

Self-assembling insurance claim models using regularised regression and machine learning

Gráinne McGuire Taylor Fry

15 April 2019

Acknowledgements

Joint work by

- Gráinne McGuire, Hugh Miller (Taylor Fry)

- Greg Taylor, Josephine Ngan (University of New South Wales)

- Motivation
- Regularised regression and the LASSO
- Model specification
- Real data example
- Discussion
- Conclusions

Motivation

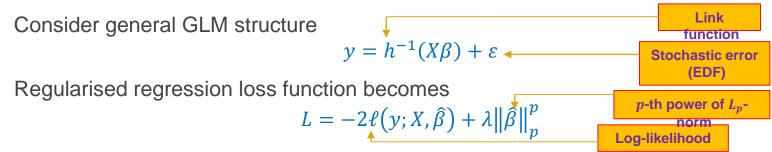
- We consider the modelling of claim data sets containing complex features
 - Where chain ladder and the like are inadequate
- When such features are present, they may be modelled by means of a Generalised Linear Model (GLM)
- But construction of this type of model requires many hours (perhaps a week) of a highly skilled analyst
 - Time-consuming
 - Expensive
- Objective is to consider more automated modelling that produces a similar GLM but at much less time and expense
- Note that we are not discussing stochastic case estimate type of models here those that use individual claim characteristics to produce an estimate of the ultimate loss.
 - Our models mainly use accident, development and payment quarter effects

and Faculty

of Actuaries

- Motivation
- Regularised regression and the LASSO
- Model specification
- Real data example
- Discussion
- Conclusions

Regularised regression and the LASSO



- Penalty included for more coefficients and larger coefficients, so tends to force parameters toward zero
 - $\lambda \rightarrow 0$: model approaches conventional GLM
 - $\lambda \rightarrow \infty$: all parameter estimates approach zero
 - Intermediate values of λ control the complexity of the model (number of non-zero parameters)
- Special case: p = 1, Least Absolute Shrinkage and Selection Operator (LASSO)

$$L = -2\ell(y; X, \hat{\beta}) + \lambda \sum_{j} |\beta_{j}|$$

Favourite ML technique of many - transparent, interpretable model

LASSO: shrinkage and selection

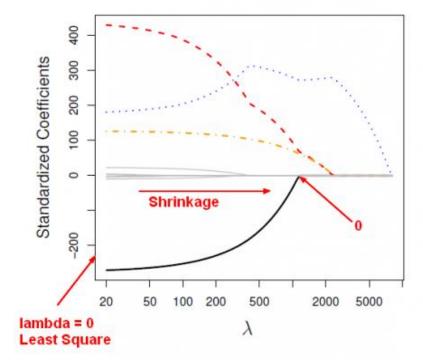


Image sourced from: https://gerardnico.com/data_mining/lasso

- Motivation
- Regularised regression and the LASSO
- Model specification
- Real data example
- Discussion
- Conclusions

Model specification - formulation

- This is where nearly all the effort is what predictors/regressors do we use?
- Consider a n x n triangle labelled by AQ, DQ, PQ
 - Regressors consist of set of basis functions that form a vector space:
 - All single-knot linear spline functions of AQ(k), DQ(j), PQ(t)
 - All 2-way interactions of Heaviside functions of k, j, t
 - AQ splines are
 - max(0, k-1), max(0, k-2),, max(0, k-(n-1))
 - Similarly for DQ and PQ
 - AQ x DQ interactions are
 - I(*k*>1)*I(*j*>1), I(*k*>1)*I(*j*>2),, I(*k*>n-1)*I(*j*>n-1),
 - similarly for AQxPQ and DQxPQ
- Apply similar ideas if other variables available, e.g. operational time

S	pline	
	nction	

Potential collinearity in terms – we will come back to that later but remove/reduce if possible

Model specification - formulation

- Hard part
 - Scaling!
 - $L = -2\ell(y; X, \hat{\beta}) + \lambda \sum_{j} |\beta_{j}|$

Regressors on different scales

Parameters on different scales

- Make standard deviations comparable?
 - Questionable here we only have 3 fundamental regressors. Everything else is derived from these.
- Our approach:
 - Base scaling on the original variables.
 - So (e.g.) all AQ basis functions are scaled by the same amount.

Model selection and performance measurement

- Model selection
 - For each λ , calculate 8-fold cross-validation error
 - Select model with minimum CV error
 - Possibly forecast with extrapolation of any PQ trend especially if your basis functions are collinear
 - Due to misallocation of effects between AQ and PQ (can happen due to including all of AQ/DQ/PQ in the model).
- Model performance
 - Visual, standard actuard vs fitted diagnostics etc
 - Training error [sum of (actual-fitted)2/fitted values for training data set]
 - Test error [sum of (actual-fitted)2/fitted values for test data set] (N.B. unobservable for real data)
- Model fitting (in R)
 - glmnet package for LASSO (glmnet() and cv.glmnet())
 - ggplot2 for graphs

- Motivation
- Regularised regression and the LASSO
- Model specification
- Real data example
- Discussion
- Conclusions

Description of the data set

- Motor Bodily injury (moderately long tail)
- (Almost) all claims from one Australian state
 - AQ 1994M9 to 2014M12
 - About 139,000 claims
 - Cost of individual claim finalisations, adjusted to 31 December 2014 \$
 - Each claim tagged with:
 - Injury severity score ("maislegal") 1 to 6 and 9
 - Legal representation: maislegal set to 0 for unrepresented severity 1 claims
 - Its operational time (OT), proportion of AQ's ultimate number of claims finalised up to and including it

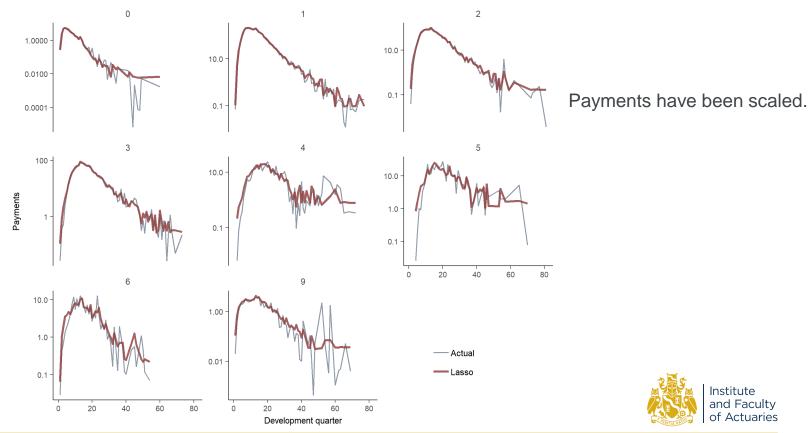
Known data features

- The Civil Liability Act affected AYs ≥ 2003
 - Eliminated many small claims
 - Reduced the size of some other small to medium claims
- There have been periods of material change in the rate of claim settlement
- There is clear evidence of superimposed inflation (SI)
 - This has been irregular, sometimes heavy, sometime non-existent
 - SI has tended to be heavy for smallest claims, and non-existent for largest claims

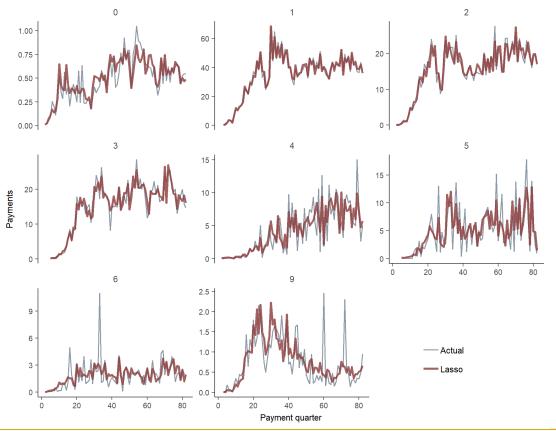
Real data: lasso model

- Lasso applied to the data set summarised into quarterly cells
 - This summary is not theoretically essential but reduces computing time
- Basis functions:
 - Indicator function for severity score (maislegal)
 - All single knot linear splines for OT, PQ
 - All 2-way interactions of maislegal*(OT or PQ spline)
 - All 3-way interactions maislegal*(AQ*OT or PQ*OT Heaviside)
- Model contains 94 terms
 - Average of about 12 per injury severity
- By comparison, the custom-built consultant's GLM included 70 terms
- Forecasts do NOT extrapolate any PQ trend
 - Same basis as GLM forecast

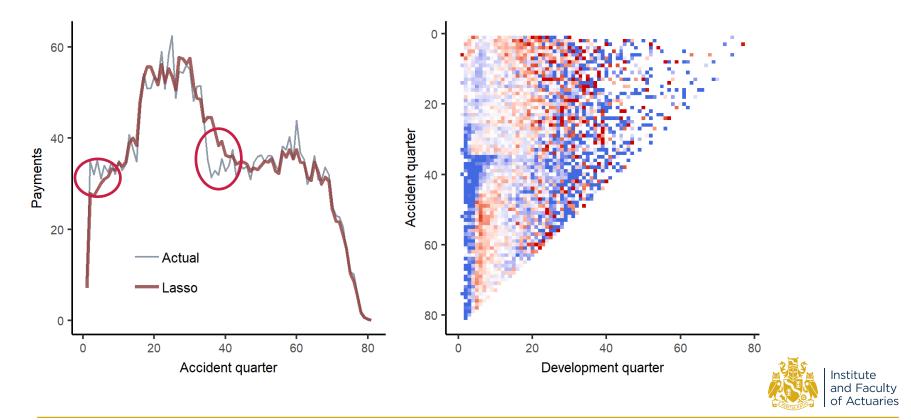
Actual vs fitted - DQ



Actual vs fitted - PQ

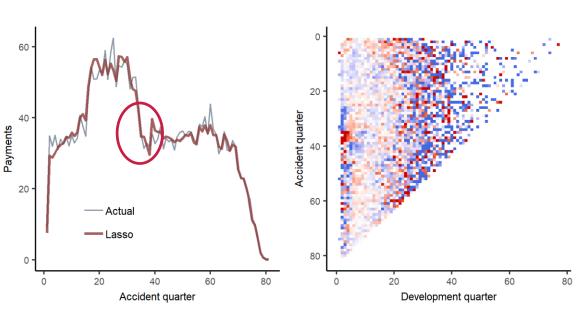


Actual vs fitted – AQ – injury severity 1



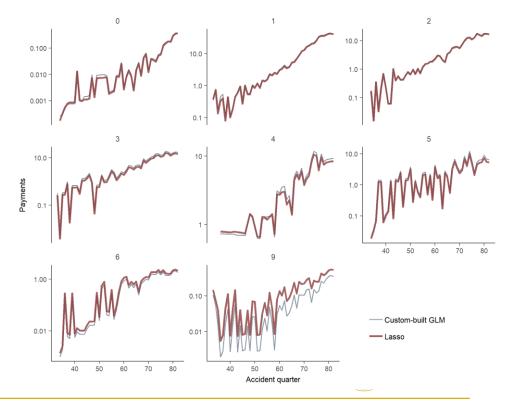
Model misfit: known data features

- Failure of fit results from data features that were known in advance
 - Legislative change affecting AQ ≥ 35
- Perverse to ignore it in model formulation
- Introduce a few simple interactions between injury severity, AQ, OT without penalty
 - Brief side investigation required to formulate these
- Model fit considerably improved



Real data: Human vs Machine

- Same data set modelled with GLMs for many years as part of consulting assignment
 - Complex GLM with interactions for each injury severity
 - Many hours of skilled consultant's time
- Loss reserves from two sources very similar
 - Note that severity 9 is a small and cheap category
 - Some judgemental adjustments in GLM forecasts
- **BUT** consultant's analysis
 - More targeted
 - Less abstract
 - Conveys greater understanding of claim process



- Motivation
- Regularised regression and the LASSO
- Model specification
- Real data example
- Discussion
- Conclusions

Discussion: feature selection

- How many covariates out of AQ, DQ, PQ should be included?
 - Usually at least 2
 - But 3 will generate collinearity
 - Enlarges model dimension
 - May cause mis-allocation of model features between among dimensions
 - So caution before introducing 3
- Make use of feature selection where features are known/strongly suspected

- Implications for forecasting
- Forecasts depend on future PQ effects
 - Should these be extrapolated?
 - How will forecasts be affected by mis-allocation?
- Proposition. Consider data set containing DQ and PQ effects but no AQ effect. Let *M*1 denote model containing explicit DQ, PQ effects but no AQ effect. Let *M*2 denote identical model except that also contains explicit AQ effects. Then, in broad terms, *M*1 and *M*2 will generate similar forecasts of future claim experience if each extrapolates future PQ effects at a rate representative of that estimated for the past by the relevant model.

Discussion: interpretability

- Most machine learning models subject to the interpretability problem
 - Model is an abstract representation of the data
 - May not carry an obvious interpretation of model's physical features
- LASSO models
 - Physical interpretation usually possible, but requires some analysis for visualisation
 - Usually more interpretable than a deep learning model

Discussion: miscellaneous matters

- Prediction error
 - Bootstrap can be bolted onto lasso
 - Preference for non-parametric bootstrap
 - Computer-intensive if min CV chosen separately for each replication
 - Lasso for real data on a laptop
 - 20 minutes without CV
 - 41/2 hours with 8-fold CV
 - Note that run times would significantly improve using parallelisation
 - Bootstrap will include at least part of internal model error, but not external model error

- Model thinning
 - Most appropriate distribution provided by lasso software *glmnet* is Poisson
 - Low significance hurdle
 - Reduce number of parameters by applying GLM with gamma error and same covariates as lasso
 - Model performance sometimes degraded, sometimes not
- Bayesian lasso
 - Lasso can be given a Bayesian interpretation
 - Laplacian prior with λ as dispersion parameter
 - Software (Stan) then selects λ according to defined performance criterion

- Motivation
- Regularised regression and the LASSO
- Model specification
- Real data example
- Discussion
- Conclusions

Conclusions (1)

- Objective was to develop an automated scheme of claim experience modelling
- Routine procedure developed
 - Specify basis functions and performance criteria
 - Then model self-assembles without supervision
- Tested against both synthetic and real data, with reasonable success
 - Lasso succeeds in modelling simultaneous row, column and diagonal features that are awkward for traditional claim modelling approaches
- Procedure is applicable to data of any level of granularity

Conclusions (2)

- Some changes of unusual types may be difficult for a self-assembling model to recognise
 - If these are foreseeable, a small amount of human supervision might be added with minimal loss of automation
- Standard bootstrapping can be bolted on for the measurement of prediction error
 - Uniquely, this can be formulated so as to incorporate part of model error (internal systemic error) within estimated prediction error
- As with any form of unsupervised learning, strong back-end review and model validation is recommended

Questions afterwards

- Contact:
 - grainne.mcguire@taylorfry.com.au
- Paper available at

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3241906

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

