

Minimizing Longevity and Investment Risk while Optimizing Future Pension Plans

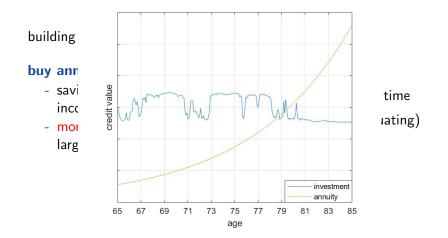
How much to put in a tontine

Thomas Bernhardt and Catherine Donnelly Risk Insight Lab https://risk-insight-lab.com/

Actuarial and Financial Mathematics Conference, Thursday 7th February, 2019

The UK pension freedom since 2015

building a personal pension pot, and at retirement...


buy annuity

- savings for guaranteed income, $\mathbb{E}[give] = \mathbb{E}[take]$
- mortality pooling (law of large numbers)

go into drawdown

- savings spent over time
- investments (fluctuating)
- bequest

The UK pension freedom since 2015

The UK pension freedom since 2015

building a personal pension pot, and at retirement...

buy annuity

- savings for guaranteed income, $\mathbb{E}[give] = \mathbb{E}[take]$
- mortality pooling (law of large numbers)

1

go into drawdown

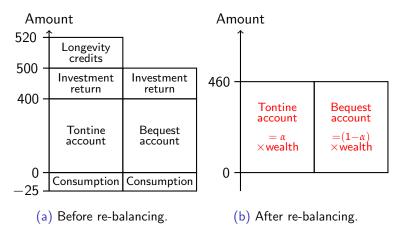
- savings spent over time
- investments (fluctuating)
- bequest

\Downarrow

mortality credits at high ages, unpopular choice investment returns at low ages, risk of outliving

Tontines

Tontine = mortality credits + investment return


- surrender savings to a group of people, to get mortality credits
- no guarantees, to be able to invest

add bequest

 allow to choose α, how much to surrender, to have a bequest (comes with reduction in mortality credits)

Tontines

in the background mortality credits boost wealth and bequest

Tontines

Tontine = mortality credits + investment return

- surrender savings to a group of people, to get mortality credits
- no guarantees, to be able to invest

add bequest

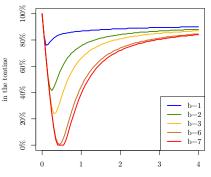
 allow to choose α, how much to surrender, to have a bequest (comes with reduction in mortality credits)

mathematical description

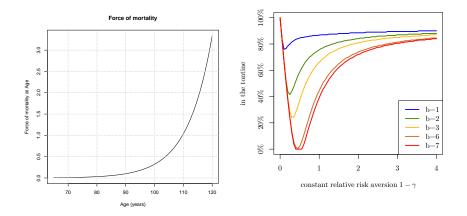
- mortality credits = additional α -weighted stream of income
- in a Black-Scholes market and force of mortality λ...

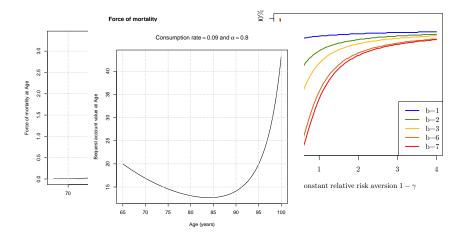
$$\frac{\mathrm{d}X_t}{X_t} = r(1-\pi_t)\mathrm{d}t + \mu\pi_t\mathrm{d}t + \sigma\pi_t\mathrm{d}W_t - c_t\mathrm{d}t + \alpha\lambda_t\mathrm{d}t$$

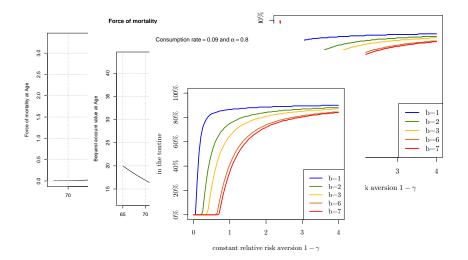
optimization problem including lifespan $\tau,$ bequest motive b, and constant relative risk aversion $1-\gamma$


•
$$\sup_{\alpha,c,\pi} \mathbb{E}\Big[\int_0^{\tau} U(s, cX_s) \, \mathrm{d}s + b B(\tau, (1-\alpha)X_{\tau})\Big]$$

•
$$U(s, x) = B(s, x) = e^{-\rho s} x^{\gamma} / \gamma$$


•
$$\mathbb{P}[\tau > x] = \exp\left(-\int_0^x \lambda_s \mathrm{d}s\right)$$


solution for optimal α , given bequest motive b and risk aversion $1 - \gamma$


- risk seeking, low $1-\gamma$
 - down and up
 - changes from 0% to 100%

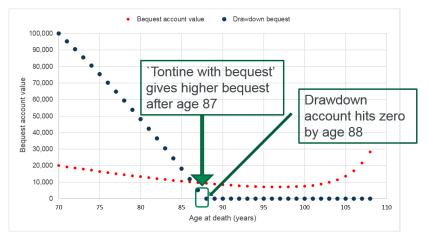
constant relative risk a version $1-\gamma$

solution for optimal α , given bequest motive b and risk aversion $1 - \gamma$

- risk seeking, low $1-\gamma$
 - down and up
 - changes from 0% to 100%

risk averse, high $1-\gamma$

- around 80%
- stable even for changes in μ , σ , r and slight changes with ρ , λ


constant relative risk a version $1-\gamma$

Refirement options kiosk	Age 70 with £100,000 pot		
	Annuity	Drawdown	Tontine with bequest
Annual income	£6,000		
Age of default	Never		
Money left to heirs	Nothing		
Basis	S1PMA, UK yield curve		

Refirement options kiosk	Age 70 with £100,000 pot		
	Annuity	Drawdown	Tontine with bequest
Annual income	£6,000	£6,600	
Age of default	Never	87 years	
Money left to heirs	Nothing	left pot	
Basis	S1PMA, UK yield curve	S1PMA, 2% p.a.	

Retirement options kiosk	Age 70 with £100,000 pot			
	Annuity	Drawdown	Tontine with bequest	
Annual income	£6,000	£6,600	£6,600	
Age of default	Never	87 years	120+ years (constant amount withdrawn)	
Money left to heirs	Nothing	left pot	20% of left pot	
Basis	S1PMA, UK yield curve	S1PMA, 2% p.a.	S1PMA, 2% p.a., 80% in the tontine	

direct comparison drawdown vs. tontine with bequest

Future research

- how many members so that law of large numbers holds true?
- is risk sharing possible to achieve stability?

Thank you for your attention. Do you have any questions or feedback?