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Abstract

Pooled annuity funds pay an income for life to their members, by pooling directly the
members’ longevity risk together. It is well known that the more members in the fund,
the less volatile are the income payments to the members. However, this is true only
as long as the members are independent and identical copies of each other.

A group of heterogeneous members, who are of different ages and have different
amounts of money in the fund, have a higher income volatility than a same-sized group
of homogeneous members. A measure of heterogeneity is proposed and studied in
conjunction with a measure of income volatility.

Despite heterogeneity increasing income volatility, the effects are in general small.
The general rule that pooling more participants together is better, regardless of their
characteristics, is still broadly supported. It is only in a fund with very heterogeneous
participants that restrictions on the membership should be considered, such as capping
the amount of money that an individual can bring to the fund.

Keywords: tontine; longevity risk; mortality; retirement; decumulation.

1 Introduction
Pooled annuity funds provide their participants with a retirement income for life. They do this
by pooling directly the longevity risk of their participants. Just like in life annuities and defined
benefit pension schemes, deaths among the shorter-lived subsiside payments to the longer-lived. A
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key difference with the former structures is that there is no life insurance or sponsoring employer
between or behind the participants. Instead, the participants are exposed to the volatility of deaths
in the fund, which manifests itself through volatility in the income paid to the participants. The
relationship between how the collective characteristics of the fund’s participants affects the income
volatility is the focus of this paper.

Structures in which longevity risk is pooled directly among participants have increasingly gained
industry and academic interest in recent years. Various ways of doing longevity risk-sharing have
been proposed. Some of these work for single-cohort pools in which every member is an independent
and identical copy of each other (for example, Milevsky and Salisbury 2015; Stamos 2008) and some
are intended for multi-cohort pools (for example, Piggott et al. 2005; Stamos 2008; Sabin 2010;
Qiao and Sherris 2013; Donnelly et al. 2014; Milevsky and Salisbury 2016). There is heterogeneity
among the participants in the latter funds since successive cohorts age and have different amounts
of money in the fund, according to what has occurred.

Denuit and Robert (2021) present various fair linear risk-sharing rules, and a conditional mean
risk-sharing rule and study their convergence. Weinert and Gründl (2021) derive a distribution to
model the longevity credits paid from the pooled annuity fund, rather than modelling directly the
mortality experience of the pool of participants.

Milevsky and Salisbury (2015) calculate the payout from a pooled annuity fund which maximizes
the expected discounted value of lifetime consumption. The optimal payout to participants varies
according to the utility-maximization problem considered, which can also be observed in Chen
et al. (2020, 2021) who use the approach of Milevsky and Salisbury (2015).

Some authors calculate what proportion of the funds of those who have died should be received by
each participant – whether explicitly (Stamos, 2008; Sabin, 2010; Donnelly et al., 2014) or implicitly
(Piggott et al., 2005; Qiao and Sherris, 2013). Both of these explicit and implicit schemes then use
an annuity value to calculate the income paid out. Here, an explicit rule is used to share out the
funds of those who have died.

Due to a pooled annuity fund being akin to a life annuity without the implicit financial and
mortality guarantees, a study of the demand for pooled annuity funds compared to life annuities is a
natural one. It has been studied by authors such as Piggott et al. 2005; Valdez et al. 2006; Donnelly
et al. 2013; Hanewald et al. 2013; Milevsky and Salisbury 2016; Chen et al. 2021. The results show
that pooled annuity funds become increasingly preferred to life annuities as the loadings on life
annuities increase. Additionally, the attractiveness of pooled annuity funds increases as the risk
aversion of the retiree reduces. Retirees who are less risk averse are happier to bear the volatility
of pooled annuity funds in exchange for their higher expected return.

The income paid from a pooled annuity fund is volatile whereas the income paid under a conven-
tional life annuity contract is not. Some investors may prefer to switch their pensions savings to a
life annuity at some future age, as they prefer the income stability of an annuity contract at higher
ages. Chen et al. (2018) study this problem, considering an individual receiving income from a
pooled annuity fund up to some fixed age, followed by income from a deferred life annuity. They
determine the optimal age at which to switch between these contracts, with optimality determined
using a CRRA utility function-based criterion.

Bequests are another important area of research, since many individuals value a death benefit
which can be used by their dependents. This is studied by various authors in different settings,
such as Bernhardt and Donnelly (2019); Dagpunar (2021); Zhou et al. (2021); Chen and Rach
(2022).

Turning to the literature most relevant to the study of this paper, Bernhardt and Donnelly (2020)
calculate how income stability is affected by the number of homogeneous members – who share the
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same characteristics – in a single cohort fund. They propose a measure of income stability which
is applied here. They derive an analytical expression that can be used to determine for how many
years is the income stable in a pooled annuity fund, for a given number of members. A numerical
study of the same results, seen in Bernhardt and Donnelly (2021, Figure 2), shows that at least
2 000 participants are needed to eliminate most of the idiosyncratic longevity risk.

Bernhardt and Qu (2022) extend the study to a heterogeneous fund, in which some of the
members are wealthier than the others. In all other aspects, members are identical and the setting
is again a single cohort fund. They again derive an analytical expression that can be used to
determine for how many years is the income stable. In the analytical expression, a measure of
heterogeneity is observed. Their study then focuses on determining criteria for when a particular
collection of members should stay in a large fund rather than form smaller but homogeneous funds
to be beneficial.

Qiao and Sherris (2013) study systematic longevity risk in a pooled annuity fund. They find
that allowing a pooled annuity fund to remain open improves income stability. This illustrates
again the general rule of pooled annuity funds: the more members, the better. While their charts
show income falling gradually over time, this is likely due to the life annuity value used to calculate
the income paid out, being discordant with the calculation of the longevity credit rather than a
feature of pooled annuity funds.

Donnelly (2022) also studies systematic longevity risk, studying the question of how many mem-
bers are needed to join an open fund each year, to have sufficient longevity pooling. She finds that
if around 100 homogeneous members, most of the idiosyncratic longevity risk is eliminated. In a
study of the distribution of income paid to each cohort, she finds that cohorts experience a similar
outcome, in terms of the distribution of income, with the exception of the last cohorts. The last
cohorts to join the fund have a similar experience up until the time when they are old. At that
point, there are no new cohorts to join to continue to diversify idiosyncratic longevity risk. The
last cohorts are, in effect, in a version of single cohort fund when they are old. These observations
motivate a study of only single cohort funds in this paper.

The structure of the pooled annuity fund is set out in Section 2. The definitions of a measure of
heterogeneity and a measure of income volatility are discussed in Section 3. Section 4 shows the
numerical results and the conclusion is in Section 5.

2 The pooled annuity fund structure

2.1 Participants in the fund

Suppose there are N cohorts who join the fund, with N ∈ N. Cohort m joins at integer time
m when they are integer age x > 0 years old, for m = 0, 1, . . . , N − 1. The assumption that all
members in a cohort are the same age is removed in one of the numerical simulations. However, it
is notationally easier not to allow for this relaxation.

Each cohort is further sub-divided into two groups: a rich and poor group. The rich group
members have the same mortality as the poor group members, but will bring more money to the
fund. At integer time n ≥ 0, there are L(m,k)(n) members of group k ∈ {rich, poor} and cohort
m ∈ {0, 1, . . . , N} in the fund. Noting that the time that cohort m joins the fund is time m, let
L(m,k)(m) > 0 for each group k ∈ {rich, poor} and cohort m ∈ {0, 1, . . . , N}.

The future lifetimes of the participants are independent random variables. The mortality of each
survivor follows a known mortality table. As the focus is on establishing a relationship between
a measure of heterogeneity in the fund and the stability of income payments, a simple mortality
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distribution is used. It is assumed that the mortality distribution faced by each survivor depends
on their current age only.

2.2 Participants’ fund value and income payments

Each new participant who belongs to cohort m and group k brings an amount F (m,k)(0−) > 0
units to the fund. Their money is deposited into an account that is, until the participant’s death,
ring-fenced for the participant.

The account value of each participant changes over time as investment returns and longevity
credits are earned and as income is paid out. Investment returns and longevity credits are added
to the account values at the end of each year, just before income payments are made. The account
value of a surviving participant in cohort n and group k ∈ {rich, poor} is modelled by a stochastic
process, which has value F (m,k)(n) at time n ≥ m, for m = 0, 1, . . . , N .

Let kpx be the probability that a life age x years survives for k ≥ 0 years. Using a constant
interest rate i effective per annum,

äx =
∞∑

k=0
(1 + i)−k

kpx

represents the expected present value of a payment of 1 unit per annum, paid annually in arrears
to a life who is currently age x years.

The amount of income paid out to a participant in cohort m and group k when they first join
the fund at time m, is

C(m,k)(m) = F (m,k)(m−)/äx.

his leaves an amount F (m,k)(m) = F (m,k)(m−) − C(m,k)(m) units in the participant’s account,
which is then invested over the next year. Investment returns are earned at the constant effective
rate i per annum on the entire fund value. The calculation of the longevity credit, M (m,k)(n),
which is the amount earned at time n ≥ m due to the sharing out of the account values of those
who have died over (n − 1, n], is detailed in Section 2.4.

At integer time n > m, the income paid to a survivor of cohort m and group k, who is age
x + n − m, is calculated as

C(m,k)(n) = (1 + i) F (m,k)(n − 1) + M (m,k)(n)
äx+n−m

. (1)

Then the fund value at time n > m of each survivor in cohort m and group k is

F (m,k)(n) = (1 + i) F (m,k)(n − 1) + M (m,k)(n) − C(m,k)(n).

No longevity credit is paid to and no income is paid out at integer time n to a participant
who dies over the time period (n − 1, n]. Instead, the accumulated amount in their account,
(1 + i) F (m,k)(n − 1), is shared out among the surviving participants at time n, as detailed in
Section 2.4, as a longevity credit.

2.3 Motivation for the expression of the longevity credit

The next step is to allocate the funds of those who have died among the survivors, in the form of
a payment called a longevity credit. The amount of longevity credit paid to a participant ℓ has
the general form

Total account values released by deaths

× Account value of participant ℓ × Probability assigned to participant ℓ∑
All surviving participants k Account value of participant k × Probability assigned to participant k

.
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To assign a probability to participant ℓ, consider the implied expected longevity credit in the
calculation of the expected present value of the life annuity. Suppose the life has an account value
of amount äx units at age x. Assuming the life survives to age x + 1, their account value will have
accumulated to amount (1 + i) (äx − 1) units at age x + 1.

Since the life should have an amount

äx+1 =
∞∑

k=0
(1 + i)−k

kpx+1

at age x + 1, to expect to continue to pay them 1 unit per annum annually in arrears, the implied
longevity credit is

äx+1 − (1 + i) (äx − 1) = 1 − 1px

1px
(1 + i) (äx − 1) .

In standard international actuarial notation, px := 1px and qx := 1 − px. Thus the probability
assigned to a participant ℓ at age x + 1 years is qx/px. This means that the probability used to
calculate the longevity credit at age x + 1 reflects the mortality risk assessment from age x to age
x + 1. More generally, if the longevity credit is done over the time period (n − 1

m , n] then the
probability assigned to a participant ℓ when calculated at age x + n is 1

m
qx+n− 1

m
/ 1

m
px+n− 1

m
.

For the calculations in this paper, using qx/px to calculate the longevity credits will lead to a
distribution of the funds released by deaths that is consistent with the income calculation, which
uses the expected present value of future payments.

2.4 Longevity credit calculation

Let G(n) represent the total account value at integer time n of all the participants who died in the
time interval (n − 1, n], i.e.

G(n) =(1 + i)
n−1∑
m=0

(
L(m,poor)(n − 1) − L(m,poor)(n)

)
F (m,poor)(n − 1)

+ (1 + i)
n−1∑
m=0

(
L(m,rich)(n − 1) − L(m,rich)(n)

)
F (m,rich)(n − 1).

The account values of the recently deceased are just after investment returns have been credited at
time n. The longevity credit added and income deducted at time n are excluded since the recently
deceased benefit from neither.

Based on the risk-sharing rule outlined above, the longevity credit awarded at integer time n to
a surviving member of cohort m ∈ {0, 1, . . . , n − 1} and group k ∈ {poor, rich} is

M (m,k)(n) = G(n)

×
qx+n−m

px+n−m
(1 + i)F (m,k)(n − 1)∑n−1

m=0
qx+n−m

px+n−m
L(m,poor)(n)(1 + i)F (m,poor)(n − 1) +

∑n−1
m=0

qx+n−m

px+n−m
L(m,rich)(n)(1 + i)F (m,rich)(n − 1)

.

The amount of longevity credit M (m,k)(n) increases as the amount of money released to the
survivors by recent deaths increases. Additionally, a participant gets a greater proportion of the
money released by deaths as

• Their chance of dying increases as qx+n−m increases. This follows from the term qx+n−m

px+n−m
=

qx+n−m

1−qx+n−m
increasing in value with qx+n−m; and

• Their account value at time n, (1 + i)F (m,k)(n − 1), increases.
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The more money a participant stands to lose when they die and the more likely they are to die,
the higher the longevity credit they receive upon survival.

The amount of longevity credit is volatile, as it depends on who has died in the pool and when
they die. The question of quantifying how the volatility relates to the profile of the participants –
their mortality rates and account values – is studied next.

3 Relating volatility to heterogeneity
The income paid out in a pooled annuity fund fluctuates over time. There are two sources of the
fluctuations: investment returns and mortality rates. Difference in the experience of these factors
from what is assumed in annuity values like äx, which is used to calculate the income, results
in variations in the income paid out to participants. Here, investment returns are fixed so that
experienced mortality rates are the only source of fluctuations.

Experienced mortality rates differing from their expected values results in volatility in the income
paid out to participants. The differences manifest themselves directly via the longevity credit
payments. The calculation of the expected longevity credit in the annuity value is shown in
Section 2.3 and the actual longevity credit is exhibited in Section 2.4. The former assumes perfect
pooling and a homogenous group of participants who all have the same account values and same
chance of dying. The latter’s value depends on who died over the last time period in the fund and
the value of their accounts.

It would appear that the more participants in the pooled annuity fund, the better in terms of
reducing income volatility, through a general appeal to the Law of Large Numbers. With more
participants to pool their longevity risk together, the more likely it is that the expected value of
longevity credits are received in practice.

However, the situation is more nuanced than it appears at first blush, as is shown in Bernhardt
and Qu (2022). If all participants have future lifetimes which can be modelled as independent and
identically distributed random variables, and they bring the same amount of wealth to a pooled
annuity fund, then, indeed, the more participants the better (Bernhardt and Donnelly, 2020). With
increasing numbers of participants, the longevity credits paid to the surviving participants will be
closer to their limiting expected value. From a risk perspective, the random fluctuations element
of longevity risk is reduced as the number of members in the pooled annuity fund increases.

However, adding members who are different to the other – homogeneous – participants changes
that result. Adding someone who is different in some way increases instantly the random fluctu-
ations element of longevity risk. For example, suppose a group of 500 identical members, each
with an account value of 10 000 units, experience a 2% annual volatility in their income due to
longevity risk. Adding 50 people, who each have an account value of 100 000 units, causes the
income volatility to increase to over 3%. In fact, this new group of 550 people, of whom 10%
have ten times the account value of the others, experiences the same volatility as a group of 185
identical people.

On the other hand, an open pooled annuity fund also results in an inhomogeneous membership.
When there is a constant flow of new members, joining at the same age, then the results of Donnelly
(2022) suggest that the level of income volatility is fairly constant across cohorts as long as the
fund stays open. It is only the last cohorts to join who experience an increasing level of income
volatility. The earlier-joining cohorts die off, leaving the last cohorts pooling longevity risk with
an ever-decreasing number of members.

The main questions examined in this paper are as follows.
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• How does heterogeneity among the participants affect the income paid out?

• What are the main drivers of the heterogeneity which affect the income paid out?

• Can a measure of heterogeneity predict future income volatility?

To study the questions, both a measure of heterogeneity and a measure of volatility of the income
need to be defined. Begin by considering what has been studied in the academic literature on the
measure of heterogeneity within a pooled annuity fund.

3.1 Measure of heterogeneity

A measure of heterogeneity calculates a value for how ‘spread out’ are the participants, in some
sense. Donnelly et al. (2014) propose a measure that arises naturally from considering the volatility
of account values which arises from longevity pooling. As their setting is in continuous time, an
adjustment is required to their proposed measure to make it suitable for the discrete-time setting
in this paper. Specifically, while a mortality rate is used in the continuous time setting, this is not
appropriate in a discrete-time setting.

Define a measure of heterogeneity at time n for each member of cohort g ∈ {0, 1, . . . , min{n, N −
1}} as

H(g)(n) := qx+n−g

px+n−g

∑min{n,N−1}
m=0

∑
k∈{poor,rich} L(m,k)(n)

(
F (m,k)(n)

)2 qx+n−m

px+n−m(∑min{n,N−1}
m=0

∑
k∈{poor,rich} L(m,k)(n) F (m,k)(n) qx+n−m

px+n−m

)2 (2)

at time n = 0, 1, 2, . . .. The higher the value of H(n), the more heterogeneous is the membership
and the higher the volatility in the longevity credits. It quantifies the spread of wealth among the
participants, adjusted by their chance of dying. The measure is derived from the volatility of a
participant’s account value that arises from longevity risk-sharing. Donnelly et al. (2014) simplify
the expression but do not investigate the usefulness of the measure.

The expression H(n) proposed here as a measure of heterogeneity has deliberate analogies with
the form of the longevity credit. In particular, the ratio qx+n−m

px+n−m
, which replaces the mortality rate

used in the original version in Donnelly et al. (2014) .
Versions of the heterogeneity measure emerges naturally in the study of Bernhardt and Donnelly

(2020) and Bernhardt and Qu (2022), through the study of a measure of income volatility. It is
extremely simplified in the setting of Bernhardt and Donnelly (2020), since their setting is a single
cohort fund in which all participants have the same initial account value and future distribution
of deaths. The study in Bernhardt and Qu (2022) is discussed in more detail below.

In the numerical study in Section 4, only the value of H(g)(0) is considered. Examining the
evolution of {H(g)(n) : n = 0, 1, 2, . . .} in, for example, a single cohort fund shows that it is
extremely small for most of the surviving cohort’s lifetime. It begins increasing to very high levels
when there are few members left alive. At the same time, income volatility climbs up too.

However, as shown in Bernhardt and Qu (2022), the value of H(g)(0) can be used to predict
the future income volatility, at least in a single cohort setting. The study here looks at more
membership profiles than in Bernhardt and Qu (2022), to see if the result continues to hold.

Example 3.1. To understand the measure H(n) better, consider a single cohort fund (N = 1)
in which there all members are independent and identical copies of each other. Initially, there are
ℓ(0) > 0 participants in the fund. At time n = 1, 2, . . ., there are ℓ(n) surviving participants at
time n, who each have account value F (n). The heterogeneity measure at time n = 0, 1, 2, . . .,

H(n) = 1
ℓ(n) .
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Since all participants bring the same account value, there is no explicit dependence on the account
values in H(n). Similarly for the chance of dying.

First consider the behaviour of H(0) for funds with different single cohorts. The higher the
number of participants ℓ(0), the lower the heterogeneity measure. With more people with whom to
pool longevity risk, the stream of longevity credits is more stable. The stream of longevity credits
are more volatile due to volatility in the number of deaths.

Next consider the behaviour of H(n) for a given single cohort fund over time. The value of H(n)
increases in the single cohort fund as time n increases. As time goes on, fewer of the original
cohort survive and there are fewer people in the fund to pool their longevity risk together.

3.2 A measure of income volatility

Next turn to defining a measure of income volatility. It is assumed here that participants want
their income to be close to their initial income. Reductions in income below the initial income are
undesirable. It is assumed that participants are not concerned by increases in their income above
the initial income.

The number of years for which the income stays above a specified lower bound can be used to
assess this objective. The lower bound is a specified fraction of the initial income paid out to
a particular group of participants. The income must stay above the lower bound in a specified
number of future scenarios. This definition is proposed in Bernhardt and Donnelly (2020) and
studied further in Bernhardt and Qu (2022). In both these papers, a mathematical relationship is
established between a measure of heterogeneity among the participants and the measure of income
volatility.

Suppose the number of years for which the income paid to participants stays above α times the
initial income, where α ∈ (0, 1), is tracked. For example, α = 0.95 means that the income stays
above 95% of the initial income. This could be done by projecting the income in future scenarios.
From the projections, the highest number of years for which the income is stable can be calculated
for each future scenario. For example, in one scenario, the income may stay above 95% of the
initial income for 18 years, before falling below it in hte 19th year. In another, the income may
stay above 95% of the initial income for 23 years, before falling below it in the 24th year.

The maximum number of years for which the income stays above the specified lower bound
across 100β% of the future scenarios, for β ∈ (0, 1], can be calculated from these projections. For
example, suppose β = 0.9. In each of the 100 future scenarios, the highest number of years for
which the income is above 95% of the initial income has been calculated. In 90 of these scenarios,
the income stays above the lower bound for 21 years or more. In the remaining 10 scenarios, the
income stays above the lower bound for less than 21 years. In this simple example, the income is
stable for a maximum of 20 years, for α = 0.95 and β = 0.9.

Generalising the definition in Bernhardt and Donnelly (2020) to the multi-cohort setting, the
income paid to cohort m and group k ∈ {poor, rich} is stable until integer time t(m,k) if

P
[
C(m,k)(n) ≥ αC(m,k)(m), for n = m, m + 1, . . . , t(m,k)

]
≥ β.

The amount C(m,k)(m) is the initial amount of income paid to participants of cohort m and group
k. The event

[
C(m,k)(n) ≥ αC(m,k)(m), for n = m, m + 1, . . . , t

]
is the set of future states of the

world in which the income paid to these participants stays above α times the initial income for
t − m years. For example, α = 0.95 means that in these future states of the world, the income
paid to those participants never falls below 95% of the initial income in the first t − m years of
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payments to them. The entire expression means that the event should hold in at least the fraction
β of all future states of the world.

For a single cohort fund in which all participants have the same future distribution of deaths,
the income is stable for the same number of years, regardless of their individual account values.
Since they have the same mortality distribution, their account values remain locked in the same
ratios over time. However, once participants have different mortality distributions, their income is
stable for a different number of years. This may be occur in the setting of either an open fund or
a single cohort fund.

Having introduced the mathematical notation to study heterogeneity and income stability, the
results of a numerical study are presented next. It is seen that ‘the more, the merrier’. In general,
higher numbers of participants outweigh the disadvantages of heterogeneity.

4 Numerical study
The numerical study begins with a single cohort fund, first examining the results for a homogeneous
membership before moving onto one in which members have different account values. These settings
have been studied in Bernhardt and Donnelly (2020) and Bernhardt and Qu (2022). However,
unlike those papers, the focus here is on the value of the heterogeneity measure and how it can be
used to determine the number of years for which the income is stable.

The closing of a multi-cohort fund is also studied. While the fund remains open, income volatility
remains constant over successive cohorts to join the fund. New entrants keep the income volatility
low as is studied in Donnelly (2022). Once the fund closes to new members, the level of hetero-
geneity in the fund will increase over time. As shown in Donnelly (2022), the last members to
join the fund bear the highest levels of income volatility. When the last cohorts join, there is –
in general – sufficient pooling of longevity risk in the fund. However, as they reach old age, the
earlier generations have died off. The last cohorts are left pooling own longevity risk with mostly
themselves. The amount and frequency of longevity credits increases for the longest-live of the last
cohorts. Hence the volatility of their account values and income increases, too.

For this reason, the study of a multi-cohort fund is restricted to the time at which the fund
closes to new members. The closure situation can analysed using a single cohort fund, in which
participants in a single cohort are of different ages and have different account values. The ages,
numbers and account values are chosen to mimic their expected values in a multi-cohort fund which
had just closed to new members.

4.1 Single cohort fund with homogeneous participants

Consider a single cohort fund in which all participants have the same account value and are all age
x. All participants have the same distribution of deaths.

The focus is on how the measure of heterogeneity at time 0 relates to the maximal number of
years for which the income is stable. From Example 3.1, the measure of heterogeneity in a single
cohort fund in which all participants are independent and identical copies of each other is

H(0) = 1
ℓ(0) .

A relationship between H(0) and the number of years T for which the income is stable is proved
in Bernhardt and Qu (2022). Recall that α is the fraction of the initial income above which the
income should stay, to remain stable. The value β determines the proportion of future scenarios
in which the income is stable for a given number of years.
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Bernhardt and Qu (2022) show that a close approximation T to the maximal number of years
for which the income is stable satisfies

T qx =
(

1 + H(0)
(

1 − α

α

)2 (
Φ−1

(
1 − β

2

))2
)−1

, (3)

in which T qx is the chance of someone age x years dying within the next T years and Φ−1 is
the inverse of the standard normal distribution function. The approximation holds for any single
cohort fund in which all members are the same age and have the same distribution of deaths.

The idea is to evaluate the right-hand side of the expression, which can be done once the values of
α and β are chosen and using the composition of the membership at time 0 to calculate H(0). The
value obtained represents the proportion of the membership who obtain a stable income for T years,
given that the members join the fund at age x. Additionally, the value obtained is independent
of the chosen mortality distribution of the participants. Then, having chosen a suitable mortality
distribution, the value of T can be calculated by finding the T which gives the same value of T qx

as the right-hand side of the expression. Through a numerical study, Bernhardt and Qu (2022)
show that the expression results in a very close approximation to T .

The value of the approximation (3) is two-fold. First, it avoids having to do numerical simu-
lations of the future income in order to determine T . Second, it shows that it is the measure of
heterogeneity H(0) that determines T . Two different membership profiles may look different in
terms of the numbers of members and account values. But if they have the same value of H(0) then
they will have the same number of years for which the income is stable, as long as the participants
have the same distribution of deaths and there is only one cohort in the fund. Bernhardt and Qu
(2022) do not study directly the value of H(0) compared to the number of years for which the
income is stable. Rather, it is used to determine when it is beneficial for a heterogeneous group to
form one single fund or else smaller, more homogeneous, funds.

To study the value of H(0) compared to the number of years for which the income is stable,
choose

x = 65, β = 0.9, and the life table is S1PMA.

Table 4.1.1 shows the maximal number of years for which the income is stable, under three different
lower bounds, when the approximation (3) is applied in the single cohort setting with all members
being independent and identical copies of each other. For example, when there are initially 100
members in the fund, all age 65, the income does not fall below 90% (α = 0.9) of the initial income
for at least 15.9 years, in 90% of future scenarios.

The values in Table 4.1.1 are the benchmark values, for a single cohort fund in which all members
are the same age. How do they change when heterogeneity is introduced?

4.2 Single cohort fund with two groups

Consider another fund in which there is again a single cohort, but two groups within that cohort.
At time 0, there are ℓpoor(0) poor participants, who each have account value F poor(0), and ℓrich(0)
rich participants, who each have account value F rich(0).

Since all participants are assumed to have the same distribution of deaths and join at the same
age, the measure of heterogeneity (2) at time 0 reduces to

H(0) :=
ℓpoor(0) (F poor(0))2 + ℓrich(0)

(
F rich(0)

)2

(ℓpoor(0) F poor(0) + ℓrich(0) F rich(0))2
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T for T for T for
ℓ(0) H(0) α = 0.8 α = 0.9 α = 0.95
100 0.01000 23.2 15.9 7.7
200 0.00500 26.1 18.1 10.4
500 0.00200 30.7 23.2 15.3

1 000 0.00100 32.6 26.1 19.4
2 000 0.00050 34.7 29.5 23.8
5 000 0.00020 36.6 32.6 27.7

10 000 0.00010 37.2 34.8 29.1

Table 4.1.1: Maximal number of years for which the income is stable, in a single cohort fund in
which all participants have the same distribution of deaths, are the same age and have the same
account value. The level of certainty is β = 0.9.

First fix the total number of participants who join the single cohort fund, so that ℓpoor(0) +
ℓrich(0) = 1 000. The values of H(0) are calculated in this two-group setting, to see how they
relate to the one-group setting. This particular membership profile is studied in Bernhardt and
Qu (2022) but they have a different goal; to see if it is better for one of the groups to not pool
their longevity risk with the other group.

Suppose that some of the 1 000 initial participants each bring 100 units to the fund; this is the
poor group. The remainder of the 1 000 participants form the rich group. They each bring twice
the amount of money as the poor group’s members, each bringing 200 units. All participants are
the same age when they join and have the same distribution of deaths. Table 4.2.1 shows the
maximal number of years for which the income is stable, when the certainty level is 90%.

Broadly, the heterogeneity measure is fairly similar across the considered groups. Consequently
the maximal number of years for which the income is stable are also fairly close in value. For
example, the income is above 90% of the initial income for over 26 years in 90% of future scenarios,
for all the listed groups in Table 4.2.1. The maximal number of years for which the income is
stable, increases only slightly as the number of poor members increase. Effectively, even though
the rich members are twice as rich as the poor members, the level of heterogeneity increases only
slightly.

The value of H(0) can be easily calculated at the time the single cohort joins the fund. Yet it
can be used to determine the maximal number of years for which the income is stable. It is seen
from Table 4.2.1 that, since there are only very small changes in the value of H(0), the maximal
number of years is very similar across the different memberships.

As the relative wealth of the rich members increases, for a fixed number of rich members, the
heterogeneity measure H(0) increases (Figure 4.2.1a). While this means that income becomes
more volatile, the decrease in the number of years for which the income is stable is not as dramatic
as the lines in Figure 4.2.1a may suggest. For example, consider a fund in which 400 of the 1 000
members are in the rich group, but the rich group members have the same account value as the
poor members. In that case, the income stays above 90% of the initial income in 90% of scenarios
for 26.1 years (since H(0) = 0.001 for this membership, the number of years can be read off Table
4.1.1). If the members of the rich group each had 12 times the account value of each poor members
– justifying their label of being rich – then the heterogeneity measure doubles to H(0) = 0.002.
However, the number of years for which the income is stable falls to 23.2 years (again, found by
reading off Table 4.1.1 at the row for which H(0) = 0.002), a less dramatic change.
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Number of Number of
poor rich T for T for T for

ℓpoor(0) ℓrich(0) H(0) α = 0.8 α = 0.9 α = 0.95
0 1 000 0.00100 32.6 26.1 19.4

250 750 0.00106 32.7 26.4 19.7
500 500 0.00111 32.9 26.6 20.0
750 250 0.00112 32.9 26.6 20.0

1 000 0 0.00100 32.6 26.1 19.4

Table 4.2.1: Maximal number of years for which the income is stable, in a single cohort fund in
which there is a poor group and a rich group. Each member of the rich group has twice the account
value of each member of the poor group. All participants have the same distribution of deaths and
are the same age. The level of certainty is β = 0.9.

The value H(0) = 0.002 is the same as for a homogeneous fund in which there are 500 identical
members (see Table 4.1.1). In this example, the 600 poor members would have a lower heterogeneity
value H(0) if they formed their own pooled fund, excluding the 200 rich participants. Bernhardt
and Qu (2022) focus their analysis on these type of cases. Adding heterogeneous members may, if
there are not enough heterogeneous members added, increases the measure of heterogeneity H(0).
They develop a criterion to decide when it may be in the interests of a group not to pool their
longevity risk with others.

The heterogeneity measure H(0) appears to fall as the number of rich members increases in the
fund in which the total number of members is fixed, as demonstrated by the relative position of
the lines in Figure 4.2.1a). However, this is not entirely true as Figure 4.2.1b shows.

Figure 4.2.1b, a similar chart to Bernhardt and Qu (2022, Figure 3), shows that the heterogeneity
measure H(0) peaks when 10%-20% of the fund membership is rich. It is observed that the higher
the account value of the rich group relative to the poor group,

• the greater the heterogeneity value H(0) and hence the shorter the time for which the income
is stable, and

• the smaller the number of rich members needed to maximize the heterogeneity.

Figure 4.2.1b also suggests that, to have significant changes in the value of the heterogeneity
measure, requires extreme heterogeneity among the membership. Additionally, even if the hetero-
geneity measure doubles from H(0) = 0.001 to H(0) = 0.002, the number of years for which the
income is stable in 90% of scenarios reduces by 3 to 4 years, depending on the value of α.
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Figure 4.2.1: Heterogeneity measure H(0) in a single cohort fund in which there are a total of 1 000
members. These 1 000 members are divided into a poor group and a rich group. Figure 4.2.1a
shows how H(0) varies as the relative wealth of the rich group increases, for a given number of rich
people in the fund. Figure 4.2.1b shows how H(0) varies as the number of members in the rich
group increases (and hence as the number of poor members decreases), for a given relative wealth
multiple.

4.3 Closure of a pooled annuity fund

Now consider the situation of an open pooled fund that has just closed to new entrants. Suppose
that, up to now, a new cohort consisting of a constant number of homogeneous participants had
joined each year. Until the fund closed, it would have had a constant level of heterogeneity across
its cohorts, more or less. Interpreting the results of Donnelly (2022), the first cohorts to join the
fund would have higher levels of heterogeneity as there are few people in the fund. However, as the
fund become increasingly mature, with new members joining every year, the level of heterogeneity
would decrease.

The position of the fund at the point of closure can be represented by single cohort fund with
an appropriately chosen membership. It is assumed here that the single cohort consists of 30 sub-
groups. The members of each sub-group have the same age and account value. Each sub-group
can be identified by the age of its constituents, which ranges from age 65 to age 94. The account
value of each member is commensurate with their age, being calculated as 100äx, if their age is x

years at time 0. There are 100 members age 65, ⌊100p65⌋ members age 66, ⌊1002p65⌋ members age
67, and so on. In total, there are 1823 members in this single cohort fund at time 0 when the life
table S1PMA is used.

For such a fund, the measure of heterogeneity given in equation (2) is adapted slightly. With
K = 30 subgroups, let x(k) represent the age of members of group k. In group k at time 0, there
are ℓ(k)(0) members, who each join with account value F (k)(0). Then the measure of heterogeneity
applying to each member of group k at time 0 is

H(k)(0) :=
qx(k)

px(k)

∑K
m=0 ℓ(m)(0)

(
F (m)(0)

)2 qx(m)
px(m)(∑K

m=1 ℓ(m)(0) F (m)(0) qx(m)
px(m)

)2 .

Note from the expression for the measure of heterogeneity that H(k)(0) × px(k)
qx(k)

is constant for all
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Group Number in Account T for T for T for
k Age group value H(k)(0) α = 0.8 α = 0.9 α = 0.95
1 65 100 2946 0.000149 31 26 21
2 66 98 2767 0.000166 30 26 21
3 67 97 2597 0.000186 29 25 20
4 68 97 2435 0.000186 29 24 19
5 69 97 2281 0.000186 28 24 19
...

...
...

...
...

...
...

...
29 93 11 401 0.003862 6 5 2
30 94 8 375 0.004312 5 4 2

Table 4.3.1: Maximal number of years for which the income is stable, in a single cohort fund in
which participants have different ages and account values. However, all participants have the same
distribution of deaths at each age. Only a selection of the membership profile is shown, as it
extends down to age 94. The level of certainty is β = 0.9.

k. This means that the value H(k)(0) × px(k)
qx(k)

is a measure of heterogeneity across a particular
membership.

The benchmark membership profile

The question is: does the measure of heterogeneity correspond to the maximal number of years for
which the income is stable? The results of Bernhardt and Qu (2022) cannot be applied here. In
fact, using wrongly their approximation results in a large over-estimation of the maximal number
of years for which the income is stable.

Instead, the maximal number of years must be calculated using a simulation. This was done
using the statistical software package R. As the simulation was done on an annual basis, the
maximal number of years calculated from the simulations are integers.

The maximal number of years for this particular fund, in which all members of the same age have
the same account value, is shown in Table 4.3.1. It is observed that, as the heterogeneity measure
increases, the maximal number of years decreases. The lower maximal number of years is due to the
shorter future lifetimes of the older members. It is also calculated that H(k)(0) × px(k)

qx(k)
= 0.013065

for this particular membership.
This membership profile is the benchmark one. A benchmark is require since there is no ap-

proximation on which to calculate the maximal number of years for which the income is stable.

Heterogeneity within an age group

Now consider adding in further heterogeneity. Suppose that the age groups are further divided
into rich and poor, with the rich subgroup four times as wealthy as the corresponding poor sub-
group. Additionally, there are three times as many rich people in each subgroup as the number of
poor people. In total, there are 1 802 members in the studied fund, comparable to the first fund
considered which had only homogeneous age groups.

The results obtained earlier suggest that adding in wealth heterogeneity should reduce the max-
imal number of years for which the income is stable by a couple of years. In particular, the study
of a single cohort fund in which there is only a rich group and a poor group, and all members are
the same age, shows that the measure of heterogeneity increases when rich and poor are mixed
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Number of Number of
Group rich in poor in T for T for T for

k Age group group H(k)(0) α = 0.8 α = 0.9 α = 0.95
1 65 75 25 0.000175 30/29 26/25 21/21
2 66 73 24 0.000195 29/28 25/25 20/20
3 67 72 24 0.000219 29/27 24/24 19/19
4 68 72 24 0.000245 28/27 24/24 19/19
5 69 69 23 0.000275 27/25 23/23 18/18
...

...
...

...
...

...
...

...
29 93 8 2 0.004552 5/2 4/2 2/1
30 94 6 2 0.005082 4/2 3/2 2/1

Table 4.3.2: Maximal number of years for which the income is stable, in a single cohort fund in
which participants have different ages and account values. Each age group is divided into a rich and
poor subgroup, with the rich members having four times the account value of the poor. However,
all participants have the same distribution of deaths. The maximal number of years for which the
income is stable is shown as the values for rich/poor, for each value of α. Only a selection of the
membership profile is shown, as it extends down to age 94. The level of certainty is β = 0.9.

(Figure 4.2.1). However, there was only a modest decrease in the maximal number of years for
which the income is stable, of around 0.5 years.

In this fund of whom about three-quarters of the membership have four times the account
value of the remaining one-quarter, the value of H(k)(0) × px(k)

qx(k)
= 0.015398, for all k. This is a

higher value than for the fund in which all members of the same age have the same amount of
wealth (0.013065). Since this fund with many rich members is more heterogeneous, it would be
expected that the maximal number of years for which the income is stable is lower. The numerical
simulations verify this (Figure 4.3.2).

Allowing the number of rich members in each age subgroup to decline, similar results are ob-
tained. For example, when half the members are rich and half are poor, the fund becomes even
more heterogeneous. This mirrors the results in the single cohort funds studied, in which all
members had the same age (for example, see Figure 4.2.1).

In this fund in which half the members are rich and half are poor, H(k)(0) × px(k)
qx(k)

= 0.0180486,
for all k). As this is a higher measure of heterogeneity compared to the previous two funds, it is
expected that the maximal times for which the income is stable are lower. Again, the numerical
simulations verify this. For example, the maximal times are mostly up to one year lower than the
values in Table 4.3.2.

Decreasing the proportion of rich members to be one quarter of the membership, it is calculated
that H(k)(0)× px(k)

qx(k)
= 0.020720, for all k. The numerical simulations again verify that the maximal

times for which the income is stable decline with this higher level of heterogeneity, being around 1
year less than the values in Table 4.3.2.

However, despite the increase in heterogeneity, the decline is not large in terms of the maximal
number of years for which the income is stable. The impact of mixing rich members and poor
members does not appear significant.
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5 Conclusion
Members of a pooled annuity fund will differ in many ways, from their ages to their account values.
For the manager of a pooled annuity fund, the question arises as to: do the differences matter? A
measure of income volatility is used to study these differences. The number of years for which the
income stays above some specified fraction of the initial income is used as the measure.

It seems to matter less on what each members brings to the fund in terms of account values. It
is only when there is a small subgroup of extremely wealthy members that there is a large impact
on income stability for all members. This can be dealt with by, for example, not allowing them
to join or capping the amount of money they can bring to the fund. However, this should only be
used in the most extreme cases of heterogeneity among the membership.

With moderate levels of heterogeneity, as would be the case in most funds, there is a modest
reduction in the number of years for which the income is stable. It is likely that, with the incor-
porate of random investment returns, the reduction would contribute a relatively small part to
income volatility.

Heterogeneity among the membership of a fund does not have a very large impact on the income
stability. It does have some impact, but this should be small for typical membership profiles.
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