UNIVERSITY
Minimizing Longevity and Investment Risk while Optimizing Future Pension Plans

How much to put in a tontine

Thomas Bernhardt and Catherine Donnelly
Risk Insight Lab https://risk-insight-lab.com/

Actuarial and Financial Mathematics Conference, Thursday $7^{\text {th }}$ February, 2019

The UK pension freedom since 2015

building a personal pension pot, and at retirement...
buy annuity

- savings for guaranteed income, $\mathbb{E}[$ give $]=\mathbb{E}[$ take $]$
- mortality pooling (law of large numbers)
go into drawdown
- savings spent over time
- investments (fluctuating)
- bequest

The UK pension freedom since 2015

time
rating)

The UK pension freedom since 2015

building a personal pension pot, and at retirement...
buy annuity

- savings for guaranteed income, $\mathbb{E}[$ give $]=\mathbb{E}[$ take $]$
- mortality pooling (law of large numbers)
\Downarrow
mortality credits at high ages, unpopular choice
go into drawdown
- savings spent over time
- investments (fluctuating)
- bequest
\Downarrow
investment returns at low ages, risk of outliving

Tontines

Tontine $=$ mortality credits + investment return

- surrender savings to a group of people, to get mortality credits
- no guarantees, to be able to invest
add bequest
- allow to choose α, how much to surrender, to have a bequest (comes with reduction in mortality credits)

Tontines

in the background mortality credits boost wealth and bequest

(a) Before re-balancing.

(b) After re-balancing.

Tontines

Tontine $=$ mortality credits + investment return

- surrender savings to a group of people, to get mortality credits
- no guarantees, to be able to invest
add bequest
- allow to choose α, how much to surrender, to have a bequest (comes with reduction in mortality credits)
mathematical description
- mortality credits $=$ additional α-weighted stream of income
- in a Black-Scholes market and force of mortality $\lambda \ldots$

$$
\frac{\mathrm{d} X_{t}}{X_{t}}=r\left(1-\pi_{t}\right) \mathrm{d} t+\mu \pi_{t} \mathrm{~d} t+\sigma \pi_{t} \mathrm{~d} W_{t}-c_{t} d t+\alpha \lambda_{t} \mathrm{~d} t
$$

Numerical results

optimization problem including lifespan τ, bequest motive b, and constant relative risk aversion $1-\gamma$

- $\sup _{\alpha, c, \pi} \mathbb{E}\left[\int_{0}^{\tau} U\left(s, c X_{s}\right) \mathrm{d} s+b B\left(\tau,(1-\alpha) X_{\tau}\right)\right]$
- $U(s, x)=B(s, x)=\mathrm{e}^{-\rho s} x^{\gamma} / \gamma$
- $\mathbb{P}[\tau>x]=\exp \left(-\int_{0}^{x} \lambda_{s} \mathrm{~d} s\right)$

Numerical results

solution for optimal α, given bequest motive b and risk aversion $1-\gamma$
risk seeking, low $1-\gamma$

- down and up
- changes from 0% to 100%

Numerical results

Numerical results

Force of mortality

Numerical results

Force of mortality
$\stackrel{\circ}{8} \sqrt{1}$

Numerical results

solution for optimal α, given bequest motive b and risk aversion $1-\gamma$
risk seeking, low $1-\gamma$

- down and up
- changes from 0% to 100%
risk averse, high $1-\gamma$

- around 80%
- stable even for changes in μ, σ, r and slight changes with ρ, λ

Numerical results

Refirenentot qutions	Age 70 with $£ 100,000$ pot		
	Annuity	Drawdown	Tontine with bequest
Annual income	£6,000		
Age of default	Never		
Money left to heirs	Nothing		
Basis	SIPMA. yield		

Numerical results

		Age 70 with £100,000 pot	
	Annuity	Drawdown	Tontine with bequest
Annual income	£6,000	£6,600	
Age of default	Never	87 years	
Money left to heirs	Nothing	left pot	
Basis	SIPMA, yield curv	$\begin{aligned} & \text { SIPMA } \\ & 2 \% \text { p.a. } \end{aligned}$	

Numerical results

Refirement pofions	Age 70 with $£ 100,000$ pot		
	Annuity	Drawdown	Tontine with bequest
Annual income	£6,000	£6,600	£6,600
Age of default	Never	87 years	120+ years (constant amount withdrawn)
Money left to heirs	Nothing	left pot	20\% of left pot
Basis	SIPMA, UK yield curve	$\begin{array}{\|l\|l\|} \hline \text { SIPMA } \\ 2 \% \text { p.a } \end{array}$	SIPMA, 2\% p.a.. 80% in the tontine

Numerical results

direct comparison drawdown vs. tontine with bequest

Future research

- how many members so that law of large numbers holds true?
- is risk sharing possible to achieve stability?

Thank you for your attention.
Do you have any questions or feedback?

