

Postcode clustering

- We are concerned about modelling the postcode effect on mortality. This requires grouping postcodes
- The grouping can be defined by
 - Distant proxies (financial lifestyle)
 - Close proxies (health intuitively better than financial)
 - Mortality itself (ideal if it's possible)
- Our postcode modelling has ended up based around four postcode clusters:
 - -2 mortality-based cuts
 - -1 'healthstyle' cut
 - -1 financial / lifestyle cut

8

Contents

- Introduction
- Data and methodology
- Mortality clustering
- Issues
- Summary of results

Issues with postcode mortality clustering: micro-regions and distance

- What level of 'micro-region' works?
 - Postcode sector can give good results
 - Best results with lower layer super output area
 - This is an NHS grouping, typical population 1,500
- Refining the distance metric
 - In the algorithm shown above, the effect of distance is assumed constant in all areas
 - This does not seem a reasonable assumption: compare one mile of variation in London with one mile in Yorkshire
 - Can introduce extra elements in the distance metric to accommodate this effect
 - For instance, alter the distance between any two areas according to relative density of those two areas

Contents

- Introduction
- Data and methodology
- Mortality clustering
- Issues
- Summary of results

33%
29%
27%
7%
4%
100%

