show that, for certain Makeham curves obtained, 
x2 is not very different from x21 (out of six examples they give, x2 is the 
smaller in five cases and the greater in one); this is, however, no con- 
clusive proof that the values of the Makeham constants giving the mini- 
mum x21 will also give the minimum xa. 

111. I have endeavoured to derive a method of reducing x2 by trial and 
error, in which each successive trial improves all three Makeham constants, 
and which obtains the values giving an absolute minimum x2 without too large 
a number of trials. 

112. Such a method necessitates the finding of the first three differential 
coefficients of x2 with regard to the various possible combinations of Makeham 
constants; the algebraical derivation of these coefficients is as follows: 

where A and c are the same constants as for µx, but B = – (c ½  –c– ½ ) log eg and 
differs slightly from the corresponding constant for µx, which is –log e clog eg. 
When B has been found for colog epx –½  the corresponding constant for µx can 
easily be calculated. 

Now, if colog epx –½  = A + B cx, then 

i.e. 
Similarly 

(1) 
(2) 
(3) 



Table 6. Tests of the graduation 

Age 
[ x ] 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 68 and 
over 

[ x –½ ] 

(1) 
+ – 

24 24.63 24.60 4.96 .63 
39 32.51 32.47 5.70 
31 38.98 6.24 6.49 

39.03 
39 38.96 38.91 6.24 

8.03 

42 40.44 40.38 6.35 
.04 

1.56 (16.00; 
49 42.66 42.60 6.53 00=12.8) 6.34 
51 42.94 42.88 6.55 8.06 
39 6.41 
30 

41.09 41.03 2.09 
40.77 40.71 6.38 10.77 

47 39.77 39.71 6.30 7.23 
32 40.89 40.82 6.39 
40 
48 

39.89 39.83 6.31 8.89 
.11 

38.75 38.68 6.22 
38.70 38.63 6.22 

9.25 (12.66; 
42 3.30 =11.8) 
28 38.82 38.75 6.22 10.82) 
32 40.72 40.65 6.38 8.72 (32.93; 
31 10.18 00=12.7) 41.18 41.10 6.41 
37 4.21 40.13 6.33 3.21 41 40.84 40.75 6.38 .16 
46 41.41 41.32 6.43 4.59 (14.74; 
47 6.81 00=13.2 
56 

46.50 46.40 
46.51 46.40 

.50 Text 9.49 30 14.35 
41 

44.35 44.24 6.65 (21.59; 45.34 45.21 6.72 4.34 
43 45.90 45.77 6.77 2.90 00=11.6) 

55 48.73 48.58 6.97 
36 47.46 

6.27 
47.31 6.88 

51 45.24 45.09 
11.46 

6.64 
5.76 

49 44.32 44.15 4.68 
39 48.19 48.00 6.93 9.19 
53 7.64 
69 

58.68 58.43 
62.40 62.10 

5.68 
7.88 6.60 

69 54.84 54.56 7.39 14.16 (27.37; 
60 53.39 53.10 =13.0) 7.29 6.61 
44 54.23 53.91 7.34 10.23) (24.46; 
51 59.55 59.17 7.69 8.55 00=12.+90 
47 7.23 
61 

52.68 52.31 5.68 
45.90 45.55 6.75 

48 42.54 42.18 6.49 
5.10 (20.56; 
5.46 =9.4) 

40 42.78 42.39 6.51 2.78 
45 52.75 52.23 7.23 7.75 
36 34.12 33.75 5.81 1.88 
32 25.68 25.37 5.04 6.32 
19 24.03 23.72 4.87 5.03 
20 22.61 22.29 4.72 2.61 
26 24.66 24.28 4.93 1.34 
21 17.93 17.63 4.20 3.07 
11 10.87 10.67 3.27 .13 
21 31.14 30.37 5.51 10.14 

.13 
1.14 
1.29 
.01 
.25 
.97 

1.23 
.33 

1.69 
1.15 
1.39 
.02 

1.49 
.53 

1.74 
1.37 
1.59 
.51 
.03 
.71 
.07 

1.39 
2.16 
.65 
.43 
.90 

1.67 
.86 
.70 

1.33 
.74 

1.92 
.91 

1.39 
1.11 
.79 

2.24 
.84 
.43 

1.07 
.32 

1.25 
1.03 
.55 
.27 
.73 
.04 

1.84 

Totals 1988 2017.53 2008.09* 310.63 +134.50–164.03 46.04 
= -29.53 

* The sum of the series 12x30.37+22x10.67+...+492x24.60=1638501. 

( npq )[ x –½ ] 

(3) 

[ x -½ ] col.(3) 

(4) 

[ x –½ ] 

(2) 

Standard– 
Suspect ized ( – nq )[ x –½ ] groups deviation 

(5)÷(4) 
(5) (6) (7) 

Square 
of 

col.(7) 
(8) 

.02 
1.30 
1.65 
.00 
.06 
.94 

1.52 
.11 

2.85 
1.32 
1.94 
.00 

2.21 
.28 

3.02 
1.87 
2.52 
.26 
.00 
.51 
.01 

1.94 
4.65 .42 
.18 
.81 

2.78 
.74 
.50 

1.76 
.55 
.70 

3.67 
1.94 
1.24 
.62 

5.01 
.71 
.18 

1.15 
.10 

1.57 
1.07 
.31 
.07 
.53 
.00 

3.39 

59.80 



Table 6 (cont.) 

col. (5) col. (5) Balance Inverted Adjusted series 
Age from top from bottom line balance (9)-(11) or 
[ x ] line (12)–(10) 

(9) (10) (11) (12) (13) 
+ – + – + – 

29.53 –29.53 
20 .63 28.90 – .60 –28.93 .03 
21 5.86 35.39 – 1.21 –28.32 7.07 
22 2.17 27.36 – 1.81 – 27.72 .36 
23 2.13 27.40 – 2.41 –27.12 .28 
24 .57 28.96 – 3.01 –26.52 2.44 
25 5.77 35.30 – 3.62 –25.91 9.39 
26 13.83 43.36 – 4.22 –25.31 18.05 
27 11.74 41.27 – 4.82 – 24.71 16.56 
28 .97 30.50 – 5.42 –24.11 6.39 
29 8.20 37.73 – 6.03 –23.50 14.23 
30 .69 28.84 – 6.63 –22.90 
31 

5.94 
.58 28.95 – 7.23 –22.30 6.65 

32 8.67 38.20 – 7.83 –21.70 16.50 
11.97 41.50 – 8.44 –21.09 20.41 

33 1.15 30.68 – 9.04 –20.49 10.19 
35 7.57 21.96 – 9.64 –19.89 2.07 
36 17.75 11.78 –10.25 –19.28 7.50 37 20.96 8.57 – 10.85 – 18.68 10.11 
38 20.80 8.73 – 11.45 – 18.08 
39 

9.35 
16.21 13.32 –12.05 –17.48 4.16 

40 15.71 13.82 –12.66 –16.87 
41 6.22 

3.05 
23.31 –13.26 –16.27 

42 8.96 
7.04 

20.57 –13.86 –15.67 6.71 
43 24.91 4.62 –14.46 –15.07 10.45 
44 27.81 1.72 –15.07 –14.46 12.74 
45 21.54 7.99 –15.67 –13.86 5.87 46 33.00 3.47 –16.27 –13.26 16.73 47 27.24 2.29 –16.87 –12.66 1O.37 48 22.56 6.97 –17.48 –12.05 5.08 
49 31.75 2.22 –18.08 –11.45 13.67 
50 37.43 7.90 –18.68 –10.85 18.75 51 30.83 1.30 –19.28 –10.25 11.55 52 16.67 12.86 –19.89 –9.64 3.22 
53 10.06 19.47 –20.49 –9.04 10.43 54 20.29 9.24 –21.09 –8.44 .80 
55 28.84 .69 –21.70 –7.83 
56 

7.14 
34.52 4.99 –22.30 –7.23 12.22 

57 19.42 10.11 –22.90 –6.63 
58 

3.48 
13.96 15.57 –23.50 –6.03 

59 
9.54 

16.74 12.79 –24.11 –5.42 7.37 
60 24.49 
61 22.61 

5.04 – 24.71 – 4.82 .22 
6.92 

62 
–25.31 – 4.22 2.70 

16.29 13.24 –25.91 – 3.62 
63 8.21 

9.62 
21.32 

64 
–26.52 – 3.01 5.20 

23.93 5.60 –27.12 – 2.41 3.19 
65 22.59 6.94 
66 

–27.72 – 1.81 5.13 
19.52 10.01 –28.32 

67 
– 1.21 8.80 

19.39 10.14 –28.93 – .60 9.54 
68 and 29.53 –29.53 
over 

Total +68.16–749.80 +19.88–814.74 –738.25 
= –681.64 

–738.25 +222.45– 165.84 =–79486 = +56.61 
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Let X be the contribution to x2 from the cell made up of the exposed to risk 

in the year of life ( x – ½ ) to ( x + ½ ). 
Then, dropping the suffix ( x – ½ ) from and qx –½ , 

Now 
whence, from formula (1), 

Also 

whence 

(4) 

(5) 

(6) 

(7) 
Combining formulae (2) and (3) with formulae (5)–(7) it can also be shown 

that 
(8) 

(9) 
(10) 
(11) 

(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
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(22) 

(23) 
By definition, over any range of ages, x 2= X2, and if we write f(x) in 

place of { x f(x) }, then 

(24) 
(25) 
(26) 
(27) 
(28) 
(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 
(39) 
(40) 

(41) 

(42) 
Table 7 shows the headings of the twenty-four columns necessary for the 

evaluation of the differential coefficients, 
113. I originally experimented in some approximate methods aimed at 

cutting down the number of working columns; one of these was to use the 
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function instead of the function x 2, but this did not give the desired result 
since, compared with a true minimum- x 2 fit, the approximate function x tends 
to favour values of expected deaths lower than the actual. The reason for this 
is not hard to seek; where the actual deaths are greater than the expected 
deaths, the denominator of x is greater than that of X 2, and a biased graduation 
in favour of low expected deaths would therefore give a lower x than x 2. 

Table 7. Columns required for the calculation of the first three differential 
coefficients of x 2 with regard to the Makeham constants A, B and c for 
colog Px -½ 
Age cologe Px —½ Px —½ /qx —½ 
x x—½ cx =A+B cx px —½ qx —½ =(6)/(7) 

(1) 
nx —½ 
(2) (3) (4) (5) (6) (7) (8) 

nqx —½ ( —nq)x —½ (npq)x —½ X2x—½ (nq2)x —½ ( 2/ nq2)x —½ 
=(2)x(7) =(3)-(9) =(6)x(9) =(7)x(9) =(3)/(13) 

(9) 
=(10)x(10)/(11) 

(10) (11) (12) (13) (14) 

X2/A 2x(14) X2/ A2 - X2/ A3 cx X2/ A 
=(12)+(2)-(14) x(8) =(15)+(16) =3x(16)x(8)-(15) =(4)x(15) 

(15) (16) (17) (18) (19) 

e(2) 
e(3) 
e(4) 

(23) 

(2) (2) (2) (2) (2) 
(3) (3) (3) (3) 

(4) (4) 

cx ( x2/ A2) 
=(4)X (17) 

(20) 

c2x ( X2/ A2) -cx ( X2/ A3) 
= (4) x (20) 

(21) 
=(4) x (18) 

(22) 

-c2x( X2/ A3) -c3x( x2/ A3) -c3x( X2/a A3) 

Text 
= (4) X (23) 

(24) 

Notes. (1) In general eight significant figures were retained throughout the experi- 
ments, except where the figures of any column were only required for addition to other 
figures of a much higher order. (2) The table indicates which summations should be 
obtained. Most of these are required for the evaluation of the differential coefficients, 
but certain of the columns are summed merely to give an independent check on the 
summations of other columns, e.g. column (14) is only required as a check on 
column (15). (3) If tables of logarithms expressed to sufficient figures are not available, 
qx -½ can be quite easily obtained by machine from the expression 
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114. Several attempts were then made to improve the Makeham constants 

by reference to the first and second differential coefficients only, in view of the 
large number of third differential coefficients which would otherwise have to 
be evaluated. It was found that it was possible to improve the constants up 
to a point, but that, as soon as the function x2 was within about .5 of what 
subsequently proved to be its minimum value, no adjustments seemed possible 
which would finally reduce the first differential coefficients to zero; in fact, 
I found that I was going round in circles, obtaining a number of different 
Makeham curves all of which gave approximately the same x2, but never the 
minimum value. 

Table 8. Differential coefficients of x2 found by the 
first three trial Makeham curves 

Coefficient First trial value 

(1) 

Trial 
Trial 
Trial c 

(2) 
.965439 

1.61622 
- 100.280 
+ 809.555 
+ 305.948 
+ 24150.4 
+ 374.056 
+ 37098.7 
+ 380014 
- 1485.17 
- 372.546 
- 25344.2 
- 241.001 
- 9590.32 
- 986429 
- 407.980 
- 6315.39 
+102894 
+918878 

59.852 
1.1109286 
2.0841591 
1.1060303 

Second trial value Third trial value 

(3) 
1.02747 
4.46243 

- 152.246 
+ 802.273 
+ 360.007 
+ 23293.9 
+ 545.505 
+ 44024.3 
+ 367324 
- 1452.22 
- 428.483 
- 24024.7 
- 344.113 
- 11020.5 
- 928031 
- 727.910 
- 8802.08 
+ 126397 
+ 925856 

60.449 
1.1561956 
1.6930957 
1.1099514 

(4) 
+ 1.65863 
+ .07209 
+ 9.648 
+ 806.792 
+ 292.198 
+ 24302.4 
+ 338.394 
+ 35464.4 
+383227 
- 1481.74 
- 357.074 
- 25561.8 
- 218.883 
- 9037.77 
-999271 
- 350.111 
- 5774.05 
+ 97602.0 
+918075 

59.808 
1.1016704 
2.2003320 
1.1050138 

Note. It was not considered that more than six significant figures could be retained in 
these values. 

115. The particular problem was taken to be to find the Makeham curve 
which gave the minimum x2 when applied to the A 1924–29 duration 0 data 
for all ages from 19½ upwards; at the end of the preliminary experiments 
mentioned in paragraph 114, several different Makeham curves were available 
as possible first trials for the final experiment, and the curve was chosen which 
gave the lowest value of x2 yet obtained. The values were 103 A= 1.1109286; 
105 B = 2.0841591; c = 1.1060303 and x2 = 59.85. It is not considered worth 
while to give the details of the figures of the whole twenty-four columns; 
column (2) of Table 8 shows the differential coefficients obtained, writing for 

- 
- 

- 
- 
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103 A and for 105 B. It was assumed in the calculation that the group 67½ 
and over could be taken, on the average, to refer to the year of life 69½-70½; 
it is now realized (by reference to the expected deaths according to the final 
regraduated values) that the weighted mean q should refer to age 69¾, and that 
the method would have been more scientific had the weighted mean age for 
this ‘cell’ been recalculated at the end of each trial. 

116. When the differential coefficients for the first trial had been obtained, 
it was necessary to determine what should be the second trial values of , 

and c. The ideal values, clearly, are those giving and 
all equal to zero, and it was hoped that the second and third differential co- 
efficients would give a sufficient indication of the rates of change of the first 
differential coefficients. 

117. Let , and c be the changes in and c which will provide the 
required changes in and (in this case equal to +.965439, 
+ 1.61622 and + 100.280 respectively); then if second differential coefficients 
of x2 were all constant we could say: 

= - observed value of 

(43 a ) 
with two similar equations (43 b ) and (43 c ) for the negative of the observed 
values of and . Had these three simultaneous equations been 
employed to find , and c, and hence the second trial values of the con- 
stants, the second trial would have been far better than the one actually used! 

118. The assumption that second differential coefficients were all constant 
seemed most unlikely to be fulfilled, and the employment of formulae (43) 
therefore appeared to be a waste of time. But it was hoped that a similar as- 
sumption with regard to third differential coefficients would prove to be justified, 
and the following approximate formulae were accordingly devised: 

= -observed value of (44 a) 
with two similar equations (44 b ) and (44 c ) for the negative of the observed 
values of and . I will not attempt to describe the laborious (but 
ultimately successful) work in solving these three simultaneous equations, 
giving the second trial values of the Makeham constants actually employed, 
since it subsequently transpired that the assumption that the third differential 
coefficients are constant is so far from the truth that the use of formulae (44) 
gives corrections to , and c too large and in the wrong direction! In fact, 
one of the solutions of the simultaneous equations (44) appeared to be turning 
out to be in the same directions as the solution of equations (43), but, as this 
proved to be one of the solutions with imaginary roots, it was discarded; as 
already stated, formulae (43) would have given quite a good second trial curve. 

119. A comparison of the first and second trial values of the third dif- 
ferential coefficients shows that, whereas those dependent on and c only are 
fairly constant, varying in all cases by well under 10%, all those dependent 
on change rapidly. This suggests that, although formula (44 b ) is inaccurate, 
it should be possible through formulae (44 a ) and (44 c ) to find close 
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approximations to the best values of and C if is given the value zero, and 
thus to find the best and c corresponding to a given value of . Putting = 0 
in formula (44 a ) and collecting up, we obtain 

= -observed value of (45 a ) 
and we can find a similar equation (45 c ) for the negative of the observed 
value of The evaluation of simultaneous equations (45 a) and (45 c ) 
will give those changes in and c necessary, for the same value of , to produce 
values of and approximately equal to zero. It should, perhaps, 
be mentioned that the simultaneous equations may be solved by eliminating 

, finding an expression of the form 

and substituting this in formula (45 a ) to obtain a quartic in c, which may 
be solved quite quickly by trial. 

120. Substituting the values so found of and in a similar formula 
involving the observed value of and keeping equal to zero, we can 
evaluate the expression 
Observed 

(45 b ) 
This function is comparable with for a curve with equal to the original 

equal to the original plus as found in paragraph 119 and c equal to 
the original c plus c as found in paragraph 119; it is not identical with 
for this curve, since third differential coefficients depending on are by no means 
constant. If we denote expression (45 b ) by the symbol we can 
say that, if our value of were the ideal, then, but for the fact that third 
differential coefficients with regard to and c are not quite constant, the value 
of would be identical with and equal to zero. 

121. Applying formulae (45) to the results of the first and second trials, 
we obtain the following values: 

Trial 
no. c c + C 
1 + .0005012 1.1114298 .0000232 1.1060535 - .60207 2.0841591 
2 +.0001013 1.1562969 .0000408 1.1099922 -2.62877 1.6930957 
2–1 - 2.02670 - .3910634 

122. For lack of any information as to how the function might vary 
with , the third trial value of was found by a straight-line extrapolation, 
giving 2.0841591 + .3910634 X (.60207/2.02670) = 2.2003320. 

123. The problem was now to find third trial values of and c. I tried first 
difference extrapolation on the values obtained for and ( c + ), but 
the first 15 columns described in Table 7 showed that such a curve, though 
as good as the first trial, was no better. It did, however, indicate that the best 
values of and c for the value = 2.2003320 might be in the region of 1.1016704 
and 1.1050138 respectively; it would be a waste of time to describe just how 
these values were arrived at, for reasons which will soon be obvious. These 
values were taken as modified third trial values of and c, and formulae (45) 

- 
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gave = 1.0992281, = 1.1050268, and = -.18121. 

A third trial value of c, better than that actually used, and close to this value 
of , would have been obtained by the following device, appending a 
suffix to each function to indicate the number of the trial: 

Let z be the age at which then 

(46) 
whence z = 58.45547, 
and the L.H.S. of formula (46) = R.H.S . = 2.8778834; c 3 may then be given by 

whence 

and C 3=1.1050275. 

I would have saved much time had I discovered this device and gone straight 
to this third trial value of c, instead of going on a meandering route leading, 
eventually, to a value differing from this by only 7 in the eighth significant 
figure. 

124. It then seemed desirable to discover a similar means of finding what 
would have been an close to the actually obtained. I have found no 
formulae giving such a close agreement as just obtained for c, but the following 
formula has proved as satisfactory as any: 

-3189309 +.0458821 h = .0437761 k, 

-2286815 + .0630693 h = .0453200 k, 

whence h =6.519193, 

and k= 14.11832. 

us may then be given by 

whence 

and 

Had this value been used, together with c 3= 1.1050275, a comparatively small 
and SC would have been needed to give the best and c corresponding to the 

value, already obtained, of . 
125. I am not at all happy about this matter of finding successive trial values 

of a, since I had hoped for something closer. An attempt to find an age y, 
such that , t being the number of the trial, proved to give a value of 
further out than ever, and eventually the method suggested in paragraph 124 
was decided on merely because it gave a better value than any other rough 
and ready method, without there being any particular reason why it should 
do so. 
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126. To revert to the experiment, the position had now become: 

Trial 
no. 
1 1.1114298 1.1060535 2.0841591 - .60207 
2 1.1562969 1.1099922 1.6930957 -2.62877 
3 1.0992281 1.1050268 2.2003320 - .18121 

A second difference extrapolation gave 4 = 2.2540558; the function 

using the same value of z as found in paragraph 123, was slightly diminished 
to 2.8778656, and equating this to log + z log c 4 a value for c 4 was obtained 
of 1.1045710. As I was still dissatisfied with previous methods with regard to 

I tried three unknowns in a formula 

solving for u, v and w by substituting the above values, and putting 

gave a value of of 1.0942398. 
127. Columns (1)-(15) and (19) of Table 7 were completed for these 

preliminary fourth trial values; x2 was down to 59.8008, to + .42375, 
to .15928 and up to 14.790. Without evaluating the second and 

third differentials, a consideration of those obtained at previous trials led me 
to correct by - .0005049 and c by - .0000006, giving a modified fourth trial 
of = 1.0937349, = 2.2540558 and c = 1.1045704. Again completing columns 
(1)-(15) and (19), it was found that for these values 

X2 = 59.8007, = - .00002, = - .00677, and = +0.129. 
Bearing in mind my remarks of section XI of this paper I felt that to all in- 
tents and purposes this modified fourth trial was the ideal Makeham curve, 
and I therefore accepted it for the purpose of obtaining a graduation which 
could illustrate the main part of the paper. The total of column (15) was 
+ 107889.015 - 107889.213, so that was, to six significant figures, zero. 
Similarly, was equal to (B/c) x col. (19) =7994.23 - 7994.10, and 
only a very slight improvement would be possible here. But col. (19) came 
out to + 7843704 - 7844381= -677, from which it seems that only the first 
three or four significant figures in B can be justified; the results of this 
graduation would, however, not be substantially changed if the ideal value 
of B were found to more significant figures. 

128. The comparative smallness of the last set of first differential coefficients 
suggests that, to carry the experiment to its complete conclusion, we would need 
a fifth trial value of . I decided not to waste time on this as I had already 
obtained a satisfactory graduation for the purpose of the paper; it seems likely, 
however, that four trial values would have given us the absolute ideal value 
had our second trial not been a long step in the wrong direction. 

129. The methods of obtaining c 4 and in paragraph 126 are somewhat 
clumsy, and it will be instructive to consider what would have been the alter- 
native results had we used the suggested methods of paragraphs 123 and 124 
and used only the values from the two best trials to date (the first and third) in 
order to find the fourth trial values: 

1=.3189309, = .0437761, 
= .3424882, = .0433728, 
= .3529647. 
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Using formula (46): 

.3189309 + .0437761 z =.3424882 + .0433728 z, 

z =58.41136, 

L.H.S.=R.H.S.=2.8759524, 

log c 4 = (2.8759524 - .3529647)/58.41136= .0431934, 
c 4 = 1.1045704 (cf. modified c 4 actually used). 

Using formula (47) : 

.3189309 + .0458821 h = .0437761 k, 

.3424882 + .0410878 h = .0433728 k, 

h = 6.060840 and k = 13.63792, 

therefore .3529647 + 6.060840 log = 13.63792 x .0431934, 

log = .0389556, 
= 1.0938446 

(cf. 1.0942398 4th trial, 
1.0937349 modified 4th trial). 

130. Consideration of the experiments just described suggests that the 
following are the operations likely to lead most rapidly to the minimum 
fit of a Makeham curve. 

1. Find first trial values and c by the ‘flexible method’ outlined in 
Appendix 3 and evaluate the first, second and third differential coef- 
ficients of x2 using headings of Table 7. 

2. Find , and c by means of three simultaneous equations (43) 
(and hence second trial values , and c 2) and evaluate the first, second 
and third differential coefficients of x2 using headings of Table 7. 

3. (a) Find and by formulae (45); 
(b) using and find by straight-line interpola- 
tion or extrapolation; 
(c) using formulae (46) and (47) respectively, find c 3 and 
(d) evaluate first, second and third differential coefficients of x2 using 
headings of Table 7. 

4. (a) Find and by formulae (45); 
(b) using three previous values of and find by second dif. 
ference interpolation or extrapolation; 
(c) using second and third trial figures only, find c 4 and by formulae (46) 
and (47) respectively; 
(d) complete columns (1)-(15) and (19) of Table 7, evaluating first 
differential coefficients of x2. By inspection of these, improve (and i 
necessary c 4) and by again completing columns (1)-(15) and (19) 
confirm that first differential coefficients are now zero. 

Before each successive trial, the weighted mean age of any cell containing 
more than one age should be recalculated by reference to the rates of mortality 
according to the latest trial curve. 
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131, The suggested method of paragraph 130 may be suitably modified 

if it is found that the required number of trial s in any particular case is 
three or five. 

132. I have been through the algebra of the differential coefficients of x2 for 
a Perks curve; in view of the extensive number of coefficients these have not 
been included in the paper, but it may be said that they are not difficult to 
obtain. I have not yet devised a method of improving the four Perks constants 
to give a minimum value of x2, and it will probably prove to be a lengthy 
process, but it is a possibility worthy of consideration. 

APPENDIX 3 

Makeham fit by ‘flexible method’; some experiments with the 
A 1924-29 ultimate data 

133. The possibility of fitting a Makeham curve to the A 1924-29 duration 0 
data led to the experiments described in Appendix 2; the results of these were 
so encouraging that I decided to make a similar attempt on as large a section as 
possible of the ultimate data. I was fully aware of the fact that the presence of 
a large number of duplicates would cause difficulties, but Daw had suggested 
on p. 181 of his paper that the standard deviation of qx for this experience was 
likely to be increased by about 50%. Even before the publication of Solomon’s 
paper I had resolved not to go as far as this, but to make the more moderate 
assumption that the standard deviation was increased by 40%. 

134. The function estimated by Solomon was the rate by which the variance, 
as opposed to the standard deviation, of the number of deaths was increased, 
and was therefore the square of the function estimated by Daw. He examined 
the continuous mortality investigation data over the period 1924–38 (medical, 
ages 46-55, durations 5 and over), and concluded that a value of 1.6 was the 
best estimate, with possible values lying between 1.3 and 2.0. Taking the 
square root of these values, it appears that the rate of increase of the standard 
deviation lay between 1.14 and 1.41 for those particular data. This measure 
of the increased variance was approximately the same for each of the twelve 
groups making up Solomon’s data; the 1924-29 data consisted, roughly, of 
four of these twelve classes combined, with the non-medical data added, and 
it seems reasonable to suppose that the effect of duplicates would be increased 
by combining the different classes. In any case, the effect of duplicates would 
probably be increased by combining durations 3 and over, as compared with 
the 5 and over taken by Solomon, so that any estimate of the increased variance 
below Solomon’s upper limit appears to be not unreasonable. I therefore made 
no alteration in my decision to assume that the standard deviation of the 
number of deaths was 1.4 

135. In the discussion on Starke’s recent paper(5) I suggested that for a fit 
of Makeham’s curve we might find trial values of all three constants rather 
than merely a trial value of c combined with the method of moments. Table 9 
shows a possible way of arriving at first trial values of these constants. It 
should, at this stage, be mentioned that I originally hoped to be able to fit 
a curve to the data from ages 19½ to 65½, in order to embrace the vast majority 
of Endowment Assurance data. It soon became apparent that the abnormally 
high crude rate of mortality for the year of age 20½–21½ was quite out of line, 
and I attributed this to the non-exclusion of children’s deferred assurances 

AJ 4 
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which had just passed the option date; the data to be graduated were then 
amended to the range of ages from 21½ to 65½. 

136. It would have been possible to show one further value of A in column 
(14) of Table 9; this would have been negative, and it was therefore quite clear 
that the first trial values would not give a curve suitable for the higher ages in 
the range. However, in order to improve the curve it was desirable to examine 

Table 9. A method of deriving trial values of the Makeham constants 

Age- 
group 
(1) 

25½- 
30½- 
35½- 
40½- 45½- 
50½- 
55½- 
60½- 

Central Central 
age exposed to risk 
x 5E x 
(2) (3) 
28 
33 
38 
43 
48 
53 
58 
63 

647491.50 
889071.50 

1123903.75 
1227620.25 
1221344.50 
1040377.00 

769459.00 
490202.75 

Deaths 

(4) 

1505 .0023244 
2326 .0026162 
3727 .0033161 
5737 .0046725 
7633 .0062497 
9978 .0095908 

11856 .0154082 
12594 .0256914 

7409470.25 55356 

Crude 
µx 
(5) 

µx +5- µx 
=B cx (c 5-1) 

(6) 
.0002918 
.0006999 
.0013564 
.0015772 
.0033411 
.0058174 
.0102832 

µx +10- µx +1 
µx +5- µx 
= crude c 5 

(7) 
2.3986 
1.9380 
1.1628 
2.1167 
1.7409 
1.7677 

cx 
Weight (from value Weight 

(proportionate of c 5 at 
to foot of 

cx (c 5-I) (6)÷(10) (proportion- 
ate to 

column (8)) (8) (10) (11) (12) 

(5)-(1) 
=crud 

A 

29.8007 24.8356 .000011749 154 
54.6363 45.5333 .000015371 201 

100.1696 83.4803 .000016248 235 
183.6500 153.0521 .000010305 245 
336.7021 280.6042 .000011907 226 
617.3063 514.4569 .000011308 181 

1131.7632 943.2001 .000010902 126 

1368 
whence 
weighted 
mean103B 
=1.2685 

355 
436 
480 
471 
407 
307 

2456 
whence 
weighted mean 
c 5=1*83339 

B cx 

(13) 
.0003780 
.0006931 
.0012707 
.0023296 
.0042711 
.0078305 
.0143564 

(14) 
.001946 
.001923 
.002045 
.002342 
.001978 
.001760 
.001051 

Weights 
mean 
103A 
=1.908 
using 
col. (3) 
x10-4 
weights 

Note. The data for the above were taken from Mortality of Assured Lives 1924 
(Extracts and Discussions), 662-3, as amended in J.I.A. LXVIII, 83. 

the deviations, and these are shown in Table 10. A consideration of these led 
to the obvious conclusion that the curve was too steep, and that what was 
wanted was a lower value of c and a higher value of B. Further trials were then 
made giving c 5 various values between 1.7 and 1.8 and again deducing B and A 
and finding the deviations (at this stage it was not considered worth while 
going to the trouble of evaluating for all ages, and the expected deaths 
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were taken as Ec x -½ µx ). All these trials still gave a run of positive deviations 
between 40 and 46 and unfortunately a negative 'bulge’ also appeared between 
32 and 37. The problem appeared to develop into one of reducing one bulge 
without enlarging others, and it appeared necessary to derive a curve giving 
µ 34 .0028, µ 43 .0044 and µ 52 .0088 without causing distortion at the ex- 
tremes of the table. I found that if these values were respectively amended to 
.00279, .00441 and .00884 the extension of the Makeham curve gave µ 25 = .00220 
and µ 61 = .02095, and from the resulting value of c 9 it was possible to fill in the 
intervening values. The approximate deviations indicated that this curve was 

Table 10. A 1924-29 durations 3 and over; actual minus expected 
deaths according to trial values found in Table 9 

Age (Actual-Expected) Age (Actual-Expected) Age (Actual-Expected) 
+ – + – + – 

22 6 35 22 50 104 
23 24 36 1 51 93 
24 8 37 4 52 86 

38 81 53 34 
25 6 39 6 90 
26 – 54 
27 7 40 41 55 150 
28 26 41 79 50 134 
29 10 42 131 57 76 

43 84 58 67 
30 26 44 99 59 167 
31 32 
32 5 45 92 60 186 
33 15 61 263 
34 8 

28 46 
47 25 62 55 
48 30 63 250 
49 85 64 250 

65 376 

quite a good fit, and it was decided to evaluate qx -½ and test in full as described 
in the paper, with the exception of the smoothness test which the curve is 
bound to satisfy. The values of the constants for colog epx-½ are: 

103A=1.8581, 105B=2.08276, c =1.118313. 
137. The figures required for testing this graduation are shown in Table 11. 

The results of the tests are as follows. 
Test 2. Eighteen of the values in column (8) are less than their probable 

error and 26 greater, compared with acceptable limits of 15-29. 
Test 3. Only two of the deviations exceed twice their standard error, and 

this is quite satisfactory. 
Test 4. Column (9) shows that for only two groups of ages do the combined 

total deviations exceed twice their standard errors, viz. 40-45 and 46-49; 
there are, however, three other groups where the combined total approaches 
twice the standard error, and it is agreed that the graduation can be criticized 
on this score but not necessarily rejected. If we repeat Test 3 with each of 
these five groups combined as a composite cell, we are left with 28 cells in only 
three of which does the deviation exceed twice its standard error, and this is 
within the acceptable limits of the test. 

4-2 
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Table 11. A 1924-29, durations 3 and over, ages 21½-65½; 
regraduation by Makeham’s formula 

Age 
x 

colog epx -½ 
(1) 

x -½ 
(2) 

nx -½ qx- ½ ( nq ) x -½ ( npq )x -½ 
(3) (4) (5) (6) - 

22 
23 
24 

.002102 85 37888.75 .002100 79.6 79.4 12.5 

.002131 138 53799.5 .002129 114.5 114.3 15.0 

.002163 162 72170.25 .002161 156.0 155.7 17.5 

25 .002199 204 91195 .002197 
26 .002239 235 106508 .002236 
27 .002285 275 119813 .002282 
28 .002335 326 13I512.75 .002332 
29 .002391 339 141192.5 .002388 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

.002455 330 149217.75 .002452 

.002525 418 157507 .002522 

.002604 426 167118.25 .002601 

.002692 434 177870.5 .002688 

.002791 515 188782.75 .002787 

.002901 

.003025 

.003163 

.003317 

.003490 

533 
607 
664 
800 
778 

198956 
208803.75 
217862 
226441 
234839 

40 
41 
42 
43 
44 

.003683 878 

.003899 976 

.004140 1093 

.004410 1129 

.004712 1233 

237821.5 
240528.75 
242781 
247137 
250560.5 

.002897 

.003020 

.003158 

.003311 

.003484 

.003676 

.003891 

.004131 

.004400 

.004701 

45 
46 47 
48 
49 

.005050 1306 249481.5 .005037 

.005427 1320 248699.75 .005412 

.005849 1437 248776.25 .005832 

.006322 1503 248899.75 .006302 

.006850 1569 246567 .006827 

50 
51 
52 
53 
54 

.007440 1804 232218.25 

.008101 1867 221270.5 

.008839 1821 216476.75 

.009665 2100 213176.25 

.010589 2119 206567 

‘007412 1721.2 
.008068 1785.2 

1708.4 

.008800 
1770‘8 

1905.0 1888.2 
.009618 2050.3 2030.6 
.010533 2175.8 2152.9 

55 
56 57 
58 
59 
60 
61 
62 
63 
64 

65 

.011622 2071 

.012777 2139 

.014069 2330 
.O15514 2492 
.017130 2517 

187875.5 
173613.75 
165689.75 
158572 
149423.75 

.011554 2170.7 

.012695 
2145.6 

2204.0 2176.0 
.013970 2314.7 2282.4 
.015395 2441.2 2403.6 
.016984 2537.8 2494.7 

.018936 2378 128087.75 .018758 

.020957 2262 113042.75 .020739 

.023217 2595 106377.75 .022949 

.025744 2553 100572.25 .025416 

.028570 2682 94078 .028166 

.031730 2502 82429 .031232 2574.4 2494.0 

55945 7692201.75 56029.2 55306.9 

=1.4 n1 
(7) 

200.4 200.0 
238.2 

19.8 
237.7 21.6 

273.4 272.8 23.1 
306.7 306.0 24.5 
337.2 336.4 25.7 

365.9 
397.2 
434.7 
478.1 
526.1 

365.0 26.7 
396.2 27.9 
433.6 29.2 
4768 30.6 
524.6 32.1 

576.4 
630.6 
688.0 
749.7 
818.2 

33.6 
35.1 
36.7 
38.3 
40.0 

874.2 
935.9 

1002.9 
1087.4 
1177.9 

574.7 
628.7 
685.8 
747.2 
815.3 
871.0 
932.3 
998.8 

1082.6 
1172.4 

41.3 
42.7 
44.2 
46.1 
47.9 

1256.6 1250.3 
1346.0 1338.7 
1450.9 1442.4 
1568.6 
1683.3 

1558.7 
1671.8 

49.5 
51.2 
53.2 
55.3 
57.2 

57.9 
58.9 
60.8 
63.1 
65.0 

64.8 
65.3 
66.9 
68.6 
69.9 

2402.7 2357.6 
2344.4 2295.8 
2441.3 
2556.1 

2385.3 
2649.8 

2476.6 
2575.2 

68.0 
67.1 
68.4 
69.7 
71.0 

69.9 
2033.8 



Age 
x 

22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

40 41 
42 
43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
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Table 11 (cont.) 

—nq 

(8) 

Suspect 
groups 

(9) 
+ – 
5.4 

23.5 
6.0 

3.6 
1.6 

3.2 

19.3 
1.8 

20.8 
35.9 
8.7 

44.1 
11.1 154.9 

=80.7 43.4 
23.6 
24.0 

50.3 
40.2 

3.8 
40.1 

280.1 
55.1 =111.2 

49.4 26.0 
13.9 219.8 
65.6 =108.5 

114.3 
82.8 164.6 
81.8 

84.0 
=82.6 

49.7 
56.8 

99.7 
65.0 

221.5; 
=112.6 

15.3 
50.8 

20.8 

153.7 

24.7 
82.4 

32.2 
3.1 

72.4 

+878.7–962.9=–84.2 

( –nq )2 

(10) 
– 
1.9 
3.8 

7.7 
9.6 

64.4 
88.0 

47.8 
49.8 
51.7 
53.6 

74.6 
76.5 

44.0 
11.8 

84.2 1.07 84.2 

1493.1– 1616.6 
= –123.5 –1894.6 

.13 
1.51 
5.05 
.00 
.21 

112.2 
194.6 
40.9 78.5 

80.4 
82.3 

2.37 67.8 65.1 
.99 132.8 67.0 
.05 117.5 68.9 
.55 66.7 70.8 
.09 87.5 72.7 

2.05 41.2 55.5 
1.93 123.0 57.4 
1.91 39.0 59.3 
.62 88.7 61.2 
.76 31.9 63.2 

1.00 178.2 
.26 152.2 
.07 138.3 

1.41 72.7 
3.99 41.6 

45.9 

98.1 36.4 
58.0 38.3 

32.1 40.2 
73.7 42.1 

128.8 44.0 

.01 
.88 

1.32 

1.67 
.45 
.43 

1.72 
1.01 

112.0 
61.7 

101.9 

26.8 
28.7 
30.6 
32.5 
34.4 

1.81 22.1 17.2 
.56 42.9 19.1 
.09 34.2 21.1 

2.08 9.9 23.0 
.12 21.0 24.9 

.03 38.5 

.02 35.3 

.00 36.9 

.62 56.2 
.00 58.0 

11.5 
13.4 
15.3 

5.7 

+ – 
5.4 

28.9 
34.9 

.19 
2.45 
.12 

4.16 
.81 

46.57 

( –nq ) 
(11) 

Balance 
line 
(12) 

53 

(11)–(12) 
(13) 

– 

2415.1–644.0 
= + 1771.1 

70.5 

37.6 
118.1 

65.8 
48.6 

14.8 4.1 

224.1 
200.0 
188.1 
124.4 
12.0 

96.7 
180.4 
98.3 

149.9 
95.1 

72.3 
115.8 
172.8 

37.6 
59.3 
81.4 
29.2 
67.5 
61.7 
19.7 

39.3 
62.0 
55.3 
13.1 
3.9 

46.2 
44.9 
48.4 
69.6 
73.3 

+ 
7.3 

32.7 
40.0 

2.7 

37.6 
36.4 
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Test 5, The sum of the deviations regarding sign is – 84.2 compared with 

a standard error of 329. 
Test 6. The second sum of the deviations regarding sign (column 11) is 

– 123.5 which, without evaluating a complicated series similar to that in 
paragraph 45, is seen to be well within its acceptable limits. 

Test 7. The sum of the deviations disregarding sign is 1841.6, compared with 
permitted limits on the basis of paragraph 46 of 1627 395. It will be found 
that the sum of the standardized deviations disregarding sign is 37.83 and is 
also well within the limits. 

Test 8. The value of x2 of 46.57 for 44 degrees of freedom is excellent. Even 
if we bias this test by combining the five suspect groups into composite cells 
as suggested under Test 4, we arrive at a value, 41.61, for 28 cells, which is only 
just outside Seal’s limits. 

Test 9. Possible adverse runs are ages 41–45 and 48–56. The sectional values 
of X2 for these groups are respectively 8.17 (5 degrees of freedom) and 16.03 
(9 degrees of freedom), both of which are acceptable. The smaller run from 
48 to 52 has a value of 11.29 for 5 degrees of freedom, which is just outside 
the usual limits, but the graduation would certainly not be rejected merely 
because for one group of five ages over a range of 44 the value of P just falls 
below .05. 

Test 10. The deviations change sign 19 times out of a possible 43, well 
within the acceptable limits. 

Test 11. There are 22 positive deviations and 22 negative. 
Test 12. Column (13) shows six sign-changes, compared with acceptable 

values on the basis of Table 3 of 6–19. 
Test 13. Only 13 of the values in column (13) are negative as against 30 

positive, while the acceptable limits on the normal basis would be 15–28. This 
is an unsatisfactory feature, but not sufficient to reject the graduation, especially 
since the unadjusted series in column (11) has 21 negatives. In this case the run 
of positives at the early ages combined with a negative balance line appears to 
have caused some bias in the adjusted series and gives further evidence that 
the accumulated deviation tests are not very satisfactory. Support of this 
statement may be quoted from Seal’s closing remarks on p. 65 of the discussion 
on his paper, where he states : ‘ I. . . can only express my personal dissatisfaction 
with the accumulated deviation test in any shape or form.’ 

Summary. The most unsatisfactory feature appears to be that the graduation 
has done a certain amount of wave cutting, but it is felt that the sizes of the 
waves are no larger than can be justified by the statistical tests. 
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ABSTRACT OF THE DISCUSSION 
Mr M. C. Polman, in opening the discussion, thought that he had a considerable 

amount in common with the author. There seemed to have been a tendency to regard the 
testing of graduations as solely a problem in mathematical statistics, and public discus- 
sion took place on a very high plane. He believed that it was one of the objects of the 
paper under discussion to try to restore a proper balance between theory and practice. 
Even so, he doubted whether the paper went far enough. 

The approach of the actuary to the question of graduation was strictly utilitarian, The 
available information had to be obtained and put into the form in which it could be 
used—some system of ratios, mortality rates, withdrawal rates, etc. The results might 
be needed for either of two main purposes, comparisons or financial calculations. For 
purposes of comparisons, actuaries were usually concerned with the general trend of 
the results; the observed ratios might be departed from only to the extent necessary to 
discover the trend. The National Life tables were an example of what he meant. 

Tables for financial purposes, however, required an additional quality called smooth- 
ness, and to obtain it some departure from the crude results was permissible. Many 
methods had been evolved, and many more might yet be developed, to obtain a suitable 
compromise between fit and smoothness. When a table was needed for financial pur- 
poses, actuaries had their own simple and searching tests—with variations according to 
individual tastes—for selecting which was the most suitable graduation for their 
purposes. It did not matter how straightforward or how complicated the process might 
have been to arrive at the graduated results ; the graduation stood or fell by those tests. 

The graduated table was wanted for the calculation of premium rates, reserves, 
valuation functions and so on. Would the whole-life premiums increase progressively 
with age? Was it possible to interpolate with confidence between the annual premiums 
for reversionary annuities at pivotal ages? Could approximate methods of valuation be 
used with reasonable safety? The table could be said to be smooth if that kind of thing 
were possible. 

The transition from those considerations to the properties of the graduated values 
was not an easy one to express in terms of mathematics, though it was generally possible 
to recognize whether the graduated table was what was wanted by an examination of the 
first two or three orders of differences. That was what the author meant, presumably, 
by ‘recognizing smoothness in a somewhat indefinite manner’. He preferred to say 
that the recognition was the result of practical experience—not so much their own, but 
that of generations of actuaries before them— which gave them a prior knowledge of 
the way in which many of the tables that they used would behave. 

On p. 19 of the paper the author gave his own definition of smoothness but, very 
wisely, he did not expect too much from it. The definition, with reservations, would 
probably do for the commoner actuarial functions, but might well fail altogether with 
the rarer ones. A table of remarriage rates, for instance, might have features which 
took it quite outside the suggested definition. 

So far, with some differences of emphasis, he agreed with the author, but on the 
question of fit they parted company. It seemed to him fundamental that, after any 
graduation for financial purposes, the financial effect of the graduated table should be as 
close as possible to that of the ungraduated values. The crude experience usually 
represented cash, whether received or paid out—generally speaking paid out. It might 
be necessary to keep margins, either because future experience might not reproduce 
the past or purely as a precaution, but the margin should be taken deliberately and not 
as a by-product of the method of graduation. The actual and expected deaths, therefore, 
should be the same. 

Again, the use of a test based on accumulated deviations merely showed the extent to 
which the actual and expected deaths were equal over short ranges of ages, and therefore 
showed how far the graduated values would reproduce the crude experience within the 
table. Should certain values, for instance at the extreme ends of the mortality experience, 
be considered unreliable, then some system of weighting could be used, but the weighted 
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values should still answer to the tests. In general, all graduations for financial purposes 
should produce equality between actual and expected, and the number of changes of 
sign in accumulated deviations then showed how closely the graduated values adhered to 
the data. 

The author’s attempt to determine how many changes in sign there should be 
seemed to be irrelevant. That test, together with the test for smoothness, was relative ; 
they were simply means of comparing one graduation with another. Personally, he did 
not believe that there was any way of arriving at the best graduation other than by trial 
and error, and, because the final decision was a compromise, there would always be 
room for difference of opinion, beauty being in the eye of the beholder. 

When an exceptional deviation stuck out like a sore thumb, the data should be 
reviewed. But it was convenient to have some measuring rod for the size of deviations, 
and for that purpose there was a mathematical model based on some form of the 
binomial distribution. The only justification for the model was that it gave results useful 
in practice which could not be obtained otherwise. That was undoubtedly true, but if 
the model were developed too far the number of variations would become embarrassing. 
There were standard deviations and mean deviations of varying sizes, and perhaps one 
day the probable error might be heard of again. They were all based on their own sets 
of assumptions. To use more than one such test seemed mere duplication, and that 
one should be used merely as an adjunct to the main test, based on the changes in 
sign of the accumulated deviations. 

He thought that actuaries should beware of making too many assumptions in devising 
their tests, and for that reason he saw no purpose in the additional assumptions required 
for the X2 test. The test had its place in general statistics, but seemed to him to be out 
of place in work of the kind under discussion. The test bristled with difficulties. There 
was a difference of opinion over the proper size of the standard deviations. There were 
further differences of opinion over the number of degrees of freedom and he believed 
that, at the end, the test gave no more information than could be obtained by other 
means. 

Perhaps he might illustrate what he had said by referring to the sample graduation. 
Curve-fitting by least squares was well known for producing unpleasant sets of 
equations, and in the instance in question it certainly did. No doubt the author enjoyed 
himself immensely but, in spite of all the work that he had put into it, probably most 
actuaries would look for a graduation which gave a rather better fit. From Table 6, 
columns (1) and (2) or column (5), it would be seen that the expected differed from the 
actual by 29.53; in other words, the expected was greater than the actual by roughly 
1½% of the actual deaths, Column (13) showed how those excess deaths could be best 
distributed; but a glance at that column showed that the graduated values were too low 
at the ends and too high in the middle. Not only had the number of deaths been over- 
stated, but the curve had been straightened out. Such a result often followed from the 
fitting of a Makeham curve. He wondered—he had no means of telling with certainty— 
whether that kind of difficulty was the reason why the Committee responsible for the 
A 1924–29 table rejected a Makeham graduation. 

Features of that kind might not be vital in the first year of selection, but if similar 
features appeared in the ultimate curve both premiums and reserves would be affected. 
The premiums would be too low for certain ages and too high for others. The reserves 
on the whole-life plan, the level of which depended on the steepness of the curve of µx, 
would tend to be too low. Perhaps further investigation would be needed to determine 
the extent of the particular distortion. Whether the convenience of the Makeham 
formula was sufficient compensation was a matter of opinion; personally he doubted it. 

Mr H. L. Seal, in a written contribution which was read at the meeting, mentioned 
that his paper—criticized by the author as having been ‘too widely read’—was printed 
and circulated to interested members in mid-October, 1939; as might be expected, he 
had somewhat modified his ideas during the intervening eleven years. He was no longer 
happy with the suggested two tests of a graduation (namely, a X2 test of ‘fit’, and a test 
for improbable sign-sequences in successive deviations of actual from expected deaths,' 
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and wished to see them replaced by a single truly efficient test. Since that view was 
diametrically opposed to the author’s he would try to explain his reasons. 

It had been a feature of statistical theory during the past quarter of a century that the 
one-time multiplicity of tests had tended to be replaced by a single test when the 
hypothesis to be tested had been formulated in precise terms and the class of alternative 
hypotheses had been specified. And, furthermore, it had sometimes been possible to 
prove that no other test devised could add to the information so provided; in other 
cases, the single test could be shown to have desirable properties which were not 
duplicated by any other test. 

Those remarks were relevant to the graduation tests under discussion because their 
very diversity pointed to an imprecisely-posed problem. Could not actuaries put into 
exact mathematical terms the statistical hypothesis and its alternatives to be tested in 
a unique graduation test? Was an array of hypotheses essential? Could they not be all 
subsumed under one head? 

The following comments on the tests advocated in the paper would illustrate his 
arguments : 

( a ) Tests 2, 3, 7 and 8 appeared to be directed to testing whether the individual 
deviations were distributed binomially, but without regard to the fact that the deviations 
were ordered according to age. 

( b ) Tests 10, 11, 12 and 13 were all—as the author indicated—tests of the im- 
probability of groups of positive and negative deviations, without reference to the sizes 
of such deviations or their distribution. 

( c ) Tests 4 and 9 marked an attempt to test, simultaneously, the binomiality of the 
deviations and their ordering according to age. 

( d ) Tests 5 and 6 were more in the nature of checks on the method of fitting than of 
statistical tests. The (unknown) constraints set on those tests by almost any conceivable 
method of graduation seemed to invalidate a probability judgment of success or failure. 
The hypotheses thus tested were not mutually exclusive and most of the tests were 
correlated with the others. In consequence, it was difficult to obtain a clear picture from 
the dozen or so individual, correlated and conflicting probability judgments. 

Tests 4 and 9 were incorrectly applied in the paper and both for the same kind 
of reason. Thus, in describing Test 4, the author overlooked that the distribution of 
n unit normal variates known to be positive was not normal with variance n, but was of 
complicated form (Triconi, Gior. ist. ital. attuar. 1937) and had a larger variance. 

Though he was keenly aware that the statistical theory of graduation testing was still 
fragmentary with regard to the ‘laws’ most popular with actuaries, he would indicate 
one case where existing theory was adequate. Though only a particular case could be 
treated in that manner, the graduation procedure and its subsequent testing was not far 
removed from practice. It had the supreme advantage of leading to a single statistical 
test which was known to be ‘good’ and might well be the ‘best’ possible. 

Statistical tests for the adequacy of a given mortality law in the representation of 
a series of observations encountered the difficulty that the (approximate) normal 
distribution of deaths at any age involved the parametric (universal) value of qx in both 
its mean and variance. In order to avoid the consequent mathematical difficulties 
a transformation of variable was desirable. 

If y was a binomial random variable with parameters q and E the transformed 
random variable 

had, for large E, a mean value of E q +½ q -¼ and a variance ¼ (Anscombe, Biom. XXXV, 
1948) and was, in the limit, distributed normally (Curtiss, Ann. Math. Statist. XIV, 
1943). 

He then supposed that a series of values of zx had been observed corresponding to the 
successive attained ages of life ( x = , + 1, . . . , , n values in all), and that the graduation 
formula k 

zx= jxj, 
j= 1 
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where Xj was a determinable function of x (e.g. xj = cxj, cj known), had been fitted to the 
observations by means of the method of maximum likelihood with the result that the 
parameter j was estimated by the value j ( j= 1, 2, . . . . k ). It would be desired to test 
the adequacy of the graduation by investigating the necessity of the last, most compli- 
cated, term of the formula. In other words the hypothesis to be tested was that k =o. 

His description of a graduation procedure and its subsequent testing was not far 
removed from what might happen in practice. Admittedly, it was qx and not zx that was 
graduated and the formula chosen was seldom applied by means of maximum likelihood 
(which, however, was closely allied to the minimum- X2 used by the author). Further- 
more, should expressions of the form cx occur, c had to be estimated—it was not known 
a priori. However, it could not be seriously argued that the choice of zx instead of qx 
entirely altered the theoretical content of the problem, though an inefficient method of 
fitting invalidated the subsequent distribution theory. It should also be remembered 
that a complex graduation formula might often be approximated to by a polynomial of 
sufficiently high degree in X. 

Should the above formulation be adopted it could be shown (e.g. Mood, Introduction 
to the theory of statistics, New York, 1950) that the likelihood ratio test of the hypothesis 
mentioned was a quotient of two random variables, each distributed as X2, with 1 and 
n—k degrees of freedom respectively, of which the denominator was 

That expression was recognizable as being closely analogous to the X2 value used in 
mortality table graduations. 

In some ways that was the ‘best possible’ solution. As Kendall remarked ( The 
advanced theory of statistics, Vol. 11, London, 1946): ‘These [viz. tests based on the 
likelihood ratio) will give uniformly most powerful tests if such exist, and in the contrary 
case will do their best, so to speak, by finding the greatest common denominator among 
the best critical regions.’ In less technical terms, he might say that the statistician had 
devised a certain type of test of a hypothesis subject to specified alternatives and called 
it ‘uniformly most powerful’ because any other test or combination of tests of that 
hypothesis would be less powerful in detecting deviations. Failing such a ‘uniformly 
most powerful’ test, that provided by the likelihood ratio was a useful and reliable 
test. 

The purpose of the preceding outline was to indicate that, contrary to what the author 
believed, there was usually one test of a given statistical hypothesis which was distinctly 
preferable to any other, and that an important preliminary to any statistical test was the 
specification of the hypothesis to be tested and the permissible alternatives. Unquestion- 
ably, there was there a fruitful field of study for the graduate student of actuarial 
mathematics. 

Mr G. A. Brown congratulated the author on a monumental work. Like the author, 
he had been out of touch with things actuarial for the six years of the war, the end of 
which found him in Oslo, where he had had the opportunity of meeting some Norwegian 
colleagues. The then secretary of their association paid British actuaries a tribute when 
he said ‘We always admire British actuaries very much, because you are so practical. We 
Norwegians are hopelessly academic’. He had replied that that was part of the tradition; 
Norwegian actuaries were trained in the University of Oslo while British actuaries were 
trained in the insurance offices, and to there was a difference in their point of view. 
After being demobilized, he began to peruse the numbers of the Journal issued during 
the war years. But when he had waded through a few, he began to wonder what his 
Norwegian friends would think when they received them, because it seemed to him that 
since the beginning of the war there had been quite a trend away from the practical to 
the academic. 

The author had been rather clever, because he had evidently set out to suit both tastes. 
There was enough of the academic in the paper to satisfy the most devout ‘ x -chaser’, 
and there was enough of the practical for the rest of them—he made no apologies for 
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including himself among the latter group. From his own point of view, the significance 
of the paper was in the fresh hope it gave for the Makeham graduation, with its very 
considerable advantages. 

One interesting subject on which the author touched was in paragraph 97—on the 
limitations of the data in the exposed to risk. That started a train of thought which was 
worthy of much more serious further consideration. 

Mr M. D. W. Elphinstone referred to the paper which he had read before the Faculty 
a week earlier. At first sight, beyond discussions on roughness and smoothness, the 
paper under discussion appeared to have little in common with his own paper. There 
was, however, one other question of major importance with which both had been 
concerned. He referred particularly to section 11, The Purpose of Gruduation. 

The making of a graduation implied some assumption about the nature of the 
progression from age to age. Without such an assumption the crude rate had to be left 
alone or, at most, replaced by some function of itself. There were two fundamental 
considerations: the first was that the assumption ought to be determined (though it 
often was not) by the purpose of the graduation: the second was that it ought to be 
possible to state the assumption with mathematical precision when a mathematical 
method was used. It was a curious fact that, although many mathematical methods of 
graduation had been devised, it had hitherto been possible in respect of only two of 
them to say precisely what assumption had been made. One of the methods was 
curve-fitting; the other was Whittaker’s method. In section 11, the author had not 
examined the underlying assumption quite so deeply as he might usefully have done. 

When, for example, a Makeham curve was fitted to crude data the assumption could 
be expressed in either of two ways: it might be said that the true rates followed some 
Makeham curve with three unknown constants; however, it was better to discuss the 
equivalent, unique, assumption that µx satisfied the difference equation 

—that was quite definite with no unknown element. The author’s assumption was not 
that a particular Makeham curve was true, but that the difference equation was true; 
having postulated the truth of the difference equation, he proceeded to find its most 
probable solution by an extremely ingenious application of the minimum- X 2 method. 
But the object of significance tests was to check the validity of the assumption actually 
made—namely the truth of the difference equation, not of the actual curve. 

If it were supposed that, in fact, no Makeham curve properly represented the true 
rates, there was a greater chance that the crude rates could be represented by accident 
by some Makeham curve (i.e. by the difference equation) than by a specified Makeham 
curve. In applying the X2 test that greater chance had to be allowed for by reducing the 
degrees of freedom by the order of the difference equation; the Makeham graduation 
required a reduction by three. The author should, he thought, have applied the X 2 test 
with 46 degrees of freedom, not 49. 

The practical importance of the adjustment was small. It would not affect the 
judgment of the success of the author’s graduation because the .05 significance level for 
such a judgment was arbitrary, and it was impossible to distinguish between any but the 
very broadest classes of significance levels. 

However, the argument illustrated a general question of the utmost theoretical 
importance. It was necessary to be absolutely clear about the meaning of the particular 
mathematical process used before significance tests could be properly applied to 
a graduation. The tests had then to be designed to show whether the assumptions made 
in using that process were justified. 

In his own paper, the speaker had shown just what was being assumed about the 
progression of successive rates when a summation formula was used. The assumption 
was rather different from what was assumed in curve-fitting. Nobody had considered 
the implications of the difference, but the difference was such that it was illogical to 
apply significance tests of the traditional type to summation graduations. Even more so 
was it wrong to apply them to graphic graduations. The traditional tests were only 
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justifiable as being approximations to the suitable tests— and even so, the approximation 
could not be quantified. 

There was a possible objection to the argument. If it were supposed that the author’s 
graduation was proffered without any indication of how it had been obtained, what 
should be the reply to an enquiry whether the crude A24–29 data could have arisen 
from the universe characterized by that graduation? Most people would use the X 2 
test with 49 degrees of freedom. If that were so, it was equally correct to apply the X2 
test to a summation graduation, after allowing for any obvious constraints. Indeed, 
that procedure would, he thought, have the general support of those who were 
accustomed to modern statistical theory. But modern statistical theory also demanded 
the use of 46 degrees of freedom if it were known how the universe was formulated. He 
thought that the difficulty could be resolved by going back to his original argument— 
that the purpose must be formulated with precision. The objection would then be seen 
to be a ‘catch’ question. No answer could be given until it had been discovered how 
the universe was defined, and the discovery led to the use of the X2 test with 46 degrees 
of freedom for the Makeham graduation, and to some yet unknown test for the 
summation graduation. 

If the use of 49 degrees of freedom could be justified for the whole table, then he 
would concede that, in applying the test over a section of, say, 10 ages, the author was 
correct in using 10 degrees of freedom. But if 46 degrees of freedom were appropriate 
for the whole table, then the 10 should be scaled down slightly. It might be that the 
correct distribution was not one of the usual distributions of X2 at all, but something 
rather different. He did not know; the necessary analysis had not been carried out. 

A X2 sectional test need not be applied to consecutive groups. It could be applied, for 
example, to those ages which were prime numbers or, with perhaps more sense, to 
every even age. Failure to pass the X2 test in even ages might suggest that there was 
inherent in the data a wave of period 2, and it should be considered on general grounds, 
not in the light of conventional sampling theory, whether the wave of period 2 should 
be retained. Such a situation might arise in graduating a census table. Were every 
possible X2 sectional test to be considered, the graduation would be expected to fail to 
pass a proportion of them. It would be of real interest to know whether those sectional 
tests which the graduation failed to pass represented anything of practical importance 
in the light of the purpose of the graduation. 

Mr Seal’s contribution to the discussion emphasized that different significance tests 
might overlap each other, and he doubted whether Tests 2 and 3 contained much 
information which could not be derived from the X2 test. For example, out of a hundred 
miscellaneous graduations it might be found that, say, twenty passed Test 2, and twenty 

the X2 test. Would there be any degree of association between the graduations which 
passed the two tests? He considered that there would be; perhaps fifteen would pass 
both tests. Different tests should be independent, and reveal different features of the 
experience. Alternatively, it should be recognized that the tests were dependent and 
that the graduations might to some extent be expected to pass or fail them together. 
He doubted whether, if the X2 test was to be used, there was any point in putting forward 
Tests 2 and 3. 

Finally, the X 2 test depended on the squares of deviations and could not therefore 
test deviations according to sign. 

He might summarize his arguments under three heads: 

1. Work such as the author’s was invaluable : the theory of today might well become 
the practice of tomorrow, but before the tests he described could come into habitual 
use much more had to be known about the logic underlying them and their associations 
and differences. 

2. Meanwhile, before a graduation was tested it should be made clear what was being 
attempted. One thing was being attempted in a minimum- X2 Makeham graduation, 
something else in a forecast table, and yet something different in the use of summation 
formulae: nobody bad shown what was being attempted in graphic graduation or 
osculatory interpolation. 
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3. So long as graduations were made with vague ideas about what was being 
attempted, the tests, in his opinion, need not be too intensive nor formidable in 
application. 

The last time he had occasion to make a graduation he did the same as everyone else- 
he took a pencil and drew a line between some points, and that was all. There was 
nothing wrong in that; it was sufficient for the purposes for which he was making the 
particular graduation. Had a test been necessary, one of the crudest and simplest sort 
would have served. 

Mr F. H. Spratling was especially interested in paragraph 6 of the paper where the 
reasons for graduation were summarized. He thought that that paragraph might not 
unfairly be paraphrased by saying that the principal purpose of graduation was the 
introduction of smoothness so that financial anomalies might be avoided. 

It could be said that gross premium rates were net premium rates distorted by 
loading. In the same way, valuation reserves were theoretical values distorted by 
assumptions made for practical convenience in grouping and also by the laudable desire, 
in the circumstances of commercial life assurance, to be on the safe side. Those 
considerations supported the view which the author expressed. 

But it was important to remember that comparisons of mortality and sickness rates, 
and resignation and withdrawal rates had sometimes to be made for administrative 
purposes into which financial considerations either did not enter or entered only 
indirectly. He could think of no better way in which the actuary could destroy his credit 
than by saying that a particular difference between two comparable sets of rates was not 
a difference revealed by the data but a difference which the actuary thought ought to 
have been revealed by the data if it had been more extensive and if the imperfections 
of an imperfect world could have been ruled out. For those reasons, he personally 
preferred to work from ungraduated data wherever it was possible and reasonable to do 
so, provided, of course, financial considerations were not directly involved. 

It was known that mortality was influenced by age, sex, marital status, geographical 
distribution of the population, occupation, class selection, and possibly other factors as 
well. He suggested, therefore, that no mathematical expression of mortality could be 
adequate unless it reflected each of those various influences as an independent variable 
and that that approach would carry them into much more elaborate mathematical 
analyses than had yet been attempted. 

He came back to the argument, therefore, that the primary purpose of graduation 
was, quite simply, financial convenience. When a set of mortality rates had been 
graduated, considerations of financial prudence and practical convenience came into 
play. The finished product in the form of gross premium rates or valuation reserves, or 
whatever it might be, reflected the general level of the experience and also the imported 
smoothness. In those circumstances, might not a reactionary plea be entered in defence 
of the ancient and, he suspected, still most frequently used method of graduation, 
namely, graphical graduation? A curve was drawn through the irregular ungraduated 
data plotted on squared paper. The shape of the curve had, of course, to be restrained 
by tests of fidelity to data-the simpler the better provided that they were reasonably 
adequate-and also by the actuary’s professional sense of fitness for the purpose to be 
served. 

Mr R. H. Daw wondered whether statistical tests applied to the rate of mortality 
really tested what the actuary wanted to test. In perhaps nine graduations out of 
ten he was interested in producing premium rates, policy values and the like to use in 
his business activities ; i.e., he was interested in the financial effects of using the mortality 
table. Instead, however, of investigating the difference between the financial effects of 
the graduated and ungraduated tables, he investigated whether the deviations between 
the actual and expected deaths were statistically significant. The procedure might 
indicate whether the graduation was acceptable from the financial point of view, but 
personally he saw little reason why it should always do so or why it should be the best 
method to use. Might not a comparison between graduated and ungraduated annuity 



62 Graduation Tests and Experiments 

values at a suitable rate of interest be a test more in conformity with the reasons for 
making the graduation? If that idea was accepted, it seemed that the process of gradua- 
tion should be applied to the annuity value. 

With that in mind, he had drawn a graph of the whole-life annuity values on the 
A 1924-29 ultimate table at 3% interest. The shape of the curve appeared to be that of 
a logistic function, but for ages between 35 and 75 it differed only slightly from a straight 
line, and in fact looked quite a promising curve for fitting by a mathematical function. 
He thought that some experiments on those lines might be of interest. 

In perhaps one out of ten graduations where the actuary was interested in comparing 
rates of mortality or in the effect of certain types of selection (e.g. by type of policy), 
the statistical graduation tests considered in the paper had their legitimate and proper 
application. Unfortunately, many mortality experiences, and in particular the 
Continuous Mortality Investigation, contained duplicate policies, and. that fact alone 
rendered many of the tests described in the paper inapplicable without some adjustment, 
That would not be very important if the size of the adjustment was known, but the 
proportion and distribution of the duplicates was unknown, and only an arbitrary 
adjustment could be made. The inclusion of duplicates had been a serious hindrance 
to research, as could be seen from a study of the papers by L. Solomon and S. Vajda 
in the Journal, to name only two. Appendix 3 of the paper was yet another instance. 
He wished to reinforce the plea in paragraph 18 for the exclusion of duplicates from 
future experiences, or alternatively for some course of action which would enable exact 
statistical tests to be employed. Until that was done, much serious statistical work or 
the great body of data collected by the Life Offices was hardly possible. 

He gave a warning about test 9-the X 2 sectional test used to check the detailed agree. 
ment of portions of the curve. The test was described as being applied to suspect 
sections of the graduation, but if that were done at the 5% significance level the actual 
chance of finding a significant deviation on the null hypothesis would be greater than 
5%, and might be considerably greater. The reason was that the section over which 
the test was applied had been chosen because it appeared to show deviations which 
were either too large or too small (i.e. chosen because it appeared to be abnormal) and 
thus the chance of finding significant deviation was increased. The uncertainty about 
the significance level of the test limited its use, and he doubted whether it would bring 
to light any feature not shown by other tests. 

Mr N. L. Johnson made, first of all, a few technical remarkson Test, 12-the 
sign-change test for accumulated deviations. While agreeing with the author that is 
general, as he said, ‘the expected number of sign-changes represents a difficult problem’ 
it was possible to throw some light on the problem by theoretical investigation. 01 
certain simplifying assumptions, that the deviations were independent, Normal, and o 
constant standard deviation, the expected number of sign changes was 

in the unadjusted case and 

in the adjusted case. For n =40 the expressions gave, on the unadjusted basis, 3·3: 
and on the adjusted basis 4·95. For n =50 the figures were 3·82 for the unadjuste 
and 5·70 for the adjusted basis. Those figures were very considerably lower than those 
given in the paper; the author’s figures, both on the adjusted basis, would be 11· 
and 14·4. 

It was true that, in the situation which would usually arise, on going-through the 
series of data the standard deviations of each deviate of actual from expected would 
increase to a maximum and then fall away. The effect would be to increase the expecte 
numbers of sign changes, but he thought that the increase would be something of the 
order of 1 at the most, and would not bring the figures up to 11·4 and 14·4 which the 



Graduation Tests and Experiments 63 
author had given. The standard deviation of the number of sign changes was much more 
difficult to evaluate, even in the simplified case; but theory plus a controlled guess gave, 
for n =50, estimates of 3·1 and 3·0 as standard deviations on the unadjusted and 
adjusted bases respectively. 

The standard deviation was fairly large, considering what the average number was, 
and that was to be expected, because the distribution of sign changes was probably very 
skew. It was possible to get sign changes as big as 45, 46 or 47, though not very often, 
while the mean was 5·7. Allowing for that, he suggested a lower limit of 2, or perhaps 3, 
and an upper limit of 11, or perhaps 12, for the adjusted basis when n = 50, in place of 
the limits of 8 and 21 given in the paper in Table 3. It would be noticed that the 
observed values obtained in Table 6, of 8 sign changes where n =49, and of 6 for n =44 
in Table 11, would be well within the limits based on those calculations, whereas they 
were at the lower extremities of the limits given by the author. It could be justly said 
that a very low number of sign changes would be required to detect departures from 
graduations if the test were used rigorously, because the test was not very sensitive. 

On a more general question, a graduation by minimum-X 2, such as the author had 
carried out, always called forth very great admiration; but, since the theoretical justifica- 
tion for using the minimum- X 2 method fot the author’s graduation was that it might 
be an approximation to the maximum-likelihood method and might be easier to work 
out than that method, and since it did not seem probable that the maximum-likelihood 
method would be any worse to apply than the X 2 method in the particular case, he 
thought that the maximum-likelihood method might as well be used. The formula for 
the function to be maximized was expressed simply in terms of expected and actual 
deaths, and the actual computation would not, he thought, be any more complicated. 

He agreed with the author, and disagreed with Mr Seal, on the question whether 
a single test or a number of tests should be applied. It was only under artificially 
restricted conditions that one unique test was likely to be available and that no others 
were likely to be suitable. Whilst what looked to be the best test could often be found 
for a particular class of alternative hypotheses, it was also true that a better test could 
probably be found for a specified sub-class of those hypotheses. Why should a test which 
was pretty good with respect to a whole wide range of alternative hypotheses be preferred 
to a much better test for a particular sub-set of alternatives-unless a quick single test 
was required. Ideally, as many tests should be carried out as ingenuity, patience and 
time permitted. Some tests might be so time-consuming, or be useful for such rare 
forms of deviation from the graduation, that they might be dispensed with; also, a chance 
effect should not be elevated to the status of significance because of an excessive 
proliferation of tests ; but the investigation of a graduation, or of any statistical problem, 
from as many aspects as possible could, in general, only increase the actuary’s apprecia- 
tion of the properties of the graduation or the problem. 

Mr R. E. Beard referred to the use of the X 2 test for mortality data. He was con- 
cerned at the central position into which that test was being jockeyed. The essential 
point of his criticism lay in the very nature of mortality data. Generally speaking, the 
exposed to risk in the various groups from which the contributions to X 2 were calculated 
would vary in magnitude over the range of the graduation, and it was pertinent to ask 
whether it was proper in those conditions that equal weight should be given to the 
various contributions to X 2. 

A similar remark was made by G. F. Hardy in his lectures, when discussing least- 
square methods, and quite recently the problem had been considered by Patnaik in 
Biometrika. It was ironical to find that support was being given by actuaries to the X 2 
test at a time when there was a swing of opinion amongst theoretical statisticians to the 
position which actuaries occupied some forty years ago. 

Unfortunately, the author had left the X 2 test in a somewhat elevated position, and 
other speakers supported that view. Clearly, there were circumstances in which it was 
the appropriate test, but for mortality data it seemed to him that, if X 2 were calculated 
without weighting, then all the information available was not being used, and thus, in 
the language of theoretical statistics, it was not an efficient test. 
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Once it was recognized that the X 2 test was merely a special case of a weighted-X 2 

test in which the weights were equal, Perks’s remarks in the discussion on Daw’s paper 
on the mean-deviation test assumed an even greater significance, and drew attention to 
four distinct summary tests of a graduation, namely the weighted and unweighted mean- 
deviation test and the weighted and unweighted-X 2 test. Each measured different 
characteristics of a graduation. In that context it was of interest that Cramér, when 
discussing the X2 test in Mathematical Methods of Statistics, suggested that other tests 
should also be applied. 

He had submitted a paper for discussion at a later sessional meeting of the Institute 
in which the application of such tests to a number of graduations was considered. In 
particular, he had dealt with the problems of the sampling distribution and of constraints. 
The problem of constraints was, to his mind, important. Mr Elphinstone might be 
happy to ignore the uncertainty of 2 or 3 degrees of freedom when dealing with 30 or 
40 groups, but in practical work he liked to group the data-it made the work so much 
less. When that was done, and by the time the data had been weighted for the application 
of a weighted test, it would be found that the equivalent number of separate groups was 
only 9 or 10. If allowance was then made for constraints, the number of degrees of 
freedom might be reduced to 5, and it was then necessary to know how many constraints 
were imposed by the particular graduation process. It was thus important to consider 
the subject theoretically as well as practically. It was not sufficient to say ‘That is 
theory; it does not help us’. As Mr Elphinstone had already remarked, the theory of 
today might well become the practice of tomorrow. 

He congratulated the author on his minimum-X 2 fit of a Makeham curve; it was 
something which he had been thinking of for twenty years. He was glad that the author 
had done it because it showed those who were interested in graduation what it would 
look like. 

When, as with other physical problems, a complicated solution had to be found, it 
often paid to go back and to reconsider the mathematical formulation of the problem. 
If the emphasis were moved from the X 2 test to the mean-deviation test, it would be 
possible to devise an alternative criterion for fitting in which the sum of the deviations 
without regard to sign would be minimized; the arithmetic was relatively simple. The 
A and B constants were calculated using a few suitably chosen values of c and a simple 
interpolation led rapidly to values for which the sum of the deviations without regard 
to sign was a minimum. Using that method on the select data in the appendix, and 
working in quinquennial groups, he had, in under two hours, obtained a X 2 which was 
only 1 more than that obtained by the author, so that there was no significant difference 
between the results, but an appreciable one in the times taken to fit the data. 

The flexible method described in Appendix 3 was merely a systematic application 
of the technique which would be used in the preliminary stages of a graduation, and he 
thought that it would have been better to adjust the data by deduction of 1/24th of the 
second central differences of the Exposed to Risk and Deaths before calculating the 
values of µ x. Had that been done, and the value at age 28 ignored as being out of line, 
the resulting values of the constants would have been found to be much closer to the 
values finally adopted. 

The author had not emphasized that he had restricted himself to a limited range of 
ages in the application of the Makeham formula to the A 1924-29 data. The Makeham 
formula would not fit over about age 65, and therefore the author’s statements about the 
use of a Makeham curve required some qualification. When the 1924-29 statistics were 
published, he (the speaker) had made a graduation of the ultimate data by Perks’s 
modification of the Makeham curve. On referring to his file of papers it was interesting 
to find that, taking the same range as the author’s Table 11 and using a duplicates factor 
of 1·4, the X 2 determined from the Perks graduation was 45·97, as compared with the 
author’s value of 46·57. The fit by the Perks curve was satisfactory up to the highest ages, 
whereas the Makeham graduation would depart from the data as soon as the range 
covered in the paper was left. The extra parameter in the curve produced a reasonable 
fit over the whole range. It should, however, be mentioned that neither graduation 
would be described as the best possible. 
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Mr W. Perks thought that Mr Beard had rightly thrown serious doubts on whether 

the X 2 test was in fact the best single measure test so far as mortality was concerned. 
To take an extreme case, if there were a million exposed to risk at each of the even ages, 
and a thousand exposed to risk at each of the odd ages, would anybody in their senses 
let the odd ages contribute in the same degree as the even ages to the X 2 test? If any 
theory required that to be done, the theory was inadequate. It needed to be remembered 
that the problem was that of a set of binomial distributions-not, usually, a single 
multinomial distribution. 

Professor Jeffreys had pointed out that the X 2 test asked all the questions at once and 
provided only one answer. It mixed up the questions according to its own recipe, and 
claimed that the proof of the pudding was in the cooking. He was quite sure that the 
author was right in wanting to test his results from many different points of view. The 
questions should be asked one at a time, even if, as Mr Seal said, and he thought rightly, 
they were not all independent of one another. Perhaps, however, he was a little peculiar, 
because he did not find any difficulty in thinking of more than one number at once; 
he had got beyond the baby class, when everything had to be brought down to a one- 
dimensional measure. When all the testing had been done, an educated judgment had 
to be made whether the graduation was useful for the purpose in hand, whether theoretical 
or practical. 

Mr Seal and Mr Daw had criticized the author’s test of suspect groups. Personally, 
he thought that they were asking a different question from the one put by the author- 
he did not include in the data of his probability the fact that all the deviations in the 
group were known to be of the same sign. Mr Seal wanted to include that knowledge 
in the data of his probability, i.e. in the H of the probability Pr . {X H). The inclusion of 
that fact in H completely stultified the test. The author was asking the question ‘ How 
reasonable is it to expect a group deviation of this size?‘—a legitimate and sensible 
question. 

With regard to fitting processes, he, like Mr Beard, was a devoted follower of 
G. F. Hardy, and he thought that much of the modern work in that field was just hair- 
splitting when it came to practical work with large quantities of data. As a theoretical 
example of the strict application of the minimum-X 2 method the author’s work was 
valuable for educational purposes, but it was important, he thought, to realize that the 
method did not increase the statistical efficiency, even from the X 2 point of view, by 
more than the equivalent of a fraction of one, or at the most two, degrees of freedom 
over the whole range of ages. 

He thought it was perfectly clear that for minimum-X 2the total of the standardized 
deviations had to be equal to zero. He understood that the author had tried that 
suggestion on his graduation and had found that that was so. 

Mr Seal referred to a circular transformation of qx. It might be remembered that 
something of that kind appeared in his own probability paper. He agreed with Mr Seal 
that the transformation made the standardizing factors independent of the unknown 
parameter qx, and should therefore ease the work of minimizing X 2 or of minimizing the 
total of the standardized deviations taken without regard to sign. However, the 
transformed variable z included a multiplier, (E +½ ). To his mind, that made z com- 
pletely hopeless as a function for graduation, because it was irregular. 

In the discussion on Daw’s paper he had questioned the propriety of adjusting for 
constraints imposed by the fitting process. He still remained of the opinion that in 
mortality graduations the adjustment ought not to be made. The graduated curve should 
be taken as characterizing the hypothetical universe without regard to how it had been 
formulated, and the test should be whether the data could reasonably have been 
obtained by random sampling from such a universe. An adjustment for the constraints 
of fitting seemed to him to make too much concession to under-graduation. 

It seemed desirable to distinguish between constraints on the data (such as mi=N 
in a multinomial distribution) and constraints imposed on the hypothesis in fitting. There 
were occasions and repetition processes calling for proper allowance for constraints on 
the hypothesis but mortality graduation was not usually one of them. 

AJ 5 
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Mr H. Tetley, in closing the discussion, welcomed the paper as a good piece of work 

and an excellent contribution to the proceedings of the Institute. He did so for several 
reasons, among which were the following. In the first place, it had made him, and 
probably a good many others, think carefully about some of their fundamental ideas, 
about what they were trying to do when they graduated data, and therefore what they 
were trying to do when they tested the results. Moreover, he thought that it was an 
excellent counter-balance to Seal’s paper, which was deservedly famous, but which did 
put one point of view -very cogently and forcefully. The present paper put an alternative 
point of view. In the third place, he thought it was quite useful to break away from the 
tyranny of making the first and second summations of the deviations equal to zero. He 
admitted that the equality had in fact been honoured more in the breach than in the 
observance, but the author had at least given a more precise idea of what was meant 
by saying that the sum of the deviations should be ‘reasonably small’. 

In the rest of his remarks he would be dealing with what might be regarded as details. 
He did not apologize for that ; he agreed so much with the author on the general outline 
of the paper that it was only on some of the details that he found anything to 
criticize. 

When so much was given in the paper it was ungracious to ask for more, but he was 
surprised that no mention was made of a test devised by David in A X 2 Smooth Test 
for Goodness of Fit ( Biometrika, 34, 297). That was an attempt-and, as far as he could 
judge, a very successful attempt—to modify the X 2 test to make allowance for the 
changes and runs of signs, a piece of information which was completely lost sight of in 
the ordinary X 2 test. He made no apology for suggesting an addition to the list of tests, 
because, as he saw it, few people would ever be likely to apply all the 13 or 14 tests to 
any one graduation. From his point of view, he would regard them all as weapons which 
could be extremely useful in appropriate conditions, and he would make a suitable 
selection of two or three which he thought would be most helpful in testing a particular 
graduation. From that point of view, the fact that there was a good deal of overlapping 
of the tests was largely immaterial. 

In paragraph 52, the author said that as far as he was aware no constraints had been 
imposed. On that question he, the speaker, found himself somewhat at variance with 
Mr Perks. As he saw it, the only occasion on which no constraints were imposed was in 
the type of problem which arose in practice of which he would give an example. An 
actuary might be about to value a pension fund and might wish to find out whether 
a standard table such as Scottish Bankers’ Mortality was suitable for that purpose. To 
do so he would test the data of the fund, using the standard table. In those circum- 
stances there would be no constraints imposed, because the table was not in any sense 
based on the data ; in other circumstances the table would be, to some extent, ‘ pegged 
down’ to the data. It was usually impossible to find to what extent constraints had been 
imposed, and it was only in rather artificial circumstances that a definite measure could 
be given; but he thought that some small deduction-it might even be a large one- 
should be made from the total number of cells in arriving at the degrees of freedom, or 
the test was not being applied impartially. 

Another question, which was referred to on pp. 26 and 34, was rather more 
difficult and went rather deeper than the others he had made. The author followed Seal 
in saying that the X2 test, as it was usually applied, gave a warning if a fit was ‘too good 
to be true’, and implied that in that sense actuaries were at variance with statisticians. 
Personally, he believed that that was a mistake, and that the fundamental question was 
not merely the hypothesis being tested but the alternative hypotheses against which it 
was being judged. A test of a mortality table was not concerned with fits which were 
too good to be true. The test was a one-ended test, and there was no difference, as he 
saw it, between the point of view of actuaries and of statisticians. The question was 
dealt with, he hoped clearly, in Statistics: an intermediate text-book, Vol. 11. 

In Appendix 1, the author referred to the minimum-X 2 fit as being in certain circum- 
stances the ‘ideal’ solution. Again he thought that that was going too far. It was 
obviously a solution which had great intuitive appeal as being eminently reasonable, and 
one which should give very good results, but there were others, such as one which had 
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been mentioned-fitting by the method of maximum likelihood-which had equal 
intuitive appeal and would probably give slightly better results. 

At the top of p. 40 reference was made to the contribution to X 2 from the cell 
made up of the Exposed to Risk at a particular age or age-group. The formula which 
was used was not correct for one cell. What actually happened was that at each age or 
age-group there were two cells, those who died and those who survived. Each of the 
cells contributed a term to X 2, though for practical purposes it was easier to amalgamate 
those two contributions into a single term. 

Although he had a tremendous admiration for the doggedness and thoroughness of 
the author’s fitting by minimum-X 2, he agreed with others that it was unlikely to be 
widely used. It was likely to be worth while only for a big standard table, and in such 
a table, particularly for assured lives, there were so many imperfections in the data that 
it was probably an undue refinement. The number of duplicates of unknown extent 
and, what was much more serious, of an extent which probably varied systematically with 
age, and the fact that the data were based to a very large extent on endowment assurances 
up to age 65, and above age 65 predominantly on whole-life experience, raised 
difficult problems. One solution would be to split the data and have two complete 
tables, but a little consideration would show that that would probably raise more 
problems than it would solve. 

The President, Mr F. A. A. Menzler, C.B.E., B.Sc., in proposing a vote of 
thanks to the author, said that the paper took his mind back to his examination days. 
He was among those who, while not being mathematicians, were called ‘ good at maths’ 
at school, and he remembered what an attractive relief it was from the study of life 
contingencies to go to Part 111( a ) and to study problems of graduation. It seemed to 
offer some systematic means of putting constraint on disobedient data. At the time, his 
studies made him look down on the graphical method as the lowest form of actuarial 
expertise, and he derived much intellectual sustenance from the thought that a suitable 
mathematical formula would do the work for him, particularly as he had no capacity 
for freehand drawing. 

Not long previously, all the reading on the subject, apart from papers, was the red 
book of G. F. Hardy’s lectures, to which Mr Perks had referred-lectures delivered, 
incidentally, forty-five years earlier. It was interesting to look back at that book, as 
he had done recently, and to see what progress had been made since then. He was 
inclined to agree with what Mr Perks had said on the subject. There was one other book 
(whose author was present that evening), namely Sir William Elderton’s Frequency 
Curves and Correlation, which he tackled when he was safely through the examinations. 
Since those days, much more was expected of the student, but at least the students had 
the advantage of excellent text-books written by the closer of the debate and another 
member of the Institute who had spoken that evening. 

Of recent years, there had been a great deal of research into the testing of graduations, 
and the paper would be of service to the younger generation of actuaries in particular, 
but not excluding the vocal group of older post-graduate actuaries, in bringing together 
the studies of the last decade since Seal’s paper of 1940. He felt, however, that the 
general practitioners of the actuarial profession, who worked out premiums and did 
valuations, should have a word of comfort after hearing the discussion that evening, 
because, after all, it was rare to be concerned with a standard table, with massive data 
behind it, which demanded the full apparatus of tests described in the paper. For 
every major graduation of the type which had been discussed there must be thousands 
of graduations done in the offices of consultants in the course of the valuation of 
pension funds-when all too frequently there were no true underlying rates at all, 
and if there were it would be hazardous to use them. In fairness to the author, it should 
be mentioned that he had stated clearly, in paragraph 12, that what the actuary needed 
was a good forecast. 

He had not to sum up the debate; that had already been done more ably than he 
could do it, but he rather supported Mr Spratling’s remarks, though he would like to 
make a friendly debating point-what would he do about the preference for certain 
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digits exhibited in the age-distribution of the census population? He noticed with 
interest that Mr Elphinstone in the end came round to the graphical method of 
graduation, which was very comforting to the older generation. Personally, as one with 
some experience of pension funds, he would have liked an appendix on salary scales, but 
perhaps that was asking too much. It was of importance to reconsider from time to 
time the fundamental ideas underlying graduation, which they were so likely to take 
for granted. In helping them to do that, the author had rendered them a great service. 

Mr H. A. R. Barnett, in reply, thanked Mr Tetley for accompanying him so far in 
the paper, but suggested that there was bound to be some correlation between their 
views, since Mr Tetley had been his tutor in the subject. 

In the discussion of Section 11 of the paper, both the opener and Mr Spratling 
seemed to him to be too retrospective in their outlook, and he thought that the President 
agreed with him. Should it be desired to find what table would have been best to use 
over the period of the experience, it would be as well to have equality between the total 
actual and total expected deaths; but, since the experience would never be repeated 
exactly, it was harking back too much to the past to insist on equality. Further, if the 
opener was to be completely guided by financial considerations, he should weight his 
experience by the amounts at risk. When the first and second summations of the 
standardized deviations were made equal to zero, the result was almost exactly the 
minimum-X 2 fit which he had produced. 

On Section 111, there might be a lot in what Mr Daw said about comparing values 
other than 0 and nq. It was not possible to generalize, and it might be a different problem 
every time a graduation was made, but he thought that q would sill be the basic function. 
He was glad that Mr Daw had mentioned duplicates and has supported his plea for 
their exclusion. The data for assured lives were produced in a form which actuaries 
largely shaped for themselves. Sometimes, they had to do their best with data over 
which they had no control, but when they shaped the data themselves they could 
surely so arrange that the problem of duplicates did not arise. 

Mr Elphinstone, in his paper to the Faculty, put forward the interesting conception 
that smoothness was ‘absence of the positive quality, roughness’, which might well 
point the way to a possible statistical basis for the smoothness test, complete with 
significance limits. Just as the sizes of deviations were examined to determine whether 
they amounted to non-adherence, could not a test be devised whereby the sizes of the 
roughnesses would be examined to determine whether they amounted to non-smooth- 
ness? While on that subject, he would ask whether Mr Seal’s all-embracing test also 
included a test for smoothness. 

In 1940, Mr Seal wanted two tests; in 1950, he reduced them to one; and by extra- 
polation, by 1960 he would be relying on intuition-effectively on Tests 2 and 3 of the 
paper, because probably nine times out of ten the intuitive test of a graduation would be 
subconsciously guided by Tests 2 and 3. When Mr Seal and Mr Elphinstone tested 
a graduation, did they not have a surreptitious look to see whether one or two of the 
deviations were or were not in excess of twice their standard error? The tests might be 
rough and ready ; he had tried to make them less rough ; it was because they were ready 
to hand that they always had been, and always would be, applied. 

He agreed with Mr Seal that the items examined by Test 4 had a variance differing 
from the normal. He had avoided reference to the question lest he should appear to 
overdo the justification of his own graduations. He was grateful to Mr Perks for showing 
that the test could do two different things. One was to see whether a particular group 0l 
deviations could have arisen, and the other was what he had done in paragraph 39, 
where the test gave a summary of all the different groups that could be tested that way. 

A good deal had been said about Test 9, but, like so many other tests, it was merely 
a means of indicating distortion. No one or two or even three tests should be taken as 
an absolute test for a graduation; it was desirable to get all the different answers to as 
many questions as possible. In that connexion he quoted from Jeffreys’s Theory Of 
Probability, p. 91 : 

The trouble is that with regard to a large number of data we may want to ask 
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several questions. To some of them the answer will be ‘yes’, to others ‘no ’. But if 
we try to sum up all the information in one number we shall not know what question 
we have answered. It is desirable to arrange the work, when several questions arise 
simultaneously, so as to provide answers to each of them separately. When this is 
done it is still found that the X 2 form persists, but it is now broken up into separate 
parts each of which has its own message. 
With regard to the number of constraints, he admitted that the X 2 test should be 

applied in the theoretically correct way if the graduation were by a Makeham curve. 
But there were dangers if more complicated formulae were used and Kendall’s Advanced 
Theory was taken too literally; for example, if the select data used in the paper were 
fitted by a curve with 40 constants, would it be correct to say that there were only 
9 degrees of freedom, and then to find from the X 2 test that the graduation was satis- 
factory? He would say certainly not. Such a curve could be fitted passing exactly 
through 40 particular values, and without applying any test it could be seen that it 
would be an under-graduation; yet the X 2 test as recommended by Professor Kendall 
would accept the graduation if the remaining 9 values displayed reasonable deviations. 

As he saw it, it was necessary to apply the X 2 test in two ways; first, it should be 
applied without reducing the number of degrees of freedom to test whether the type of 
curve was appropriate ; it could then be applied, in the theoretical way, after reduction 
of the number of degrees of freedom, to test for over-graduation. 

He had completed the minimum-X 2 fit for the ultimate data (see Table 12); it made 
very little difference, except that the test of signs of the adjusted accumulated deviations 
was now satisfactory. He was quite prepared to believe that, as Mr Johnson had stated, 
the probability underlying the test was less than ·3. He had avoided putting it too low, 
again for fear of accepting his own graduation unjustifiably. 

Mr K. J. Burton submitted the following written contribution. 
Whittaker and Robinson state in Calculus of Observations, 4th ed. p. 303 : 

. . . we must remember that the problem of graduation belongs essentially to the 
mathematical theory of probability ; we have the given observations, and they would 
constitute the ‘most probable’ values of u for the corresponding values of the 
argument, were it not that we have a priori grounds for believing that the true values 
of u form a smooth sequence, the irregularities being due to accidental causes which 
it is desirable to eliminate. The problem is to combine all the materials of judgment- 
the observed values and the a priori considerations-in order to obtain the ‘most 
probable ’ values of u. 
In a footnote they draw attention to the remarks of George King in the discussion on 

Sprague’s well-known paper on graduation by the graphical method ( J.I.A. XXVI, 114): 
. . .what was the real object of graduation ? Probably the reply would be, To get 

a smooth curve ; but he did not think that quite correct. To his mind, the reply should 
be, To get the most probable deaths. 

The author of the paper under discussion makes clear in paragraphs 6 and 7 what he 
considers to be the objects of graduation, and I think it is well that these practical 
considerations should be emphasized. There is no important difference between what 
the author says and the remarks which I have just quoted. In making a probability 
judgment we should take account of all the evidence and, as Whittaker and Robinson 
indicate, part of the evidence is constituted by our own knowledge of other mortality 
experiences. 

There is a tendency at the present time amongst statisticians to over-elaborate 
techniques without sufficient consideration whether the material to which the techniques 
are to be applied will bear the assumptions on which the theory rests. Professor Kendall, 
in his recent inaugural lecture, The Statistical Approach (Economica, May 1950), warned 
his audience that ‘we have reached a critical phase in the development of statistical 
method when pure mathematicians looking for something to research on are throwing 
up such a dust that the practical nature of the subject is being obscured and theoretical 
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statistics is in danger of being discredited in the eyes of the more practical man’. AS 
practical men, actuaries will no doubt be grateful to Professor Kendall for what he has 
said. Heterogeneity imposes practical limitations on the extent to which it is possible 
to analyse mortality data. 

In particular, I am not at all sure that it is legitimate to apply the X 2 test to most of 
the graduations with which we have to deal. As 1 understand its application for this 
purpose, the assumption is tacitly made that the ‘actual deaths’ at successive ages are 
themselves uncorrelated. There is no reason to expect that fiddling with the number of 
degrees of freedom will make proper allowance for such correlation, if it is present. 
Since most mortality tables are constructed on the basis of an experience stretching 
over several years the exposed to risk at age x + 1 includes persons who were exposed 
to risk at age x. The deaths which occur amongst the exposed to risk at age x affect the 
constitution of the group of persons exposed at age x + 1. Any aberrations in the 
experience of these persons at age x, which are of a selective character, will be reflected 
in the constitution of the exposed to risk at age x + 1. For example, an epidemic may 
operate to remove the weaker members of the group, or a war may operate to remove 
the stronger. Older exponents of graduation often tended to regard it as a process of 
redistributing the actual deaths and I think this idea played some part in the assumption 
-which the author criticizes-that the expected deaths must be made equal to the 
actual deaths. 

I am not clear what the author has in mind in paragraph 57 where he states that, when 
the X 2 test gives a ‘too good to be true’ result for a graduation by a mathematical 
formula, the result may indicate that the formula has too many parameters. If the right 
number of degrees of freedom has been employed, the X 2 test can never give an 
indication that the number of parameters is too great. That is a matter purely for the 
judgment of the person who is graduating the table. 

In paragraph 97 the author draws attention to the somewhat specious practice of 
retaining too many places of decimals in the expected deaths, and he goes on to question 
the number of places that should be used in the estimation of the Makeham constants. 
For this latter purpose I think the only criterion that needs to be applied is how many 
significant figures it is desired to retain in the commutation columns eventually calcu- 
lated. I do not think the limitations of the crude data condition the number of decimal 
places in the Makeham constants, which are supposed, of course, to relate to a 
hypothetical universe. 

Mr H. A. R. Barnett has subsequently written: 
Mr Elphinstone complains that the section on The purpose of graduation does not go 

far enough. I am bound to agree with him but, as the paper is primarily on tests and 
has already multiplied the allotted span of pages nearly threefold, it is impossible for it 
to go further. For that reason I am grateful to Mr Polman for having described in very 
clear terms the practical purposes of graduation. I agree that my definition of smoothness 
would probably not be applicable to a table of remarriage rates, and this is another 
example of the type of event I had in mind in paragraph 24. 

I agree that the fitting of Makeham to the A 1924-29 data is open to objection, but so, 
apparently, are any graduations of this unruly experience. I cannot, however, agree that 
column (13) of Table 6 proves that the graduated values are too low at the ends and too 
high in the middle ; the deviations themselves (column (5)) show that this is not so. The 
trouble with any consideration of the column of accumulated deviations is that, even 
after adjusting, it perpetuates certain values, and that is why I feel that it can do no more 
than give the merest hint of distortion; I think, also, that Mr Polman’s criticism takes 
no account of the fact that the largest figure in column (13) is 20·41. Similar remarks 
apply to column (13) of Table 11, where, with a much larger exposed to risk, the 
greatest figure is 224·1. Column (8) of that table certainly shows that some waves have 
been severely cut, but that may be a desirable feature of the graduation of the ‘ultimate’ 
data. Consider the age-group 40 to 45 ; the average date of exposure would be about 
12 years after the outbreak of the 1914 war, and the persons exposed to risk in this group 
would have reached the most popular ages for life assurance before 1914; by 1924-29, 
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they would have become a somewhat impaired group by reason of the war, and would 
therefore be expected to experience actual deaths higher than those expected in a hypo- 
thetical universe free from the effects of war. NOW consider the group 32 to 37; many 
of these persons would not have reached the usual ages for assurance by 1914; the war 
would have affected lives of these ages as much as those a little older, but they would 
have been impaired first and selected by the assurance companies later. In other words, 
the age-group 32–37 is a more select group, and it is therefore reasonable that the 
hypothetical universe for ‘ultimate’ lives should show higher rates of mortality. 
Perhaps it should be interpolated here that, especially so far as effects of war are 
concerned, selection never really wears off. The only other group to comment on is 
22–25, which is probably affected by two influences; the first is the presence of childrens’ 
deferred assurances after the vesting date, already referred to in paragraph 135, and the 
second is the fact that rates of mortality tend to decrease to a minimum at age 25. 
However, at these ages mortality is relatively unimportant, and it might be inconvenient 
to start off with decreasing rates. 

If it be a fact that the graduated curve is not sufficiently steep for use for whole-life 
reserves, that is a criticism of the use of the same tables for whole-life and endowment 
assurances— a gnat which has surely been strained at often enough. In many offices the 
whole-life business is now a comparatively small section, and a combined table fitting all 
types of business up to age 65 might well be adequate. When, however, the whole-life 
business is substantial, the steepness of the curve must not be underestimated. I there- 
fore suggest that, for the next standard tables, instead of having the choice of normal, 
heavy, and light as for the A 1924–29 tables, the three published standards should be 
normal, steep and flat. 

The sum of a run of deviations of the same sign has a variance differing from the 
normal, but Mr Seal is incorrect in saying that the variance is larger; the use of the word 
‘variance’ implies that the values are measured from the mean, and it can be shown that 
the variance of the run (as measured from its mean value) is smaller than the normal in 
the ratio ( - 2): . What Mr Seal undoubtedly means is that the expectation of the 
square of the run deviation as measured from zero is greater than the sum of the 
individual variances. 

The following approximation would probably suffice for the Test 4 distribution. 
Consider first a run of two deviations of the same sign. If is approximately constant 
for the two individual ages, the mean run deviation will be 1.6 . The ‘run variance’ 
will be approximately 

whence the ‘run standard error’ is approximately .85 . The testing of a run of two by 
reference to twice its standard error would appear, then, to be applicable if the size of 
the run is compared with 3.3 times the individual . Similarly, for a run of three the 
criterion would be 

times the individual ; for a run of four, 3.2 + 2.4 = 5.6; for a run of five, 4.0 + 2.7 = 6.7; 
and for a run of six, 4.8 + 2.9 = 7.7. A sufficient approximation seems to be that, if there 
are t values in the run, the total run should be compared with 1.1 ( t + 1) times the 
standard error of one value— say the central value— instead of twice the root of the sum 
of the individual variances. 

At the same time, I still agree with Mr Perks that if we ask the question ‘Is a group 
deviation of this size too large if we have no particular reason to expect the whole group 
to be of the same sign?‘, then Test 4, as I have applied it in the paper, will give the 
answer ‘such and such a group may be suspect’, It can indicate where there might be 
room for improvement, but cannot reject outright. 

Most of Mr Seal’s criticisms have already been answered in the course of the 
discussion, but I would say that, even if he were correct that there is usually one test 
preferable to any other, unless he can say ‘always’ instead of ‘usually’, it would not be 
safe to rely on one test only. What Mr Seal calls the multiplicity of tests is aimed at 

assisting, but not supplanting, the use of personal judgment. 
I am interested in Mr Johnson’s remarks on Test 12. I suspected that my estimate of 



72 Graduation Tests and Experiments 
30% for the probability was too high and that my diagram of a possible average cycle 
was too flat. I am not sure whether it would be safe to go as low as his limits, particularly 
since his estimate of the standard deviation of the number of sign changes depends on a 
‘controlled guess‘. However, what he has said indicates that 15% would be a closer 
guess than 30%, and that if the probability were 20% the test would still be on the 
stringent side. The lesson is, of course, that the test itself is somewhat unsatisfactory, 
and that Mr Polman should not be too dogmatic in drawing his conclusions. 

Mr Beard and Mr Burton have cast doubts on the use of the x2 test for mortality data. 
I think it has its use as a summary of all the adherence tests, but it should be regarded 
as that and nothing more. Mr Perks’s hypothetical example, of an experience containing 
exposed to risk of alternately one thousand and one million at successive ages, certainly 
points to the danger of standardizing. The minimum –x2 only gives a ‘best’ fit from one 
particular point of view. I agree that ‘ideal’ is too strong a word. Mr Perks, in this 
discussion, has said ‘why standardize?‘, and in the discussion on Daw’s paper ‘why 
square?’ and I quite agree that a curve fit giving the minimum value to the total 
deviations disregarding sign would be as ideal as any. Unfortunately, although good 
approximate methods have been devised for this sort of fit, so far as I am aware the 
difficulties of a true minimum method have not yet been overcome. I believe they can 
be overcome by a method similar to that described in Appendix 2, but with simpler 
differential coefficients. If so, it would be more satisfactory— and I hope not much 
slower—to find the true minimum than to choose a few values of c and to interpolate. 

I am interested in Mr Beard’s remark to the effect that if, in my illustration of the 
flexible method, I had deducted the second central difference term of Hardy’s formula, 
I should have saved a certain amount of hand-polishing. This is a good lesson for 
students (and others) to learn. 

There is little difference between my own and Mr Beard’s points of view with regard 
to the best type of curve to fit the A 1924–29 ultimate data. Perks’s curve is the simplest 
hypothesis over the whole range of the data, and I should have liked to see such a curve 
as the basis of the standard table. The simplest hypothesis over the range 22–65 is 
Makeham, and I should also have liked to see this curve published. These alternative 
tables would have been useful in view of their differing gradients. 

I am grateful to Mr Tetley for supporting my suggestion that the first and second 
summations of the deviations need not be zero. Surely, if a curve has been fitted making 
the total deviations irrespective of sign approximately a minimum, it does not matter 
whether the positives and negatives exactly balance, provided that the adherence tests 
are satisfied. 

The possibility, mentioned by Mr Burton, of small inverse correlation at adjacent 
ages was fully dealt with in section 7 of Daw’s paper, where he concludes that such 
correlation would be swamped by the random errors. Epidemics are more or less 
recurrent and should be reflected in the mortality curve itself. Wars are a different 
problem; they are not as frequent as epidemics but their effects are felt for longer. 
Since there is a tendency for war risks to be regarded as ‘extra’, I feel inclined to 
suggest a further assumption ( c ) to those stated in paragraph 8, namely that the pro- 
portionate frequency will be that of a sample drawn from a universe which differs from 
the universe from which the observed sample was drawn only in so far as it excludes 
special influences (e.g. wars). My graduation of the A 1924–29 data might be regarded 
as an assumption (c) graduation. 

Mr Burton also takes me to task with regard to the number of degrees of freedom for 
the x2 test, whilst aligning himself with those who would not use this test at all. I dealt 
with this in the discussion. 

I cannot agree that the choice of a curve with a large number of parameters is a matter 
for personal judgment; this would be an easy path to the quicksand of under-graduation. 
I agree that the suggested 40-constant curve is an extreme case; but how would 
Mr Burton decide whether a 10-constant curve would be appropriate? 

Table 12 shows the constants and tests for the true minimum- x2 fit of the data of 
Appendix 3, allowing for the reduction of 3 in the number of degrees of freedom. Even 
though the method may perhaps not be used again, I think it is worth mentioning how 
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the operations described on p. 49 can be shortened. To arrive at my second trial 
I applied formulae (43) to the Appendix 3 fit, but added 20% to all the corrections. 
This ensured an over-correction and, as every gunner knows, it is better to have a bracket 
on a target than to creep up to it. The third trial, found by operations 3( a ) to ( c ), was 
then sufficiently close for formulae (43) to give the exact corrections required, in other 
words it was in the ‘inner region’ where second differentials were, to all intents and 

Table 12. A 1924–29, durations 3 and over, ages 21½ –65½ . Tests of Makeham 
minimum- x2 fit (103A= 1.8764747, 105B =2.0629023, c = 1.1184201685). 
(NOTE: m =44 f =41, f/ m=.9653, duplicates factor taken as 1.4.) 

Test 
no. Criterion Observed Acceptance 

limits 

2 Number of standardized devia- 16 15–29 
tions less than 

.6745 x .9653 = .6511 
3 Number less than 3 0–5 

2x.9653=1.931 

4 Individual groups exceeding Three groups just 
1.93 in excess. 40–45 

well in excess, but 
better than shown 
in Table 11 

Summary of groups None exceeds 
1.1 ( t + 1) 

5 
6 

Sum of deviations regarding sign 
x individual 

- 44.73 Approx. ± 658 
Second sum regarding sign - 868.6 Approx. ± 8000 

7 Sum of deviations disregarding 
sign compared with* .8 npq 

1829 Approx. 1627 ± 395 

Average standardized deviation .85 .77±.18 
compared with .8 x .9653 = .77 

8 x2 46.35 P 30% 
9 Sectional x2 (degrees of freedom 

taken as number of ages x 41/44) 
Ages 41–45 7.84 (4.66 degrees) P 20% 
Ages 48–52 11.21 (4.66 degrees) P 4½ % 
Ages 48–56 15.60 (8.39 degrees) P 7% 

1O Sign-changes of deviations 17 14–29 
11 Signs of deviations 21 +, 23– 15–29 
12 Sign-changes of adjusted accu- 6 

mulated deviations 
6-19 on basis of 
30% (see also 
Mr Johnson’s re- 
marks) 

13 Signs of adjusted accumulated 26+, 17- 14–29 
deviations 

* If the sum is compared with ,77 npq it is found that its size is still acceptable. 

purposes, constant. I have confirmed my figures by applying the method, as described, 
in full. Paragraph 114 is rather misleading because continued use of formulae (43) will 
eventually give the correct answer (probably after about seven trials); it was only when 
I tried short cuts that I went round in circles, until I found the described method which, 
by finding approximately the best A and c for a given B, arrives at the ‘inner region’ by 
a direct route. I mention this because it may be that a ‘minimum deviation’ fit can be 
derived by a similar method, but with simpler functions. I should also mention, in 
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confirmation of one of Mr Burton’s contentions, that to justify six figures in the 
differential coefficients it has been necessary to express A and B to eight, and c to ten or 
eleven significant figures. 

Finally, I should like to express my gratitude for the warm reception given to my 
paper and the many kind words spoken in the discussion. My only regrets are, first, the 
unavoidable absence of Mr Barley and, secondly, that only Mr Daw has voiced his 
support of my plea for the exclusion of duplicates wherever possible; perhaps I may 
also claim that Mr Tetley, who only disagrees with me on details, gives it his tacit 
support. 




