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1. An Overview of Modelling of Medical Data

1.1. Introduction.
Several approach and analytical methods have been proposed in literature when it

comes to analysis of medical data, especially for cases when the data is hierarchical(
sometimes referred as multi-level). The most common ones utilised for research and
analytical purposes are classified into mathematical, statistical and survival mod-
elling. In this introductory chapter we will discuss the use and the arguments for
and against utilising these three types of modelling in relation to analysing medical
information and data.

1.2. Mathematical Modelling.
Bernoulli (1760) proposed for the first time a mathematical model for epidemio-

logical data (Small Pox Disease data) analysis. In his deterministic approach, the
model was based upon a series of differential equations, which is the basis of most
mathematical models today (See Bailey 1975, Murray 2003). There exists a large
literature regarding applications of mathematical models to medical data. reviews
of mathematical epidemiology can be obtained in Bailey (1975) and Anderson and
May (1991). Murray (2003) proposed an appropriate definition of a good mathe-
matical model.

To quote Murray (2003): “From a mathematical point of view the art of good
modelling relies on : (i) a sound understanding and appreciation of the physical
problem; (ii) a realistic mathematical representation of the important physical phe-
nomena; (iii) finding useful solutions, preferably quantitative; and what is crucially
important; (iv) a reliable and accurate interpretation of the mathematical results
in terms of insights and predictions. The mathematics is dictated by the physical
nature of the condition of interest and not vice versa.”

1.2.1. Compartmental Models.
The most common way to mathematically model data is to allow classification of

observation at any time point into different groups based upon several stages in
the life cycle of the experiment. Such a process is called compartmental modelling.
This allows the developments of equations that aid in determining transition rates
between the different groups. Kermack and Menkendrik (1927) suggested a deter-
ministic model that assumes that observations for a medical experiment can be
categorised under several well defined states, thereby allowing the development of
transition rates from one state to another via differential equations.

However such an approach is limiting in reality due to the huge number of assump-
tions that have to be made. Adapting and extending the model to accommodate
for these assumptions is unrealistic. Similarly such a system is non-dimensional, re-
moving any dependence from physical units of measurements in the model so as to
achieve meaningful inferences. Murray (2003) provides a discussion of the method
involving differential equations.Also this technique does not take account of random
variations in the data because it ignores the effects due to unknown factors. One
way to overcome this problem is to input some prior knowledge into the model to
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improve the estimates of parameters but this makes the model harder to fit.

An alternative is to apply the compartmental modelling process under a stochas-
tic approach. This method assumes that the different states in which the data can
be classified as random variables and defines the transition rates between states
through probability distributions (see Bailey 1975). This approach has the advan-
tage of incorporating random variation in the model. It also allows point estimation
of parameters and provides information about their variability as well. Moreover
the stochastic approach produces more informative predictions due to the inclu-
sion of random variation in the model. For a more detailed explanation on the
techniques on stochastic compartmental model, see Bailey (1975).

1.2.2. Cellular Automata.
Cellular automata (CA) offers another route towards modelling certain type of

epidemiological data. CA transforms time and space discretely and models the
evolution of complex physical systems via local neighbourhood interactions, based
on a lattice structure. Generally we assign each cell of the automaton to a specific
state, dependent on the application of the model. Transition between states are
controlled by a set of rules connected to the state of the local neighbourhood sur-
rounding each cell. For mortality modelling, a simple example would be to represent
space as a two-dimensional regular lattice, where each cell represents an individual
at risk and takes value zero if the latter survived the medical procedures of interest
procedure of interest or one if the individual dies. We then update each cell at each
time point (t) according to a time function, f(.) that connects to the number of
neighbouring infected cells at the previous time point.

More realistic CA model can be developed by taking into account some real facts
about the medical conditions we are interested in while updating the time function
and the neighbourhood criteria. These include temporal characteristics of the med-
ical conditions ( for example latency periods or length of procedure), covariates or
spatial structure and lags in the definition of the local neighbourhood. Similarly
applying a prior knowledge of the spatial distribution of the individuals or the the
subjects being investigated contributes towards developing more realistic CA mod-
els. In addition, extending stochastic approach to CA allows modelling transition
rates between states for the cells over time, governed by a probabilistic process.
Sirakoulis et al. (2000) proposed an algorithm for CA models that has a fast com-
putational time due to the regular characteristics in the structure of the CA models.

Moreover CA also offers some good computational advantages over models that
employs the use of differential equation (for example compartmental model). Vari-
able total population sizes and exposure, complex initial and boundary conditions
all cause problems computationally under a a differential equation setting while
CA provides relatively straightforward methods due to its regular structure (See
Sirakoulis et al. 2000, Fuentes and Kuperman 1999).

1.3. Statistical Modelling Approach.
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In mathematical modelling, the notion of mathematical laws govern the physical
processes that are subject to random influence. Under statistical modelling, we
account and provide a method that directly attempts to reduce this random vari-
ation. There are several approaches that exist to model medical data statistically.
These include simple time series, purely spatial models, space-time approaches and
survival modelling.

1.3.1. Autoregressive Modelling Average.
Often measurements in medical field are recorded over discrete time points. These

observations are usually dependent, with the degree of dependence across time pe-
riods known as the lag. A common method to analyse and model such data is the
Autoregressive Modelling Average (ARMA) framework (Box and Jenkins, 1976).
This method models the values at each point in the time series via a combination
of two independent processes; firstly the autoregressive process (AR) treats the ob-
servations as a weighted sum of their values at previous time points and secondly,
the moving average (MA) provides a method that accounts for and corrects for the
errors in the previous prediction through a weighted linear sum of previous errors.
The number of components varies in each case and is dependent on the temporal lag.

Consider an observed time series Yt where t=1,...,T, an ARMA model with 2 AR
and 2 MA components as shown below.

(1.1) Yt = µ+ β1Yt−1 + β2Yt−2 + ξt − α1ξt−1 − α2ξt−2

Then µ is the common constant intercept while the β’s represent the effects of
the auto-regression and the α parameters correspond to the MA effect and the er-
ror terms (ξ) are independent and identically distributed by a normal distribution
with mean zero and variance σ2. Normality assumption and the requirement that
th data should be stationary (Diggle 1990) are the primary theory supporting the
ARMA framework. Note that when data is non-normal, Box-Cox transformation
can be applied to correct the data while non-stationary data should be transformed
into stationary ones by differencing between successive time points. As a result,
a new parameter, called the autoregressive integrated moving average (ARIMA),
is added to the model. Violation of non-constant variance may be corrected by
variance stabilisation transformations.

The model described in (1.1) can easily be extended to accommodate for link func-
tions if the observations can be represented by a particular distribution. For an
ARMA framework, these link functions include probit, complementary log-log and
logistic functions.Consider for example a medical data, assumed to be binomially
distributed. If we define the number of successful operation procedures on differ-
ent patients as ’success’ for a fixed number of observations and It for t=1,...,T as
observed ordered series for the number of new successes discovered at each time
point; ie, It∼β(nt,pt) where pt is the probability of success at time t, then we can
model the data using a logistic link function (See McCullagh and Nelder, 1989) as
shown below:

(1.2) log(
pt

1− pt
) = ηt for t = 1, ..., T & 0 ≤ pt ≤ 1.
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where ηt is a linear combination of the regression terms that is thought to directly
affect the probability of success, pt at time t.

However despite showing the flexibilities discussed above, the models developed
under the ARMA framework do not deal with issues related to seasonal variation
(localised trends), cyclical variation (trends over a longer time period) and irregu-
lar fluctuations due to unknown factors. In addition, prediction of future evolution
requires extrapolation with the time series method under the ARMA framework.
Extrapolating method for future prediction in itself has certain modelling difficul-
ties. For an introduction on the time series models under the ARMA framework
models, see Chatfield (2004) while Chatfield (2001), Box and Jenkins (1976) and
Anderson (1971) provides a deep comprehensive explanation.

1.3.2. Spatio-Temporal Point Process.
In certain studies, observations are taken at the individual level and the probabilis-

tic phenomena of interest are the time and locations of these observations. Such
data can be described by a spatio-temporal point process where the main objective
is to locate clustering or regularity in recorded events over space and time, esti-
mating and mapping relative risk of the event incidence or identifying clustering
around a particular point. The methodology and techniques involved are developed
around the understanding that a completely random point pattern will follow a ho-
mogeneous Poisson process over space and time.

There exists a spatial analogy of the time series count model if the data can be
arranged over space into a set of (regular or irregular) areal units. There are a series
of methods to deal with such data and these allow patterns or trends in the relative
risks of event incidence to be modelled (Lawson 2001). These methods are widely
applied in spatial epidemiology and they have the ability to model autocorrelation
between measurements taken at different spatial lags. Good introductory texts on
spatial analysis can be obtained in Bailey and Gatrell (1995) and Cressi (1993) while
Diggle (2003) provides a comprehensive account of spatial point pattern analysis.
Lawson (2001) provides an example of the application of areal modelling techniques
to epidemiological data.

The spatio-temporal point process is also often extended to and applied under
a Generalised Linear Model (GLM) framework. For instance Bernadinelli et al.
(1995) used generalised mixed model to model the disease rates in different areal
units for the impact insulin-dependent diabetes in military conscripts in Sardinia
between 1936 and 1971. They employed a mixed model that treats the temporal
trend and area specific intercept as random effects. However Knorr-Held and Be-
sag (1997) pointed out that the formulation used by Bernardinelli et al. (1995),
accounts the temporal trend as linear. To overcome this assumption, Knorr-Held
and Besag (1997) extend the dynamic model methodology of West and Harrison
(1997) so as to model non-parametrically non-linear temporal trends and spatial
variations (Besag et al. 1991). Hence we observe that the spatio-temporal point
process offers a good degree of flexibility in terms of extending it to other frame-
works to accommodate for random effects.
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1.4. Survival Analysis.
Survival analysis offers an alternative method to model medical data by directly

analysing the time taken for the effects of the medical condition of interest to hap-
pen. Such a method offers many advantages compared to mathematical modelling
or statistical modelling in the sense that all parameters of interest (for spatial and
temporal effects) can be estimated simultaneously as well as allowing predictions
of future survival times for individual observations.

Survival models are usually represented by hazard functions. Hazard function is
one that uniquely provides a method to define the survival times according to a
particular distribution. It also allows the determination of several quantity of inter-
ests that answer several questions for a particular research. For example it allows
to determine the probability that an individual will survive for a time period τ af-
ter the individual has undergone a medical procedure. Similarly hazard function is
very flexible in the sense that we can incorporate covariate information into it easily.

The key issue with using and interpreting the results of survival models is censor-
ing. Censored data are those observations that do not contain enough and complete
survival information. For example if an individual leaves a study before the end
point of the investigation, then we do not have enough information on the outcome
of the procedures of interest on that particular individual. This is an example of
censored information. There are several types of censoring namely right censoring,
left censoring, Type I and II censoring. Several methods have been proposed in lit-
erature for survival models to deal with censored data and these will be discussed
in details in the next section. In epidemiological field, specification of censored data
is of immense importance for models where the time to exposure to a particular
medical conditions or procedures changes over time and space.

Furthermore, there exists several medical data that vary across space. There is
reasonable argument to advocate that some of these observations do not represent
the population at risk to the medical conditions of interest because of their spatial
location as some observations will be unlikely exposed to the conditions of inter-
est. Among all the possible solutions proposed to deal with this, all consist of two
main facets: firstly modelling space-time dependence in the mean process (first
order effects) and secondly through ’stickiness’ between neighbouring individuals
(second order effects). For instance, space-time covariates is one way to handle the
issue of observations not being representative of their population while the use of
spatio-temporal random effects that are correlated (also known as frailties in sur-
vival literature) deals with the issue of biasness caused by information contributing
to the model fitting.

Survival modelling can also be applied under a Bayesian framework. The latter
provides a full posterior distribution to estimate parameter and predictors of sur-
vival times. Combined with Markov Chain Monte Carlo (MCMC) methodology,
the Bayesian framework provides a powerful method to fit complex frailty models.
Similarly, issues such as immunity, multiple survival processes, multi-decrement
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functions or multiple causes of death can be investigated via extensions to multi-
variate data and analysis and data that has been aggregated by areas.

1.5. Conclusion.
In this introductory section, we have explored and identify different frameworks

that have been utilised to model epidemiological and medical data. Medical in-
formation can always be categorised into several well defined hierarchical groups.
The use of each of these frameworks carry their own advantages and disadvantages,
depending on the type of medical data we have.

From a mathematical perspective, we introduced the compartmental model and
cellular automata (CA). The former model uses a collection of differential equations
in the modelling process but does not account for random variations unless it is
employed under a stochastic framework. However CA offers a better alternative
mathematical model than compartmental model because of its regular structure
which allows solving problems that consist of variable population sizes or complex
initial and boundary conditions and that offers good computational advantages.

A statistical approach offers the possibility of modelling the random variations (due
to unknown factors) directly. It is very flexible under a stochastic approach and
can be easily extended to the GLM framework to explain temporal aspect (model
1.1). However it tends to average the temporal aspect over time across individuals
unlike the survival framework. Survival analysis has the ability to accommodate
for many features that cannot be assessed under a mathematical or statistical ap-
proach. It enables us to deal with changes in the state of the medical condition
we are interested in, censoring, immunity, multiple causes of death and the effects
of explanatory variables directly on survival time. The ability to directly predict
the risk and time of occurrence of a particular event on a local and global level
makes survival modelling very attractive compared to models developed under a
mathematical or statistical approach.

2. Survival Analysis

2.1. Introduction.
Survival analysis is one of the main research methods used in many field such

as medicine, biology, epidemiology, demography and engineering. The concept of
survival analysis arises from the methods used in medical and demographic studies
of event history and mortality. Survival modelling is a method used to model the
time from the beginning of a follow-up of an individual until a pre-defined event
occurs. Usually the event is associated with failure, for example death of a patient
who has undergone a particular treatment. Consequently the time for this event to
happen is referred as the survival or failure time.

In statistical modelling literature, survival times tend to follow a skewed distri-
bution such as exponential or Weibull distribution for instance. Most common
methods discussed in literature to deal with survival modelling have been carried
out under a Generalised Linear Model (GLM) framework (Nelder and Wedderburn
1972) which offers an alternative and extension to the classical linear models to
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analyse non-normally distributed data. Censoring is a major issue in survival mod-
elling. Aitken and Clayton (1980), Whitehead (1980) and McCullach and Nelder
(1989) discussed the traditional survival models that can be viewed as an exten-
sion of GLMs that accommodate for censoring by fitting the models using standard
techniques such as iterative weighted least-squares. Many of the currently fitting
techniques have been developed independently of the GLM framework (See Kalbfe-
ich and Prentice 2002, Collett 2003, Therneau and Grambsch 2000 for example).
Hence there is a range of fitting techniques such as the direct application of max-
imum likelihood or under a Bayesian approach, the use of an iterative sampling
algorithm like Markov Chain Monte Carlo (MCMC).

In this section, we will discuss the different modelling strategy that exists un-
der survival modelling as well as different techniques to fit these models under a
Frequential or Bayesian approach, depending on the choice of distributional as-
sumptions. Moreover we will explore extensions of the classical survival models
that are applicable for mortality analysis. Finally survival analysis is a widely doc-
umented topic not only in medical or epidemiology but also in engineering and
social science. Since it has such a large literature, this section will concentrate on
concepts and techniques that are relevant to mortality analysis. This section is not
an exhaustive review of the subject. For a deep comprehensive discussion, see texts
by Kalbfeisch and Prentice (2002), Collett (2003), Therneau and Grambsch (2000),
Cox and Oakes (1984) or Lee and Wang (2003).

2.2. Basic Ideas.
According to Cox and Oakes (1984), to apply survival techniques to different sit-

uations, three requirements are needed: firstly determining a time origin that is
well-defined; secondly a scale to measure the change in time and thirdly an exact
definition of failure. To start, consider a set of homogeneous data where T is a posi-
tive random variable representing failure time, with distribution function, F(t). We
can then define for continuous time T, the survival function, S(t) as the probability
that an individual survives beyond time t, i.e.

(2.1) S(t) = P (T > t) where 0 < t <∞

Note that 0<S(t)≤1 since s(0)=1 while limt→∞ S(t)=0. T has a unique distribution
defined by the survivor function or the hazard function or the probability density
function. The hazard function is defined as

(2.2) λ(t) =
f(t)

1− F (t)

In epidemiology, λ(t) is also known as the force of mortality. It can be interpreted as
probability that failure occurs in interval (t,t+δt) given that the individual survives
past time t, i.e,

(2.3) λ(t)δt ∼= P (t < T < t+ δt|T > t)

Integrating λ(t),

(2.4)

∫ t

0

λ(u)du =

∫ t

0

f(u)

1− F (u)
du = −log(1− F (t)) = −logS(t)
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which leads to the survival function being expressed in terms of the force of mor-
tality.

(2.5) S(t) = e−
∫ t
0
λ(u)du

If T is a discrete random variable, then the probability function f(t)=P(T=t) gives
the exact probability of failure at time t. Similarly, the hazard function h(t) is
defined as the conditional probability of failure at time t given survival to t, i.e.

(2.6) λ(t) = P (T = t|T ≥ t) =
P (T = t)

P (T ≥ t)
=

P (T = t)∑
j|tj≥t P (T = tj)

Similarly we can easily define P(T=t) and P(T≥t) in terms of the hazard function
by taking the fact that 1− h(t) is the conditional probability of survival at time t
given survival to t. It is also possible to have a mixture of continuous and discrete
distributional forms in one framework itself as shown in Kalbfleisch and Prentice
2002, Chapter 1.

2.3. Censoring.
Censoring is a common characteristic of survival data, especially in the field of

medicine and epidemiology. It distinguishes survival modelling from other statisti-
cal models. A censored observation is one that does not contain enough or complete
survival information. We will consider four main types of censoring.

The most common type of censoring is right censoring. It happens when a subject
joins an experiment at the start of the study and leaves the investigation with-
out experiencing failure. This usually because either the study finishes before the
subject experiences failure or because the subject is lost to follow up or leaves the
study before it actually ends. If the study started at time 0, then the subject is
said to right-censored at time t and known to have survived for a period of [0,t].

Suppose a subject who joined the experiment at the start, experiences failure at
a time that is unknown exactly but before time t. The subject is said to be left
censored and it is known that failure occurs in the period [0,t]. Moreover given that
the exact time of failure is unknown but it is known to be between to two points
a and b, where 0<a<b<t, then the subject is said to be interval censored. Both
right and left censoring are special cases of interval censoring because we only get
to know that the random variable time of of failure occurs in an interval.

Type I censoring occurs when the subject encounters failure after a pre-defined
length of time while Type II censoring occurs when the study stops when a pre-
determined number of failures have been observed. In this case the remaining
individuals are said to be type II censored. In the case where the failures occur
independently and at random, then Type III censoring is said to occur. The type
of censoring affects the form of the likelihood function used to fit survival models.
Kalbfleisch and Prentice (2002) discuss several modifications for the likelihood in
order to accommodate for Type I and Type II censoring.
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Finally we have randomly censored information. If entry of a subject into a study
or loss to follow-up of subjects are considered to be random, then random censoring
is said to occur. Let Ci be the censoring time and Ti be the random variable of
interest for 1<i<n. Then if random censoring occurs, then we can only observe the
subject for for Yi where Yi is given by Yi= min(Ti,Ci).

2.4. Parametric Modelling.

2.4.1. Introduction.
There exists several situations where survival data has a known distribution or

simply because it is reasonable to assume that the data has a certain parametric
specification. In survival literature, there exists various distributions that have
been commonly used to fit such data. A selection of these distributions will be
discussed in this section. Fitting parametric models to survival data offers some
advantages. They have fully specified hazard functions that are dependent on the
parameters that determine the overall distributional form. These parameters can
be estimated to fit the model at any point in time and can be used to predict the
hazard at future time points.

2.4.2. Exponential Model.
From Equation (2.5), if the hazard rate h(t) is equal to a constant positive scale

parameter λ, then the survival time is said to follow an exponential distribution.
The survivor function is given by S(t)=exp(-λt) and the density function is λexp(-
λt).

2.4.3. The Weibull Model.
The Weibull model is a generalisation of the exponential model where the hazard

function takes the form of h(t)=αλtα−1 where the parameter λ and α are both
positive. The density function is given by f(t)=αλtα−1exp(−λtα) while the survivor
function is written as exp(−λtα). The Weibull distribution is very flexible because
its distributional shape and also because it has scale parameter, hence allowing the
density function to take several forms. Inclusion of covariates via link functions
in the scale parameter λ allows the model to have a proportional hazard and an
accelerated life structure. Such characteristics are only present under the Weibull
distribution.

2.4.4. The Gamma Model.
The Gamma model is another generalisation of the exponential model. Its hazard

function has a density of the form of f(t)= λα

Γ(α) tα−1e−λt where α and λ are positive

parameters. However under the Gamma model, S(t) and λ(t) does not have a closed
form expression. S(t) can only be defined as

(2.7) S(t) = 1−
∫ t

0

f(u) du = 1−
(
Incomplete gamma function

Complete gamma function

)

2.4.5. The Rayleigh Model.
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Under the Rayleigh model, the hazard function is expressed as a linear risk in
the form of λ(t)=λ0+λ1(t). However the hazard function can be generalised to
polynomials of the form λ(t)=

∑p
i=0λit

i. In the case of linear risk, we will obtain

(2.8)

∫ t

0

λ(u) du = λ0t+
1

2
λ1t

2 ⇒ S(t) = exp(−λ0t−
1

2
λ1t

2)
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2.4.6. The Log-Normal Model.
If the random variable of interest, Ti is assumed to be log-normally distributed

with mean µ and variance σ2,i.e. logTi∼N(µ,σ2), then we can obtain the survivor
function S(t) as shown below. The log-normal model works best for uncensored
data. It converts the data into the standard linear model setup.

S(t) = 1− P (T < t) = 1− P (logT < logt)

= 1− P
(
logT − µ

σ
<
logt− µ

σ

)
= 1− φ

(
logt− µ

σ

)(2.9)

The models discussed above have closed forms for the survivor and hazard functions
and easy to work when Ti are continuous. There exists other possible distributions
that can be utilised for the survivor and hazard functions. These include the Pareto
distribution, log-logistic, generalised Gamma and generalised F.

2.4.7. Discrete Ti.
Kalbfleisch and Prentice (2002) described how to discretise any continuous survival

distribution. This can be done by considering a discrete random variable T such
that

(2.10) P (T = t) = P (t ≤ U < t+ 1)

where U is a continuous random variable with a fully known distribution. As an
example, if U follows a Weibull distribution with shape parameter α and scale
parameter λ, then following from (3.10), we can write

P (T = t) = P (U < t+ 1)− P (U < t)

= F (t+ 1)− F (t)

= S(t)− S(t+ 1)

= exp(−λtα)− exp(−λ(t+ 1)α)

(2.11)

For the above example, we discretise T over over unit time period length. This can
be modified depending on the interval chosen.

2.4.8. Parametric Model Fitting.
For parametric models, model fitting is most commonly done via the Maximum

Likelihood Method. Suppose we have n observations that are randomly censored.
For a model consisting of p parameters, θ=(θ1,...,θp)′, the likelihood function is
written as

(2.12) `(θ) = Πn
i=1[f(ti|xi, θ1, ..., θp]

δi [S(ti|xi, θ1, ..., θp)]
δ1−i

where the binary variable δi (for ι=1,...,n) is equal to 1 if the individual experiences
failure or 0 if he is right-censored (or left-censored or interval censored). In this way,
only censored observations of individuals surviving the interval [0,t] contributes to
the likelihood. Then for some specific parameter θj , the score equation is given by

(2.13)
∂log `(θ)

∂θj
=

n∑
i=1

∂log `θ(yi, θi)

∂θj
= 0

Solving (2.13) is not a straight forward process. It is usually done on a computer
using iterative methods. The most common method to optimise function (2.13) is
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the Newton-Raphson and Method of Scoring.

Newton-Raphson and Method of Scoring
Let `i(θ)= `θ(ti,θi). Hence

∂logL(θ)
∂θ =(∂logL(θ)

∂θ1
,...,∂logL(θ)

∂θn
)′

and ∂2log `(θ)
∂θ2

=


∂2log `(θ)
∂θ1∂θ2

... ∂2log `(θ)
∂θ1∂θp

. . .

. . .
∂2log `(θ)
∂θp∂θ1

... ∂2log `(θ)
∂θp∂θp


The likelihood equations for j=1,...,p are given by (2.13). Let θ̂0=(θ1

0,...,θp
0)

be the initial guess for the solution to (2.13). Usually this first guess is obtained

by a simpler method, for instance method of moments. Expanding (2.13) about θ̂0

using the Taylor series, we get

∂logL(θ̂)

∂θ
=
∂logL(θ̂0)

∂θ
+
∂2logL(θ̂0)

∂θ2

(
θ̂ − θ̂0

)
+ ... = 0

Ignoring second order and higher terms, let θ1 be the solution to the above equation.
Then we can write

(2.14) θ̂1 = θ̂0 +

(
−∂

2logL(θ̂0)

∂θ̂2

)−1(
∂logL(θ̂0)

∂θ̂

)

The vector ∂logL(θ̂0)
∂θ is known as the score function at θ̂0 while the matrix I(θ̂0)=

-∂
2logL(θ̂0)
∂θ2 is referred as the sample information matrix at θ̂0. Note that taking

expectation of I(θ̂0) as shown below, yields in the Fisher information, I(θ) for the
entire sample.

E(I(θ0) =

(
−E ∂2logL(θ̂)

∂θk∂θj

)
= I(θ) =

n∑
i

Ii(θ) = n Ii(θ)

The iterative equation (2.14) is called the Newton-Raphson equation. Substituting
the sample information in (2.14) by the Fisher Information gives

(2.15) θ̂1 = θ̂0 + I−1(θ̂0)
∂logL(θ̂0)

∂θ

which is an iterative scheme known as the method of scoring. Once the estimate θ̂1

is obtained, we then expand (2.13) again using Taylor series about θ̂1 and find the

solution θ̂2 that satisfies (2.14). This whole process is repeated until convergence
is achieved. Log-likelihood functions are approximately quadratic because asymp-
totically, normality occurs for many random variables. Thus, the Newton-Raphson
and Scoring method is an obvious choice for finding MLEs.
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2.4.9. Confidence Intervals and Tests for MLE Estimates.

Under the condition of smoothness, the MLE estimates of θ̂ from section (2.4.8) is

asymptotically distributed as θ̂ ∼N(θ,I−1(θ)). We can use this information to con-

struct hypothesis tests and confidence intervals for θ̂. This asymptotic information
allows us to formulate three procedures; the Wald test, the Neyman-Pearson/Wilks
likelihood ratio test and the Rao statistics. To explain these methods, consider the
hypothesis H0: θ=θ0.

(i) The Wald test
Under H0, (

θ̂ − θ0
)′
I(θ0)

(
θ̂ − θ0

)
∼ χ2

p

(ii) The Neyman-Pearson/Wilks Likelihood ratio test
Under H0,

−2log

(
L(θ0)

L(θ̂)

)
∼ χ2

p

(iii) The Rao statistics
Under H0, (

∂logL(θ0)′

∂θ

)
I−1(θ0)

(
∂logL(θ0)

∂θ

)
∼ χ2

p

From above, we notice that the Rao statistics is independent of the MLE estimate
of θ, hence this method does not involve any iterative process. Moreover, in order

to test estimates of θ or get confidence intervals for them, the calculation of θ̂ is
necessary as we need to compute I(θ0) so as to carry out the Wald test.

2.4.10. Estimation of Survival Function, S(t) for parametric models.
The main objective in survival analysis is the determination of the survival func-

tion, S(t) which is of the form described in equation (2.5). The survival function
allows, for example, to determine the probability that a patient who underwent a
hip replacement at age x, to survive for time period,t. S(t) is easily constructed
once the MLE estimates of the parameters are determined. Under the exponen-

tial model, Ŝ(t) is of the form Ŝ(t)=e−λ̂t while the Weibull model has the form

Ŝ(t)=e(−λ̂t)α̂=e−γ̂t
α̂

.

Similarly we can re-parametrise and transform our data such that the problem of
estimating our model parameters changes to estimating location and scale param-
eters. Consider the Weibull distribution for example. We can write

P (Y > t) = S(t) = e−λt
α

= exp(−esp[α(logλ+ logt)]) = exp

{
−exp

(
logt− µ

σ

)}
where µ = −logλ and σ = 1

α . So we observe that µ and σ are the location and scale
parameters of the random variable logY . This method can be easily generalised
to other distributions and it is known as the Linear Combination of Order Statistics.
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In most research, the survival time, T often depends on a set of explanatory vari-
ables. Let X be the vector representing these variables. Then the survival functions
can be written as a linear regression function in the form of E(T ) = α + βX or a
log-linear regression model as logE(T ) = logα + βX, where β is the coefficient of
the explanatory variables of the model. The parameters are again estimated via the
maximum likelihood method. However the linear model is not ideal as it yields in

negative estimate of E(T) when β̂ is negative. The log-linear model is a commonly
known as a precursor of the Cox proportional models, which will be discussed in
later section.

2.5. Non-Parametric Model.

2.5.1. Introduction.
In previous section, we presented survival models for data that are assumed to

follow a particular survival distribution. Non-parametric techniques, in contrast
offers the possibility to explore survival data that are not restricted by any par-
ticular distributional form assumption. In this section we will discuss the several
techniques present in literature for survival analysis on how to estimate the survivor
function under a non-parametric framework.

2.5.2. Empirical Survivor Function.
In the absence of censored data, we can use the empirical survivor function to

estimate the survivor function at time t. This method assumes that the probability
that a subject survives beyond a time point,t is proportional to the number of
individuals who are still alive after time t. Thus the survival function is given by

(2.16) Ŝ(t) =
No. of subjects with survival times > t

No. of subjects in data set

However, survivor function (2.16) is invalid when censored data are present. Alter-
natively, we can divide the study period into a set of discrete time intervals where
we estimate the survival function at each of these discrete time intervals. In this
case the survival estimates are assumed to be proportional to the total number of
individuals deemed ’at-risk’ in each time interval.

2.5.3. Life Table and Actuarial Method.
In presence of censored data, the classical method of estimating S(t) in epidemi-

ology and actuarial field is via the use of the life table and actuarialmethod. To
illustrate these methods, we firstly partition the study period into a series of inter-
vals Ii and of length τi for i=1,...,k. Let ni be the number of individuals alive at
the start of Ii, di be the number of individuals died during Ii, `i be the number of
individuals lost to follow up during Ii, wi be the number of individuals withdrawn
during Ii, Pi be the probability of surviving through Ii given that the subject is
alive at the start of Ii and qi = 1− pi.
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To estimate S(τk), the life table method only takes into account the observations
who are deemed to be at risk during the whole interval of interest, [0,τk]. Let

n = n1 −
k∑
i=1

`i −
k∑
i=1

wi,

d =

k∑
i=1

di,

then Ŝ(τk) = 1− d

n

Under the actuarial method, we define the survival probability function S(τk) as a
product of probabilities as shown below:

S(τk) = P (T > τk)

= P (P (T > τ1) P (P (T > τ2|T > τ1)...P (T > τk|T > τk−1)

=

k∏
i=1

pi, where pi = P (T > τi|T > τi−1)

From above actuarial formulation of S(τk), we require an estimation of pi. Under
the assumption of no losses or withdrawals, we can use pi = 1− di

ni
. However this is

not often the case as `i and wi are non-zero. In this case, we estimate pi by using
the effective sample size defined as n′i = ni − 1

2 (`i + wi) instead of ni so that pi is

given by pi = di
n′i

.

Both the life table and actuarial method of estimation for S(t) have certain draw-
backs. Firstly the life table method does not take into account of the information
the `i and wi contains and thus provides a biased (downward) estimate for S(t).
Secondly, the actuarial method estimate of S(t) for censored observations depend
on n′i. n′i loses half of the information provided by `i and wi as its computation
assumes that on average, lost or withdrawn observations are at risk only for half
the interval.

2.5.4. Product Limit (PL) estimator (Kaplan-Meier (KM)).
The Product Limit (PL) estimation method offers an alternative way to estimate

S(t) under a non-parametric framework. Unlike the life table or actuarial method,
PL produces better estimate of S(t) as it does not have the disadvantages mentioned
in previous section. In this section we will describe the PL estimate method for S(t).

Consider a sample of n individuals in an investigation whose time period is divided
into different time intervals with variable length. Assuming that failure (or death)
occurs at the start of each interval, then we can form a series of intervals that
contain only one failure at a time. If there are r≤n failures, then we can have tj ,
j=1,...,r as the series of ordered failure times such that the first interval [t0,t1] has
no failure. If observations are tied, then censoring is accounted for after failure.

Let nj and dj be the number of individuals at risk prior to tj and the numbers of
failures at tj . Assuming independent failures, then survival between tj and tj+1 is
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given by
nj−dj
nj

and thus the KL estimate of S(t) for tj≤t< tj+1 is given by

ŜKL(t) =

j∏
k=1

(
nj − dj
nj

)
,

We observe that ŜKL(t) is a decreasing step-function where ŜKL(0)=1 and ŜKL(t)
remains unchanged over each time interval tj≤t< tj+1, j=1,...,r, where tr+1=∞.

ŜKL(t) allows the derivation of several quantities of interest such as mean, median,

quartiles, associated standard errors, confidence intervals for ŜKL(t), hazard and
cumulative hazard functions. It also permits development of plots that provide
useful inference about the form of the survival distribution. Collett (2003) and Lee
and Wang (2003 )provides a detailed text on derivations of these quantities.

2.6. Semi-Parametric Models.
The most important issue in survival modelling is to investigate the effect of co-

variates on survival time. Hence a different approach for this analysis is required.
Cox (1972) proposed a model using the hazard function. He suggested that for an
individual with a vector of covariates x, the hazard at time t is made up of firstly,
a baseline hazard function in the absence of covariate information and secondly, a
parametric function that represents the effects of the covariates on the failure time,
over and above the baseline hazard (See Cox and Oakes 1984, Chapter 5). More-
over Cox (1972) introduced this method without having to assume an underlying
distribution for the data. The model is defined as

(2.17) h(t, x) = h0(t)φ(β;x)

where x is a vector of length p fo explanatory variables, φ(.) is a parametric func-
tion of x and h0(t) is an unspecified baseline hazard function (when x = 0). β
is also a vector of p parameters. The baseline hazard function in model (2.17) is
arbitrary and thus (2.17) is commonly known as a semi-parametric model (or as
the proportional hazard (PH) model).

The PH model is famous for various reasons- as formulated by Cox and Oakes
(1984). They suggest that it is reasonable to accept the idea that the effect of a
covariate is to multiply the hazard by a constant factor. The real strength of the
proportional hazards model is that it allows us to model the relationship of survival
time, through its hazard function, to many covariates simultaneously. Similarly the
model can easily accommodate censored data and the occurrence of multiple fail-
ures. Moreover although the underlying survival distribution is unspecified, the
model is easily fitted.

2.6.1. Model Fitting.
Cox (1972) developed a method known as the partial likelihood method to fit the

proportional hazard model (PH) in (2.17).This method does not account for actual
censored and uncensored survival times. Consider a set of n individuals with r≤n
ordered failure times tj , j=1,...r. The form of f(.) is unknown as no distributional
form is associated with the data. Hence Cox (1972) formulate the likelihood using
the conditional probability that individual i experiences failure at time tj given
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that he survives to tj and the additional notion of risk-sets. Moreover this method
assumes that intervals between successive failures do not contribute any informa-
tion to the likelihood because conceptually, h0(t) can be zero in those intervals.

Assuming independent failure times tj , the following statements hold.

P (individual i fails at tj |one failure at tj) =

=
P (individual i fails at tj and no other failure occurs)

P (one failure at tj)

=
P (individual i fails at tj and no other failure occurs)∑

kεR(tj)
P (individual k fails at tj and no other failure occurs)

(2.18)

If we consider short time interval ∆t, then letting ∆t→0, (2.18) can be written as

(2.19)
P (individual i fails in [tj , tj +∆t])/∆t∑

kεR(tj)
P (individual k fails in [tj , tj +∆t])/∆t

Hence if individual i has a vector of covariate xj , then we transform (2.19) into

(2.20)
h(tj |xj)∑

kεR(tj)
h(tj |xk)

=
exp(βTxj)∑

kεR(tj)
exp(βTxk)

using (2.6) where h(tj |xj) = h0(tj)exp(β
Txj). Therefore for r failures, the partial

likelihood is written as

(2.21) L(β) = Πr
j=1

exp(βTxj)∑
kεR(tj)

exp(βTxk)

The effect of the covariates xj are estimated by evaluating the β parameters.
Cox(1972) demonstrated that inferences on β can be obtained by maximising (2.12),
which can otherwise be written as

(2.22) log(L(β)) =

r∑
j=1

βTxj −
r∑
j=1

[
∑

kεR(tj)

exp(βTxk)]

The score function of (2.22) is similar to the score equation vector described in (2.13)
and hence it is solved iteratively using the Newton-Raphson method described in
(2.4.8). In addition, this method of estimation permits construction of tests (or
more specifically the Wilcoxon statisics) for hypothesis about β’s by using the
sample information matrix described in (2.4.8).

Tied or Grouped Observations.
The presence of tied observations in our data complicates the derivation of the

partial likelihood. Therefore, we need a different technique to construct the partial
likelihood in the presence of tied data. In this section we will review the existing
methods for finding the likelihood function for tied observations following the Cox
model.
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The common and standard approaches are Breslow (1972) and Effron (1977) ap-
proximations which are simple to implement; see also Therneau and Grambsch
(2000). Define Ti for i = 1, ..., k as two tied observations from a data set based on
Cox regression model. Let Ri(t) = Yi(t)exp(X

T
i β). The Breslow (Breslow 1972;

Peto 1972) approximation is given by

k∏
i=1

Ri(T1)

R1(T1) +R2(T1) + ...+Rn(T1)

while the Effron (Effron 1977) approximation is given by

k∏
i=1

Ri(T1)
k−i+1
k

∑k
j=1Rj(T1) +RK+1(T1) + ...+Rn(T1)

We observe that the Effron approximation uses an average of the k relative-risk
terms. Nevertheless both approximations suggested above do not result in expected
score functions that are equal to zero and hence produce biased estimates. Breslow
estimator for instance, produces estimates that are shrunk towards zero. There are
several exact solutions method proposed in literature for partial likelihood or tied
observations but these method are computationally extensive, ad-hoc and do not
improve the approximations proposed by Effron.

Scheike (2007) proposed an improved approximation method that is easy to im-
plement, more efficient and which is based on the EM-algorithm. Their approach
is related to the techniques for interval censored data described in Satten (1996).
They tested their proposed approximation using simulated studies and the results
obtained suggest that the proposed EM-algorithm is a reliable procedure to use
in practice because of its overall well performance across different covariate dis-
tributions, estimates, sample sizes, tie sizes and censorship status. For a detailed
explanation of the EM-algorithm approximation, see Scheike (2007).

Accelerated Life Model.
An alternate way to the assumption of proportional hazards is to consider the

covariates effects directly on failure time via the application of accelerated life model.
This method models the logarithm of the survival times as a linear combination of
the covariates, i.e,

log(T ) = βTx

Unlike the PH model which assumes a multiplicative effects of the covariates on
the baseline hazard function that is independent of time, the accelerated life model
allows the covariates to directly accelerate or decelerate the failure time. For a more
detailed explanation and analysis of this approach, see Cox and Oakes (1984), Th-
erneau and Grambsch (2000) and Kalbfleisch and Prentice (2002).

2.7. Time Dependent Covariates.
The survival models discussed so far in previous sections has not accounted for the

fact that some covariates are time-dependent for some data set. These models can
easily be adapted to accommodate for these time-dependent covariates although this
will change the interpretation of the models. Consider a time-dependent covariate
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Xi(t) for individual i. If we denote the covariate history up to time t as Xi(t) =
xi(u); o ≤ u ≤ t, then the hazard function for individual i is given by

hi(t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t,Xi(t))

δt
.

According to Kalbfleisch and Prentice (2002), there exists two types of time-dependent
covariates. The first one is known as the external covariate and is defined as the
covariate whose future path to any time t > u is independent of the occurrence of
a failure at time u. For example the air temperature in a hip replacement study is
a possible example.

Secondly we have internal covariate which is a set of measurements taken on an
individual study subject, leading to a common property of requiring the survival
of the individual for its existence. For example, in a study of survival time from
a total hip replacement operation, a set of measurements of blood pressure can be
an internal covariate.

2.8. Bayesian Model Fitting.
There exists a range of techniques to fit the survival models, each having its own

advantages and disadvantages. In this section we will focus on the Bayesian ap-
proach to fit the survival models. Such approach has a number of advantages, for
instance it does not only output the full posterior distributions of the parameters
but the predictive distributions of the predicted values. It also permits develop-
ment of tractable method to fit complex models such as mixed models that consist
of random effects. For a detailed explanation on Bayesian methodology, see Gelman
et al. (2004), Congdon (2001) and Congdon (2003) while Ibrahim et al. (2001),
Hougaard (2000) and Collett (2003) provide a clear account of the application of
Bayesian techniques to survival analysis.

2.8.1. Basic Ideas.
Under a Bayesian approach, the parameters of interest are treated as random

variables. It is assumed that they can be generated from a some probabilistic
distribution. The standard Bayesian model for a set of parameters, θ given datat
D, is of the form

(2.23) p(θ|D) =
p(D|θ)p(θ)∫
θ
p(θ|D)p(θ)

(2.23) shows that the conditional posterior distribution for the parameters θ given
data D is given by the product of the likelihood of the distribution of D given θ and
the prior distribution for θ, up to some normalising constant. (2.23) is easily com-
puted explicitly for simple models but since the denominator consists of integrating
over the whole parameter space, computation of (2.23) becomes mathematically
intractable for a large set of parameters. Hence a different mechanism is needed
to fit (2.23). The most common one is the Markov Chain Monte Carlo (MCMC)
iterative sampling and this is discussed in the next section.
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2.8.2. Markov Chain Monte Carlo (MCMC) Iterative Method.
The MCMC method is carried out in two steps. Firstly it includes the Monte Carlo

(MC) integration which involves sampling a large quantity of observations from a
target distribution and then use these samples to obtain an estimation of several
expected values. By the law of large numbers, the estimates become more accurate
as sampling size increases. Hence if we obtain large samples from the posterior
distribution p(θ|D), then the MC integration provides a useful method to obtain
required quantities of interest from these values.

The next step includes the development of a tractable method that allows sampling
from the posterior. The most common method is the Markov Chain. It is a se-
quence of numbers where the generation of each number depends on the value of the
previous number in the chain. Under certain regularity conditions, a Markov Chain
always converges to its stationary distribution. If the stationary is similar to the
posterior distribution of interest, then we can sample the desired values. Hastings
(1970) proposed an algorithm known as the Metropolis Hastings algorithm (MH)
to construct a Markov Chain whose stationary distribution is identical to the pos-
terior distribution, p(.). Suppose we have a vector of m random variables θ from a
(multivariate) distribution, p(.). Then the steps involved in the MH algorithm are:

(1) Set t = 0 and let θ0 be equal to some initial value.
(2) Sample a candidate point θc from a proposed distribution, q(.|θt).
(3) Accept θc with probability α(θt, θc) where α(θt, θc) = min

(
1, p(θc)p(θt|θc)p(θc)q(θc|θt)

)
.

(4) If θc is accepted, set θt+1 = θc, otherwise we let θt+1 = θt.
(5) Set t = t+ 1 and repeat the process starting from step 2.

Depending on the regularity conditions, the proposal distribution q(.|.) can be of
any form and will still converge to the distribution of interest. The rate of conver-
gence of the chain depends on the appropriate choice of the proposal distribution.
Moreover the choice of initial values for the parameters is important as it affects
the rate at which convergence to the targeted distribution occurs.

Alternately, the vector of parameters θ does not need to be updated as a block.
The parameters can be updated individually with corresponding modifications to
the proposal distributions. Consequently we have to use a special case of the
Metropolis-Hastings algorithm when the full conditional distributions for individual
parameters θi, i = 1, ...,m, given θi− , i.e, p(θi|x, θ1, ..., θi−1, θi+1, ..., θm) are known.
Therefore the proposal distribution q(θci |θi, θi−) is equal to p(θci |θi−) such that the
acceptance probability given by step (3) of the MH algorithm is always equal to
one. Such an approach is known as the Gibbs sampling (Geman and Geman 1984,
Gelfand and Smith 1990).

Combinations of MH algorithm and Gibbs sampling are useful when required and
the adaptive-rejection method of sampling suggested by Gilks and Wild (1992)
means that even though the distribution is complex and not specified explicitly,
Gibbs sampling can still be utilised as long as the conditional distributions of the
parameters are log-concave. The techniques discussed here are implemented in
WinBUGS (Bayesian inference Using Gibbs Sampling), a free package that can be



22 M.A.H WAHEDALLY

downloaded from http://www.mrc-bsu.cam.ac.uk/bugs/.

2.8.3. Identifiability.
An important issue in sampling a distribution with suitable parameters is to have

identifiable probability densities for our distributions. Suppose we have random
variable X with distribution function Uα and belonging to a family Λ{Uα : α ε Θ}
(where Θ is the parameter space) of distribution functions indexed by parameter
α. Basu (1983) states that α is non-identifiable by X if there is atleast one pair
(α, α′), where α and α′ belongs to Θ, such that Uα(x) = Uα′(x) for all u. In the
contrary, we will say that α is identifiable.

2.9. Extensions to Conventional Survival Models.
In this section we will cover a summary of some extensions to the conventional

models discussed previously that deal with different complications associated with
the type of data we normally deal with.

2.9.1. Long Term Survivor Models.
Usually for certain survival data, it is reasonable to assume that there is a pro-

portion, p, of the total population that are ’immune’ or ’cured’ from the medical
conditions of interest during the investigation period. The conventional method will
consider these observations as censored ones. However this intuition is unreason-
able because the likelihood contributions from these observations will be incorrect
and thus result in biased parameter estimates.

Boag(1949) initially proposed to incorporate an ’immune proportion’ to the sur-
vival function; though this was later extended by Berkson and Cage (1952) who
suggested that the hazard function for ’immune’ individuals should reduce to the
baseline hazard for the population. The standard model proposed as a result is
modelled via the survivor function as

(2.24) S(t) = p+ (1− p)S∗(t)

where S∗(t) is the survivor function for the population who are at risk and p is
the proportion considered as ’immune’. Such a model is commonly known as the
long-term survivor model.

2.9.2. Mixture Models.
The long-term survival model in (2.24) assumes that the ’immune’ population

never experiences failure, an assumption which is unreasonable in the medical field.
McLachlan and Peel (2000) proposed a simple generalisation where the population
are separated into two groups, each represented by a different survival process i.e.

(2.25) S(t) = pS0(t) + (1− p)S1(t)

where p is the proportion of individuals from group 0, with survivor function So(t)
and (1 − p) is the proportion of individuals from group 1 with corresponding sur-
vivor function S1(t). This is an example of a standard two-group mixture model
and it can be generalised to three or more groups.
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2.9.3. Competing Risks Models.
Often there are situations where failures occur because of more than one cause.

Traditional survival analysis do not differentiate between multiple causes of failures.
Incorporating this extra information to the survival model is carried out by the
competing risk analysis as proposed by McLachlan and Peel (2000), Crowder (2001)
and Congdon (2001). They propose a model analogous to model in (2.25) i.e.

(2.26) S(t) = pS0(t) + (1− p)S1(t)

where now p represents the probability that failure occurs from cause 0 and (1− p)
is that of failing due to cause 1. Unlike the mixture model, here we assume that the
causes of failures are to be observed and independent. Ng and McLachlan (1998)
explains techniques to accommodate for missing data as well as various extensions
to a more generalise form of (2.26) to incorporate more than two causes of failure,
and also as part of a long-term survivor model (2.24).

2.9.4. Multi-state Models.
The models discussed so far assume that the survival process for an subject is

unchanged over time. However there are situations where the risk of failure may
change over time. A multi-state framework provides a stochastic process allowing
grouping of individuals into discrete states at any time point. This method is flex-
ible and useful for dealing with longitudinal data. Consider Figure below which
shows a possible graphical representation of the standard competing risks model
(2.26) under a multi-state framework.

Changing from one state to another is referred as a transition and this is processed
via transition hazard (h0 and h1 in Figure). One advantage from this method is that
interpretation and models fitting become easier as a particular state structure can
be formulated in different forms under the multi-state framework. As for the likeli-
hood formulation, it is derived assuming that transition between states is governed
by a Markov Process as discussed in Hougaard (2000, 1999) and Commenges (1999).

2.9.5. Change Point Models.
The change point model is an extension and similar concept to the multi-state

model described previously. Here we assume that the form of the distribution of
the survival process changes at one or more time points unlike the multi-state model
which considers transition of individuals instead. Ebrahimi et al. (1997) and Chung
et al. (2005) developed Bayesian models for a process involving n change points.
Chung et al. (2005) defines the hazard under the change point models as

(2.27) h(t) = h1(t)I(0 ≤ t ≤ ς1) + ...+ hn(t)I(ςk−1 < t < ςn) + hk+1(t)I(t > ςk)

where ς=(ς1, ..., ςk) is the vector containing the change point parameters with
I(U) = 1 if x ε U or 0 otherwise.

2.10. Conclusion.
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In this section, we have seen that survival analysis offers a large variety of options
when it come to dealing with a host of different situations, each having their own
complications, when investigating failure time data. The conventional survival ap-
proach discussed provides a straightforward way to deal with censored information
as well as methods to work with data having failure times that are not normally
distributed. Moreover we have also introduced several techniques on how to fit
these survival models and produce estimation methods for their parameters. In the
next section, we will focus on the idea of allowing for random effects and the notion
of multi-level modelling in survival analysis.

3. Survival Models with Frailties

3.1. Introduction.
The idea of frailty provides an appropriate way to introduce random effects, as-

sociation and unobserved heterogeneity present in survival data. In the simplest
form, a frailty is defined as an unseen random proportionality factor that modifies
the hazard function of an individual or of related individuals. Fundamentally, the
frailty notion goes back to the work of Greenwood and Yule (1920) on ”accident
proneness”. Vaupel et al. (1979) introduced the term frailty in univariate survival
models and Clayton (1978) extensively promoted its application to multivariate
survival data in a seminal paper (without using the concept of ”frailty”) on chronic
disease incidence in families.

Frailty models are extensions of the proportional hazards model which is best re-
ferred as the Cox model (Cox, 1972). Usually in most medical studies, survival
analysis basically assumes presence of a homogeneous population. This means that
all individuals participating in that study are subject to the same type of exposure
(e.g., risk of death, risk of medical condition recurrence). In many cases however,
the study population is not homogeneous and must be assumed as a heterogeneous
sample, i.e. a combination of individuals with different hazards. For example, in
many cases it is not possible to have measurements of all relevant covariates linked
to the medical condition of interest, sometimes because of economical reasons or
sometimes the essence of some covariates is still unfounded.

The frailty approach is a statistical set up which provides a method to account
for heterogeneity caused by unexplained covariates. Statistically speaking, a frailty
model is a random effect model for time-to-event data where the effect of the frailty
term on baseline hazard function is multiplicative. One can identify two broad types
of frailty models:
(1) models with an univariate survival time as endpoint and
(2) models with multivariate survival endpoints (e.g; competing risks, recurrence
of events in the same individual, occurrence of a disease in relatives).

Why random effects?
Under standard situation, most clinical research assume that the population being

investigated is homogeneous and that the survival data are independent from each
other, with independent and identically distributed survival times. However in the
medical field, patients differ substantially. The effect of a particular treatment or
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the influence of various explanatory variables may vary significantly between sub-
groups of patients.

The difference between subgroups of patients arise mainly because it is impossible
to account for all essential factors on the individual level into the analysis. There
are two reasons why this is the case. Firstly sometimes there are too many co-
variates to account for in the model and secondly the researcher may be unable
to obtain measurements of all relevant covariates. These two cases are the sources
of two different types of variability in the data: variation due to risk factors that
can be measured (which is thus theoretically predictable) and heterogeneity caused
by unknown covariates, which is thus theoretically unpredictable. Analysing these
two sources of variation separately offers some advantages since heterogeneity in
contrast to variability help to understand some ”unexpected” results or provide an
alternative explanation of some results.

Ignoring a subset of the essential covariates produces biased estimates of both
regression coefficients and the hazard rate in proportional hazard model. This is
because bias lies in the fact that the time-dependent hazard rate results in changes
in the composition of the study population over time with respect to the covariates.
Consider for example two groups of patients where some of them have a higher risk
of failure, then the remaining exposed individuals tend to form part of a selected
group with a lower risk. Estimating the individual hazard rate without accounting
for unobserved frailty would thus underestimate the true hazard function and the
degree of underestimation would increase as time progresses.

3.2. Univariate Frailty Models.
In the univariate case, the frailty model extends the Cox model given by (2.17)

such that the hazard of an individual depends in addition on an unseen random
variable Z which has a multiplicative effect on the baseline hazard function h0(t):

(3.1) h(t, Z, x) = Zh0(t)φ(β;x)

Again h0, β and x are as defined in section (2.6) and Z is the unobserved random
variable (frailty) fluctuating over the population which lowers (Z < 1) or raises
(Z > 1) the individual risk. Here frailty corresponds to the notion of susceptibility
in different settings (Falconer, 1967). The corresponding survival function S for
the proportion of individuals surviving to time t in the study is given by

(3.2) S(t|Z, x) = exp(−Z
∫ t

0

h0(s)ds exp(βTx))

So far, the survival function described in (3.2) is at the individual level and this is
not observable. Therefore we need to consider the model at the population level.
The survival function at the population level is given by the mean of the individ-
ual survival functions in (3.2). It can be regarded as the survival function of an
observable individual that has been randomly selected. Similarly it is important to
note that the observed hazard function will not be similar to the individual hazard
rate because what we can observe in the study population is the net result for a
number of individuals with different Z. The shape of the individual hazard rate
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may be completely different from that of the population.

Frailty models in the univariate case is common and widely applied. Some of the
examples which can be reviewed in details are listed here. Firstly Aalen and Tretli
(1999) used the compound Poisson distribution to model testicular cancer data.
The idea behind such model is that a cluster of individuals showed higher suscepti-
bility to testicular cancer, causing selection over time. Similarly Hougaard (2000)
used the data set consisting of patients who underwent radical surgery for skin
cancer at the University Hospital of Odense in Denmark to compare the traditional
Cox model with a gamma frailty and the three parameter distribution (Hougaard,
1986a) frailty model.

Another example of the application of univariate gamma frailty model is the model
proposed by Hougaard (2000) to account for heterogeneity in a data set that deals
with the time from insertion of a catheter into dialysis patients until it is removed
because of infection. In a more detailed paper, Congdon (1995) investigated the
influence of the choice of different frailty distributions (gamma, inverse Gaussian,
stable and binary) for a data set consisting of total and all cause-specific mortality
for individuals from London (1988-1990).

3.3. Multivariate Frailty Models.
Usually data in survival analysis are assumed to be univariate. There exists a set

of standard methodology including the Kaplan-Meier plots and Cox analysis to deal
with such data set. However there are certain contexts where multivariate survival
data arises naturally and therefore poses for ordinary multivariate methods, spe-
cially when it comes to dealing with censored multivariate data set.

Typically one can obtain multivariate survival data in two ways. The first case is
referred as recurrent events and it occurs when an investigator has to record the
occurrence of several successive events of the same category for each individual.
For example, one may record observations for the same patient each time the lat-
ter have a cardiovascular disease. The second one which is called as the clustered
survival data, consists of several units whose failure are observed and collected in
cluster. For example, one may record the death times of patients undergoing similar
medical treatments within the same ward. Here ward is considered as one cluster.
In such cases, we can no longer assume independence between clustered survival
times. Multivariate models enables us to account for the dependence between these
event times.

Another issue that is widely discussed in the multivariate frailty models literature
is censoring, which takes a new dimension since censored information for individuals
depend on previous events for the same individual and possibly on previous events
of other individuals. Knowing the nature of censored information is essential to
write up likelihood functions and thus statistical analysis. Usually time scales are
reshuffled in statistical analysis for censored information, so that the starting point
for each individual is zero. However if censoring is influenced by decisions being
taken or by the occurrences of other processes, then these influences should follow
the actual real time. This creates a complication since reshuffling the censored time



M.A.H WAHEDALLY 27

scales can no longer be carried out. Hougaard (2000) provides a detailed section on
how to deal with such complication for multivariate survival data while Andersen et
al.(1993) and Lee (1989, Chapter 7) provides a general theory concerning likelihood
based statistical methods for censored multivariate survival data.

As mentioned previously, assumption of independence no longer holds between
clustered survival times. Hougaard (2000) proposed a general approach that is
widely used to account for presence of dependence between clustered data in multi-
variate models. The proposed method specifies independence among observed data
conditional on a set of unseen and unobserved or latent variables. The dependence
structure for the multivariate model comes from a latent variable in the conditional
models for multiple survival times. For example, suppose we have S(t1|Z, x1) and
S(t2|Z, x2) as the conditional survival functions of two related individuals where x1

and x2 are the different vector of observed covariates respectively. Then averaging
over an assumed distribution for the latent variables (e.g., using a gamma or log-
normal or stable distribution) helps in developing a two-dimensional multivariate
survival model of the form:

S(t1, t2) =

∫ ∞
0

(t1|Z, x1)(t2|Z, x2)g(Z)dZ,

where g(.) denotes the density of the frailty Z. In this section we showed that mul-
tivariate observations do not guarantee independence between clustered survival
times. Frailty models for such data are derived under the conditional independence
assumption that mainly consists of specifying the latent variables in a way that has
a multiplicative effect on the baseline hazard.

3.4. The shared frailty model.
The shared frailty model refers to event times of individuals that are related ei-

ther by sharing a common characteristics or due to experiments producing repeated
measurements for each individuals. In this way the individuals sharing that com-
mon feature are clustered within the same group. Clayton (1978) introduced the
idea of assuming a common frailty Z for individuals in the same cluster. This idea
is extensively studied in Hougaard (2000) which provided an important assumption
about the conditional independence of the survival times to the common frailty.

To illustrate the idea of shared frailty, consider the example where we have clus-
ters of pairs of individuals, each having bivariate survival times (e.g., event times
of parents, twins, wife-husband). Extensions to the multivariate case is straight-
forward. Conditioning over the common frailty Z, the hazard function for a pair
of individual is given by Zh0(t)exp(βTx), where Z is the common frailty for both
individuals, causing survival times within pairs of individuals to be dependent on
each other. Taking the survival times within a pair corresponds to a degenerate
frailty distribution (Z = 1, σ2 = 0) while for cases when σ2 > 0, we obtain a pos-
itive dependence by construction of the model. Conditioning on Z, the bivariate
survival function is written as

S(t1, t2|Z) = S1(t1)ZS2(t2)Z
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For instance, if we assume a Gamma distribution for the frailty with mean equal
to 1 and variance σ2, then the conditional bivariate survival function is of the form

S(t1, t2) = (S1(t1)−σ
2

+ S2(t2)−σ
2

− 1)1/σ2

Although shared frailty is a nice way to allow for correlation between observations
within clusters, it however has some limitations. Firstly it may sometimes wrongly
account unobserved factors to be the similar within clusters. This may not be true
in reality for some cases. For example, it is not appropriate to assume that all
partners in a group share all their hidden risk factors.

Secondly the dependence between survival times within the cluster is established
using the marginal distributions of survival times. However for a model with gamma
distributed frailty, the dependence parameter and the population heterogeneity are
confounded (Clayton and Cuzick, 1985), implying that the joint distribution can
be recognized from the marginal distributions (Hougaard, 1986a).

Thirdly, a one-dimensional frailty only generates positive association within clus-
ters. However there exists situations where the survival times for the individuals
are negatively associated. For instance, in the medical field, there are situations
where the longer the patients wait to receive the appropriate intervention, the less
likely the individual is to survive after the intervention. A common example is
that of heart transplant. Therefore we observe a negative association between the
waiting time and the survival time, which is not detected by one-dimensional frailty.

3.5. The correlated frailty model.
Primitively, correlated frailty models were developed to analyse bivariate failure

time data, in which dependent random variables are used to outline the frailty
effect for each pair. For example, suppose each member of the pair is assigned a
random variable such that they do not share a common frailty. Then these two
variables are related and have a joint distribution. However knowledge of one of
the variable does not compulsorily mean knowing the other. In this case, the type
of correlation between the two variables is free from any restriction. Assuming a
Gamma distribution for the frailties, Yashin and Iachine (1995) used a correlated
Gamma frailty model with a distribution as shown below for bivariate survival data.

S(t1, t2) =
S1(t1)1−ρS2(t2)1−ρ

(S1(t1)−σ2 + S2(t2)−σ2 − 1)ρ/σ2

Multivariate frailty models are of numerous types and form part of one of the most
important statistical models for survival analysis. McGilchist and Aisbett (1991)
used a shared log-normal frailty model to analyse catheter infection data while
Pickles et al. (1994) applied the correlated gamma frailty model to a dataset on
age of onset of puberty and antisocial behaviour in British twins. Similarly, Dos
Santos et al. (1995) applied a shared frailty model with gamma and log-normal
distributed frailty for the analysis of recurrence of breast cancer.
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We observe in a similar way the correlated gamma frailty model utilised by Yashin
and Iachine (1995) and Yashin et al. (1995) to analyse mortality in a population
of Danish twins. Zahl (1997) applied different versions of the correlated gamma-
frailty model to account for the excess hazard present in a dataset on cancer specific
mortality in Norway while Andersen et al. (1999) used a frailty model without spec-
ifying the distribution of the frailty to test for the centre effects in a multi-centre
survival studies.

Manatunga and Oakes (1999) developed a shared positive stable frailty model by
allowing for proportional hazards in the marginal and the conditional model and
applied it to the data from the Diabetic Retinopathy Study to examine the effec-
tiveness of laser photo-coagulation in delaying the onset of blindness in patients
with diabetic retinopathy. Another example of the use of correlated gamma-frailty
model can be observed in Wienke et al. (2001) and Zdravkovic et al. (2002). They
applied such frailty model to analyse genetic factors influencing mortality due to
coronary heart diseases in Danish twins. Therefore we can conclude that there
exists several methods that are extension to the Cox proportional hazard model to
accommodate for correlations between survival times in frailty models

3.6. Choice of frailty distributions.
In previous sections, we introduce the idea of incorporating random effects in sur-

vival models for various reasons as explained before and also provide an overview
of the several methods that have been employed to account for random effects. In
this section we discuss the various statistical distributions that have been proposed
in literature to represent these random effects. Choosing the appropriate frailty
distribution is crucial because the frailty distribution contributes to the definition
of the dependence contribution arising in the data. Dependence between correlated
observations changes over time, thus choice of frailty distribution needs to be cau-
tiously carried out as the latter dictates how dependence in data evolves with time.


