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INSURANCE FUNCTIONS, ANNUITIES AND NET PREMIUMS 
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ABSTRACT 

The paper presents an application of the Markov chain as a tool for the calculation of life 
contingencies functions (e.g. assurance, annuity, net premium, policy value functions) arising from a 
multi-state model which represents the transmission and development of HIV and AIDS. The 
transmission model advocated by the Institute of Actuaries AIDS Working Party is modified and 
simplified and then applied to derive explicit formulae for these standard life contingencies functions. 
This investigation allows a thorough review of the properties of these functions to be conducted and 
assists with the calculation of premiums and reserves in the presence of HIV and AIDS. 
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I. INTRODUCTION 

AT the Twenty-Third International Congress of Actuaries, Hoem (1988) gave an 
invited lecture entitled ‘The Versatility of the Markov chain as a tool in the 
mathematics of life insurance’. It is proposed here to explore the use of this tool 
for the calculation of life insurance functions in the presence of HIV and AIDS. 

The model put forward by the Institute of Actuaries AIDS Working Party 
(Daykin et al, 1988, 1990) is used as a representation of the transmission and 
spread of AIDS among male homosexuals. 

The paper will thus contain few new ideas. It relies heavily on the early sections 
of Hoem (1988) and also on an excellent paper by Ramsay (1989) which explored 
similar themes for models of AIDS transmission, developed for the Society of 
Actuaries and being used in the United States of America. A full review of such 
transmission models is provided by Haberman (1990). 

2. INSTITUTE OF ACTUARIES AIDS WORKING PARTY MODEL. 

The Institute of Actuaries AIDS Working Party, of which the author is a 
member, has presented a mathematical model representing the transmission of 
HIV and the spread of AIDS. The model has been widely published and full 
details can be found, for example, in Daykin et al. (1988). 

The Institute of Actuaries Working Party model is similar to many of the other 
mathematical models described in Haberman (1990). However, because of the 
emphasis on applying this model to assessing the effect of HIV and AIDS on life 
insurance underwriting, life insurance premiums and reserving (as well as 
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permanent health insurance and pension provision), the focus of this actuarial 
model has been different. The model follows on from the terms of reference of the 
Working Party—these include: “To show the potential impact of HIV on 
mortality and morbidity and the implications for the use of existing actuarial 
bases and standard tables for premium rating and reserving.” Actuaries require 
such a model to be age-specific, in order to consider the progress of individuals of 
a given age and sex through future calendar years, to consider the longer-term 
trend in transmission and to produce numerical results (although not necessarily 
by analytical means). Thus, equilibrium models would be of less interest. It is also 
important for the model to reflect the type of data that would normally be 
available to an insurance company. 

For the above reasons, the Working Party’s model is age-specific, and the 
resulting numerical complexity has meant that elements that depend on detailed 
assumptions about sexual behaviour have been avoided. 

The model belongs to the family of stochastic processes that have been 
introduced by others, but it addresses male homosexuals only. Each cohort (of a 
single age) is dealt with independently of other cohorts. It is assumed that 
infection occurs from a contact between two individuals within a single age 
group. This assumption is artificial, but, if infections between those of different 
ages balance out, it may be considered to be a reasonable representaton of reality. 
The transition intensities between states are allowed to vary with attained age 
and time. The model allows for immigration of susceptibles and for normal 
mortality as well as for extra mortality from AIDS. 

A further simplification is the assumption that all those males described below 
as being ‘at risk’ of infection behave in the same manner at any one time, so that 
the chance of infection depends on the age of the individual at risk and the 
particular calendar year, but not on any sub-division according to frequency of 
sexual contact or frequency of change of sexual partner. 

The members of one cohort at age x may be in any one of the distinct states that 
are indicated in Figure 1. Five of these are live states: ‘clear’, ‘at risk’, ‘immune’, 
‘positive’ and ‘sick from AIDS’. There are up to six dead states, which may be 
kept separate simply to show the live state that someone died in. The dead states 
include: ‘dead from positive’, ‘dead from sick (other than from AIDS)’ and ‘dead 
from AIDS’. It may not be possible to distinguish between the last two 
categories, but calculated deaths other than from AIDS of those who suffer from 
AIDS are comparatively trivial. 

Those in the clear state are those whose assumed sexual activity is such that 
they run no risk whatever of becoming infected with HIV. They form the 
‘normal’ pre-AIDS population for comparative purposes. Those in the at risk 
state are treated as exposing themselves to the risk of acquiring HIV infection by 
reason of sexual contact with infected people. Those in the immune state are 
assumed to have acquired HIV infection and to be infectious, but to be wholly 
immune from becoming sick from AIDS or dying from AIDS. 

Those in the positive state are HIV seropositive, but not yet sick from AIDS; 
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Figure 1. Outline of Institute of Actuaries AIDS Working Party model. 

they are infectious and not immune. It is assumed that it is possible to distinguish 
between those who are HIV seropositive and those who are sick from AIDS. In 
reality, there are several stages in the transition from HIV infection to death from 
AIDS. Those who are suffering from AIDS are thought to be highly infectious, 
but it is possible that their sexual activity may be considerably reduced. The 
model makes it possible to choose whether those sick from AIDS are treated as 
contributing to further infections or not. 

It is assumed that the current age is part of the status, and that transition 
intensities can all vary by current age. In addition, since each age cohort (or year- 
of-birth cohort) is treated separately, each transition intensity can also be varied 
by calendar year, so that each cohort has its own set of transition intensities. 

Duration since entry to the states immune, positive and sick from AIDS 
are also relevant to the transition intensities. This duration is denoted in each 
case as z. 

Possible transitions are as shown in Figure 1. Those in any of the live states 
may die, and those who are sick from AIDS may die from AIDS or from causes 
other than AIDS. Those who are at risk may change their behaviour and become 
clear, for example, by giving up sexual activity altogether, or by restricting 
themselves to one equally monogamous partner. There is no representation in 
the model of transfer from clear to at risk. Those who are at risk may become 
infected, and at that point are immediately allocated either to the immune state 
or to the positive state, in proportions that may depend on age (and on calendar 
year, although it seems unlikely that this would actually exercise any influence). 

Those in the positive state may become sick from AIDS, if they do not die first. 
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Infection is possible from the immunes, positives and sick to the at risk. 
The Working Party has proceeded by setting up a complex series of ordinary 

and partial differential equations for the probabilities of survival in a state and of 
transition between states, and then solving these equations by numerical 
methods, given assumptions about the form of the various transition intensities. 

3. MODIFIED AIDS MODEL 

Given the earlier discussion, it is proposed to modify the Working Party 
Model and to simplify it. 

Firstly, the ‘immune’ state is removed: as is done in practice by the AIDS 
Working Party in all of its numerical simulations (see Daykin et al. 1988, 1990). 

Secondly, the viewpoint is changed from that of the population as a whole to 
that of an individual male at risk who is considered to progress from state to state 
over time. Thus, we are concerned, not with the spread of HIV in a population, 
but with the outcome for a particular individual. 

Thirdly, it is assumed that all transition intensities are constants, independent 
of attained age, duration in current state and secular time. We acknowledge that 
this assumption contradicts the earlier discussion which explained the impor- 
tance of these variables, in particular attained age, to an actuarial assessment of 
the effects of HIV and AIDS on survival prospects. Two arguments can be put 
forward to support this seemingly ‘extreme’ assumption: 

(a) The magnitude of the AIDS-related transition intensities is such as to 
outweigh the ‘normal’ age-related mortality risk. Indeed, many of the AIDS 
Working Party simulations published do assume intensities that do not vary 
with respect to age. 

(b) The desire to reach some analytical results does require, at least initially, 
some heroic assumptions. We believe that the results are of value, although 
perhaps not yet for direct application in pricing and reserving formulae. 

It is worth noting that similar assumptions have been made in the context of 
U.S. actuarial investigations of the impact of AIDS, for example Panjer (1988). 

Fourthly, it is assumed that the transition intensity from at risk to seropositive 
is constant and does not depend on the numbers of persons infected: again a 
simplifying assumption made to make the resulting mathematical manipulations 
tractable. As noted by Daykin et al. (1990), a constant transition intensity from 
at risk to seropositive would be consistent with the exponential development of 
new cases of AIDS in the early stages of the epidemic. To allow for the effect of 
heterogeneity of risk and behavioural change, it would be reasonable to postulate 
an intensity that decreases with time as the epidemic develops. However, this 
assumption is not pursued here on the grounds of mathematical tractability. 

It is then possible to calculate numerically standard life insurance, annuity, net 
premium and policy value functions, as discussed in the subsequent sections of 
this paper. The investigations reported here would be of value in underpinning 
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Figure 2. Modified AIDS model. 

actuarial decisions on pricing and reserving for life insurance. The impact would 
be indirect because, for example, pricing would currently need to be based on 
cash flow considerations (as well as on present values), which allow for realistic 
assumptions and the cost of capital tied up in the setting aside of reserves 
calculated on a more stringent basis. 

It is clear that the resulting financial functions (e.g. in standard 
notation) will be complex functions of the underlying transition intensities in the 
multi-state model. The sensitivity of the actuarial functions to changes in these 
transition intensities can be explored numerically using computer-based calcula- 
tions. However, it would be helpful to have some clear picture of the sensitivities 
from an analytical route—in the same way that actuarial students learn, for 
example, about or (Neill, 1977, Chapter 6). The explicit formulae 
obtained will enable such partial differentials to be derived. 

Figure 2 depicts the modified version of the model, with states that, for 
convenience, have been reduced in number to 5, and with the corresponding 
transition intensities. 

It is proposed to use a continuous time Markov process to represent the 
transitions. Thus, a person in state 0 is subject to a constant force of progression 
out of state 0 into state 1, out of state 0 into state 3 and to a constant force of 
mortality out of state 0 into state 4. For a person in state 1, the possible 
transitions are to states 2 and 4. For a person in state 2 or 3, the transitions are to 
state 4 only. Once a life leaves a state it cannot return to that state. Clearly, the 
result is a Markov process, similar to the combined multi and single decrement 
models discussed in Neil1 (1977, Chapter 9), in respect of marriage and mortality. 

The constant transition intensities are as depicted in Figure 2, viz.: 

i= force of progression from state i to state (i+1) for i=0, 1 

µi= force of mortality while in state i for i=0, 2, 3 

v0 = force of progression from state 0 to state 3. 
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Since the forces of progression remain constant while an individual is in any 
state, a ‘memoryless’ property exists. This means that the length of time already 
spent in the current state has no effect on the future length of time that the person 
will remain in this state. This permits us to speak in terms of the future time spent 
in a state without having to condition on the amount of time already spent in the 
state. 

4. DERIVATION OF ACTUARIAL FUNCTIONS 

4.1 Transition Probabilities 
As Ramsay (1989) points out, there are a number of ways of setting up 

equations for the required probabilities, actuarial functions and so on. Our 
general approach is to use the Chapman Kolmogorov backward system of 
difference-differential equations (Grimmett & Stirzaker, 1982, Chapter 6). 
Because the transition intensities are assumed to be constant, we obtain simple 
recursive solutions to these equations. 

Assume that insurance is issued to a life in state i at the time of issue, i.e. at t = 0. 
Denote this life by [i]. 

Let pij(t) be the probability that [i] will be alive t years from now and be in state 
j. The backward system of equations is derived by considering the interval 
(0, t+h] as being made up of the subintervals (0, h] and (h, t+h] and then letting 
h → 0. The complete set of equations for the pij (t) is thus: 

where for convenience we have introduced and 
These lead, as h → 0, to a set of difference-differential equations as follows: 
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(1) 

Since pij(0)= δ the Kronecker delta with δ ij=1 if i=j 
= 0 otherwise 

we have that for i= 0, 1 

for i=2,3 (2) 

Given the solutions for pii(t), it is possible by successive substitution to solve each 
of equations (1) in turn. 

For example: 

where: 

Similarly, it can be shown that: 

(3) 

(4) 

where: 
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where: 
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(5) 

(6) 

where: 

4.2 Probabilities of Dying and Life Expectancy 
Let qij(t) be the probability that [i] will die in state j within the next t years. 
Then: 

enabling these terms to be evaluated. Let qi(t) be the probability that [i] will die 
within the next t years, then: 

where Si denotes the appropriate set of j for a given i, for example S0=(0, 1, 2, 3), 
but S2=(2). qi(t) can be determined either from the above summation or 
by writing down the Chapman-Kolmogorov backward equations directly for 
q,(t). Let Ti(d) be the future lifetime until death for a life currently in state i. 

Then let be the life expectancy for a life now in state i. 
Then 
A recursive procedure for determining can be set up by introducing Di for the 

event that the life progresses to the next live state and for the complement of 
this event. 

Then 
The following expressions are derived in Appendix I. 
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(7) 

4.3 Assurances, Annuities and Premiums 
With subscript i referring to [i] at t = 0, we now define the following financial 

functions where the standard actuarial notation has been adapted to fit with the 
current context: 

Ai(t) = net single premium for a t year continuous temporary insurance of sum 
insured 1 unit. 

Ei(t) = net single premium for a t year pure endowment of 1 unit. 

ai(t) = present value of a t year continuous life annuity of 1 per annum. 

Ai(t) is to be thought of as the expected value of a function of a random variable. 

Let: 

Then Ai(t)=E(Gi(t)). Similarly Ei(t) and ai(t) can be referred to as expected 
values of functions of random variables. 

It should be noted that with Ai(t), Ei(t), ai(t) being regarded as expectations of 
underlying random variables, it would be of interest to derive expressions for the 
corresponding variances. Thus, just as A,(t) = E(Gi(t)), it can be shown that: 

where Ai(2)(t) is calculated as for Ai(t), but at twice the force of interest. 
Similarly with ai(t)=E(Hi(t)): 

The details would follow the derivations in Forfar & Waters (1986). It would 
be possible to extend this discussion to incorporate a stochastic interest rate 
model—for example, independent and identically distributed random variables 
as in Frees (1990). 

Then, using an approach again based on the Chapman–Kolmogorov 
equations we have that: 
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Writing vh as it is then possible as h → 10 to rewrite these 
equations as a system of difference-differential equations, viz.: 

(8) 

The last 2 of these equations are similar in format to the corresponding 
standard formula for dAx/dx; see Neill (1977) equation (6.1.5). 

With boundary conditions Ai(0)=0, we can solve as follows: 

(9) 

(10) 

where A10, A11 and A12 are constants with the following expressions in terms of 
the basic parameters: 
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where A00, A01, A02, A03 and A04 are constants as follows: 

The backward equations for Ei(t) are derived similarly. 
Thus for i=0: 

Also: 

As before, writing vh as and letting h → 0 leads to: 

with boundary conditions Ei(0) = 1. 
Hence 

(12) 
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The explicit solutions for E0(t) and E1(t) are: 

which can be evaluated as before. 
For ai(t) we can proceed as for Ai and Ei. Thus, for i=0 the backward 

equations lead to: 

Thus a set of difference-differential equations can be derived by letting h → 0. 
VIZ.: 

with boundary conditions ai(0)=0. 
The reader should compare these expressions with the corresponding standard 

life table results from Neill (1977) e.g. equation (6.1.4). 
Thus: 

These last two integrals can be evaluated as before. 
The reader can check that premium conversion relationships of the form 

also hold in these circumstances. 
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Corresponding results for whole life insurances can be obtained by letting 
t → ∞ . 

Given the full formulae for functions like Ai(t), Ei(t), ai(t) it is straightfor- 
ward to derive expressions for their partial differentials with respect to key 
underlying parameters. For example, it is straightforward to show that: 

Appendix II lists for completeness the full expressions for Ai(t) for i=0, 1, 2, 3. 
Given the development so far, it is clear that with estimates of the parameter 

values v0, λ i, µi we could calculate net premiums for various simple life insurance 
contracts, e.g. for an n-year endowment assurance on a fully continuous basis the 
net premium would be: 

and for a term insurance policy: 

4.4 Numerical Examples 
As an illustration, we give in this section some numerical values for A0(t) and 

A1(t) for different combinations of some of the key parameters. 
Following Daykin et al. (1990), we choose µ2=0·35 and take µ0=µ1= 

µ3=0·001 throughout (being approximately equivalent to the value for µx for a 
male aged 30–34 according to English Life Tables No. 14). 

Then Table 1 gives values for the single premiums for a t-year temporary 
insurance issued to a life HIV positive at outset for different values of λ 1 and 
Tables 2 and 3 consider a life at risk at outset: Table 2 explores values for the 
single premiums at different levels of v0 and λ 0 (for fixed λ 1 and ), while Table 3 
considers the case of different levels of λ 1 and (for fixed v0 and λ 0). It might be 
useful to compare these single premiums with those that would be obtained from 
conventional life contingencies for a life anticipated to experience a constant 
µx=0.001, viz.: 

t years 

1 2 3 4 5 10 I5 

=0·01 0·00099 0·00198 0·00295 0·00391 0·00486 0·00947 0·01382 
=0·05 0·00097 0·00190 0·00278 0·00362 0·00441 0·00783 0·01048 
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Table 1. 

Period t 
(yrs) 

1 
2 
3 
4 
5 

10 
15 
20 

Table 2. 

Period t 
(yrs) 
1 
2 
3 
4 
5 

10 
15 
20 
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Sample temporary insurance single premiums for life HIV positive at 

inception (state 1) 

µ0 = µ1 = µ3 = 0·001 µ2 = 0·35 

= 0·01 = 0·05 

1= 0·01 0·05 0·10 0·15 1= 0·01 0·05 0·10 0·15 

0·0025 0·0086 0·016 0·023 0·0025 0·0084 0·016 0·022 
0·0075 0·029 0·054 0·077 0·0071 0·027 0·051 0·073 
0·014 0·056 0·1034 0·1461 0·013 0·052 0·096 0·1357 
0·022 0·087 0·1593 0·2218 0·020 0·079 0·1446 0·2015 
0·030 0·1208 0·2173 0·2978 0·026 0·1072 0·1930 0·2650 
0·074 0·2875 0·4753 0·6032 0·059 0·2311 0·3854 0·4935 
0·1172 0·4232 0·6454 0·7683 0·086 0·3139 0·4896 0·5950 
0·1563 0·5253 0·7461 0·8468 0·105 0·3649 0·5405 0·6345 

Sample temporary insurance single premiums for Life at risk at in 
(state 0) 

µ0 = µ1 = µ3 = 0·001 and µ2 = 0·35 
1 = 0·01 = 0·01 

v0 = 0 v0 = 0·025 v0 = 0·05 
0 = 0·05 0·10 0·15 0 = 0·05 0·10 0·15 0 = 0·05 0·10 
0·0010 0·0011 0·0011 0·0010 0·0011 0·0011 0·0010 0·0010 
0·0022 0·0023 0·0025 0·0022 0·0023 0·0025 0·0022 0·0023 
0·0035 0·0041 0·0046 0·0035 0·0040 0·0045 0·0035 0·0040 
0·0052 0·0063 0·0073 0·0051 0·0062 0·0072 0·0051 0·0062 
0·0071 0·0090 0·0107 0·0070 0·0089 0·0105 0·0069 0·0087 
0·0209 0·0297 0·0365 0·0202 0·0285 0·0350 0·0196 0·0275 
0·0407 0·0585 0·0707 0·0382 0·0549 0·0665 0·0362 0·0517 
0·0640 0·0907 0·1070 0·0587 0·0834 0·0992 0·0543 0·0773 

inception 

0·15 
0·0011 
0·0025 
0·0045 

Table 3. Sample temporary insurance single premiums for life at risk at 
inception (state 0) 

µ0 = µ1 = µ3 = 0·001 and µ2 = 0·35 
0 = 0·10 v0 = 0·05 

Period t 1 = 0·01 = 0·05 
(yrs) = 0·03 0·05 0·07 0·09 1= 0·03 0·05 0·10 

1 0·0010 0·0010 0·0010 0·0010 0·0011 0·0012 0·0015 
2 0·0023 0·0022 0·0022 0·0022 0·0029 0·0036 0·0051 
3 0·0039 0·0038 0·0036 0·0035 0·0057 0·0075 0·0119 
4 0·0059 0·0056 0·0054 0·0051 0·0095 0·0132 0·0217 
5 
10 

0·0082 
0·0243 0·0216 

0·0078 0·0073 
0·0192 

0·0069 
0·0171 

0·0142 
0·0467 

0·0203 
0·0692 

0·0342 
0·1155 

15 0·0432 0·0363 0·0307 0·0261 0·0813 0·1191 0·1894 
20 0·0612 0·0490 0·0396 0·0324 0·1098 0·1576 0·2391 

0·0071 
0·0103 
0·0337 
0·0629 
0·0926 
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4.5 Reserves 
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Consider the prospective net loss random variable Li at the time of issue of an 
n-year continuous term insurance policy to an individual in state i at time 0. 

Then: 

where i(n) is the corresponding net premium, Ai(n)/ai(n) in our notation as 
above. 

A corresponding formula can be set down for Lij(t), the prospective net loss at 
time t, given that the life is in state j at time t( < n) i.e.: 

Then we introduce the net premium reserve at time t, given that the life is in stage j 
at time t, Vij(t), as: 

If the status of the life at time t is unknown, then we denote the net premium 
reserve at time t as Vi(t) where: 

i.e. 

Vi(t) = pr[(i) is in state j|i alive at time t]Vij(t) 

by the laws of conditional probability. 
Difference-differential equations for Vij(t) can be derived using the methodo- 

logy exploited earlier. The solutions could lead to expressions for Vi(t) from the 
above. The details are presented in Appendix III. 

5. CONCLUDING REMARKS 

The simple approximations presented here enable explicit formulae to be 
derived for the present values of assurance and annuity functions, as well as 
net premiums and policy values, for lives in the ‘high risk’ groups. Where 
appropriate, variances can also be estimated. It is hoped that these approxima- 
tions will assist the life insurance actuary in gaining a ‘feel’ for the effect of HIV 
and AIDS on the values of such actuarial functions. 

The presentation can be made more realistic, and hence more complex, in a 
number of different ways: for example by including normal mortality rates which 
are functions of attained age, by including a transition from the ‘clear’ state back 
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to the ‘at risk’ state (from ‘3’ to ‘0’), by allowing the transition intensities in the 
model to vary with age and duration as in the full AIDS Working Party Model. 

It should be noted that the case v0 = 0 leads to equations which are equivalent 
to those derived by Ramsay (1989). 
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APPENDIX I 

DERIVATION OF LIFE EXPECTANCY FORMULAE 

Let Ti be the future time spent in state i before leaving alive to enter the next 
state in the progression. For i= 0, this refers to either state 1 or 3. For i= 1, this 
refers to state 2. 

Let T'i e the future time spent in state i before immediate transition to state 4 
(i.e. death). 

Let T(d)i be the future lifetime until death for a life currently in state i. 
Let Di represent the event that the life in state i progresses alive to the next state 

in the progression. 
Let i represent the event that the life dies in state i. 

Then: 

D0 can be subdivided further according to whether the life progresses to state 1 
or state 3, i.e. D0=D01 D03. 
Then: 
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Hence: 
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APPENDIX II 

NET SINGLE PREMIUMS FOR A CONTINUOUS TEMPORARY INSURANCE 

The following are the full expressions for Ai (t) for i = 0, 1, 2, 3, as referred to in 
Section 4.3. 

where: 

where: 

and 

where: and 
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APPENDIX III 

DERIVATION OF EXPRESSIONS FOR THE NET PREMIUM RESERVES 

This gives the derivation of expressions for Vij(t) as referred to at the end of 
Section 4.5. 

where the terms on the right hand side can be interpreted successively as the 
premium and interest income, the net amount at risk if death occurs in state 0 and 
the net amounts at risk for progressing to states 1 or 3. 

The corresponding equation in conventional life contingencies would be: 

which is attributed widely to Thiele (Hoem, 1988). 
Correspondingly we may derive the following: 




