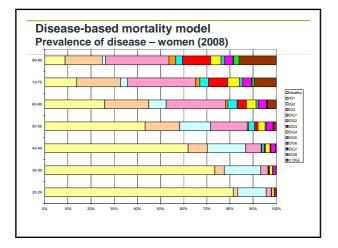


Breadth of current longevity models

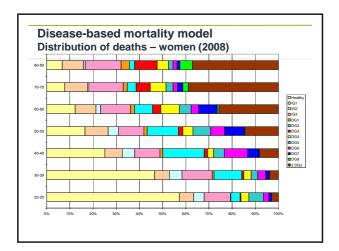

- Extrapolative
 - analysis of historical all-cause mortality experience
 - project past trends on deterministic/stochastic models
 - no explicit constraints placed on model
- Targeting
 - expert opinion or historical trends
- Explanatory
 - cause-specific mortality
 - disease diagnosis, interaction and subsequent death

Fundamental importance of time

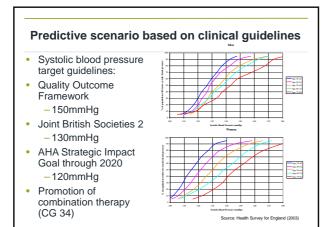
- Extrapolative models allow the user to overlook significance of different time periods
- Clear horizons that separate informed opinion from guesswork
- Short to medium term (c. 10 years)
 - predictive scenarios based on clinical guidelines, current treatments & experience in other countries
- Long term
 - historical analysis (adjusted OR unadjusted)
 - impact of changes over short to medium term
 - amenable mortality
 - future advances for particular diseases



Disease-based mortality models


- · Extension of impaired life annuity concept
- · Multi-state model of all-cause mortality
- Remote access or dataset from General Practice Research Database ("GPRD") or The Health Improvement Network ("THIN")
 - identify new disease from "healthy" population
 - track development of subsequent disease
 - track deaths from individuals with prior history of disease
- Two potential approaches to derive future mortality

Disease Groups	Diseases considered	
Minor Group 1 (IG1)	atherosclerosis, cardiac arrhythmias, cardiomyopathy, diabetes, hypercholesterolaemia, hypertension, transient ischaemic attacks valvular disease	
Minor Group 2 (IG2)	benign neoplasms, malignant skin cancers other than malignant melanoma	
Minor Group 3 (IG3)	epilepsy, motor neurone disease, MRSA, multiple sclerosis, osteoporosis, osteoarthritis, rheumatoid arthritis	
Principal Group 1 (DG1)	stroke	
Principal Group 2 (DG2)	cancers of breast, cervix, larynx, prostate and uterus, plus malignant melanoma	
Principal Group 3 (DG3)	aneurysms, ischaemic heart disease, heart failure	
Principal Group 4 (DG4)	chronic obstructive pulmonary disease, pneumonia and tuberculosis	
Principal Group 5 (DG5)	cancers of colon, ovary, rectum and urinary system, plus oral cancers, leukaemias and lymphomas	
Principal Group 6 (DG6)	Crohn's disease, gastric and duodenal ulcers, clostridium difficile infection, ulcerative colitis, and kidney and liver disease	
Principal Group 7 (DG7)	cancers of brain, lung, oesophagus, pancreas and stomach, and multiple myeloma	



Holistic view of future longevity

- Longevity projectionists Vaupel/Bongaarts
 projection of trends without deconstruction
 - no imminent sign of limit to life expectancy
 - future medical advances expected to be as
 - significant as historical advances
 - Longevity realists/pessimists Olshansky
 - question lack of explanation from projectionists
 stress ageing process as separate from disease
 - no current treatments for ageing process
- Recent convergence on potential scenarios of
- increases in life expectancy of 7 years by 2050

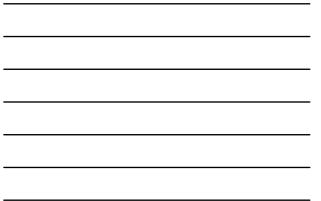
Predictive scenario on impact of treatment

- National Institute for Clinical Excellence (NICE)
 Technical Appraisals
 - Clinical Guidance
- TA 176 cetuximab for combination first-line treatment of KRAS metastatic colorectal cancer by blocking EGFR
 - metastases restricted to liver and unresectable but primary tumour resectable and patient fit enough for surgery
- Target population: 1,402
- Cost per QALY: £30,000
- Total annual cost: £18.8 million
- Average increase in "healthy" life expectancy: 5.3
- months

Fundamental importance of time

- Extrapolative models allow the user to overlook significance of different time periods
- Clear horizons that separate informed opinion from guesswork
- Short to medium term (c. 10 years)
 - predictive scenarios based on clinical guidelines, current treatments & experience in other countries
- Long term
 - historical analysis (adjusted OR unadjusted)
 - impact of changes over short to medium term
 - amendable mortality
 - future advances for particular diseases

Long-term mortality improvements in CMI Mortality Projection Tool & ONS 2008 projections

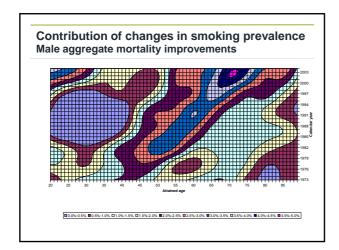

- International historical analysis
- Mortality improvement differentials
 - CMI Permanent Assured Lives and CMI Pensioners in UK
- Development of expert opinion for different assumptions in census analyses.
- Relevance of cohort mindset of ONS when developing mortality improvements led to cohort features despite experts' comments.

Origins and uses for amendable mortality

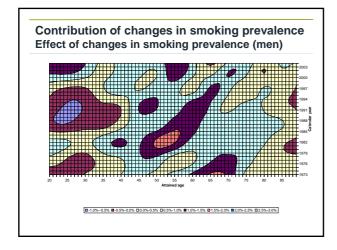
- Deaths occurring before age 75 in diseases regarded as amenable.
- Would include breast cancer, colo-rectal cancer, leukaemia, ulcers and hypertensive diseases
- Key work in recent decades by Nolte & McKee – "Measuring the health of nations"
- 43% and 38% reduction in amendable causes of death for men and women respectively over period 1993 to 2005.

Cumulative improvements to mortality predicted over 2008-2020 for ages 70-74

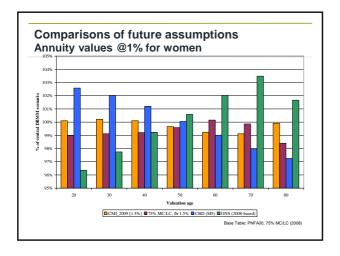
Disease Groups	Male lives	Female lives
Healthy	13.1%	13.1%
Minor Group 1 (IG1)	14.5%	15.3%
Minor Group 2 (IG2)	-3.1%	11.2%
Minor Group 3 (IG3)	12.2%	12.2%
Principal Group 1 (DG1)	16.9%	16.7%
Principal Group 2 (DG2)	30.8%	32.7%
Principal Group 3 (DG3)	18.7%	18.9%
Principal Group 4 (DG4)	9.7%	8.0%
Principal Group 5 (DG5)	23.3%	24.4%
Principal Group 6 (DG6)	12.7%	12.8%
Principal Group 7 (DG7)	12.0%	9.7%
Principal Group 8 (DG8)	12.2%	16.8%
All lives	21.3%	19.5%



Long-term trends in non-smoker mortality Data sources


- UK Doctor's Study & American Cancer Society Cancer Prevention Study (2)
 - Excess mortality of smokers over never smokers
- Reduction in excess mortality for ex-smokers
- General Household Survey
 - Annual survey covering smoking & other behaviours
 - Published data for proportions of smokers, nonsmokers and ex-smokers for relatively wide age groups
 - Time Series Dataset includes 800,000 interviews over the period 1972 to 2004
 - ONS mortality experience
 - Deaths and population exposure by sex and individual age from 1971 up to age 89

Long-term trends in non-smoker mortality Model structure


- Population transition model using annual steps designed to derive non-smoker mortality rates from aggregate mortality rates
- Model tracks population exposures from age 20 for smokers, never smokers, former smokers by individual year since cessation up to 15 years & former smokers of 15+ years since cessation
- Resetting to annual population estimates with similar distribution for migrants and residents
- General Household Survey used to set starting distribution and then to validate model outputs
- EXCEL Solver applied to smoker cessation rates

