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ABSTRACT

The implementation of hedging strategies for variable annuity products requires
the calculation of market risk sensitivities (or “Greeks”). The complex, path-
dependent nature of these products means that these sensitivities are typically
estimated byMonte Carlo methods. Standardmarket practice is to use a “bump
and revalue” method in which sensitivities are approximated by finite differ-
ences. As well as requiring multiple valuations of the product, this approach is
often unreliable for higher-order Greeks, such as gamma, and alternative path-
wise (PW) and likelihood-ratio estimators should be preferred. This paper con-
siders a stylized guaranteed minimum withdrawal benefit product in which the
reference equity index follows a Heston stochastic volatility model in a stochas-
tic interest rate environment. The complete set of first-order sensitivities with
respect to index value, volatility and interest rate and the most important
second-order sensitivities are calculated using PW, likelihood-ratio and mixed
methods. It is observed that the PW method delivers the best estimates of first-
order sensitivities while mixed estimation methods deliver considerably more
accurate estimates of second-order sensitivities; moreover there are significant
computational gains involved in using PW and mixed estimators rather than
simple BnR estimators when many Greeks have to be calculated.

KEYWORDS
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1. INTRODUCTION

Many issuers of variable annuity (VA) contracts use a hedging strategy to mit-
igate some of the risk involved in writing these products. To design a hedging
strategy it is essential to be able to calculate reliable estimates of the sensitivities
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of VA liabilities to their key risk drivers. In this paper, we will focus on the guar-
anteed minimum withdrawal benefit (GMWB) product and compare different
Monte Carlo methods for estimating first-order and second-order sensitivities
(or “Greeks”). We do this in the context of an extended version of the Heston
stochastic volatility model (Heston, 1993) incorporating both stochastic volatil-
ity and stochastic interest rates.

There is a growing literature on VA products and their valuation and hedg-
ing; Ledlie et al. (2008) is a good introductory article to the product class.
Milevsky and Salisbury (2006) were the first to study the GMWB product and
they showed that it can be broken down into a term-certain annuity component
plus an Asian quanto option. Due to the long-term investment in a VA product,
stochastic volatility and interest rates can have a significant effect on valuation.
Peng et al. (2012) studied the valuation of the GMWB product under stochastic
interest rates and derived lower and upper bounds for the value of the option
component. Jaimungal et al. (2014) developed valuation methods that incor-
porate both stochastic volatility and interest rates, based on a PDE approach,
whereas Bacinello et al. (2011) have investigated the effects of stochastic volatil-
ity, interest rates and force of mortality using a Monte Carlo and least squares
Monte Carlo approach for various VA products. Kling et al. (2011) show that
stochastic volatility is important especially for hedging purposes. A number of
papers also show that assumptions about policyholder lapsation behaviour can
have a significant effect on the valuation and hedging of VA products (Milevsky
and Salisbury, 2006; Chen et al., 2008; Dai et al., 2008).

The main contributions of our paper are as follows. Building on the work
of Broadie and Kaya (2004), the likelihood-ratio (LR) method, a standard ap-
proach for evaluating option price sensitivities by Monte Carlo simulation, is
extended to work under a more realistic market model with stochastic volatility
and stochastic interest rates. The PWmethod is developed in the context of VA
liabilities, following a similar approach to Hobbs et al. (2009), but extending
this to obtain PW estimates of sensitivities to interest rates and volatility (rho
and vega). Finally, the PW and the LR approaches are combined to construct a
new and efficient mixed estimator for second-order sensitivities, such as gamma,
vanna and the sensitivity of delta with respect to the interest rate. This is relevant
for practitioners hedging their VA exposures, since accurate and unbiased esti-
mates of higher-order sensitivities allow the adaptation of hedging strategies to
take account of the convexity of liabilities with respect to key market exposures.

Indeed conversations with practitioners suggest that the use of second-order
sensitivities in hedging VA products is becoming more widespread, particu-
larly with the increasing availability of high-performance computing solutions.
A strategy that has been described to us involves the active management of a
portfolio of hedging instruments to match, as far as possible, first and second-
order Greeks on both the asset and liability side. The hedging instruments are
futures, forwards and interest rate swaps as well as, occasionally, more exotic
instruments like repos. Particular attention is devoted to matching delta and
rho (sensitivity to the equity index and interest rate) and dynamic rebalancing
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CALCULATING VARIABLE ANNUITY LIABILITY “GREEKS” 241

on an intra-day basis is used for these Greeks when necessary. For second-order
Greeks the rebalancing is less frequent but also considered important due to
the long-term nature of the guarantees and the sensitivity to changes in interest
rates and volatility that has been reported in the literature.

The paper is organized as follows. In Section 2, an overview of the standard
methods for estimating option price sensitivities by Monte Carlo simulation
is given. In Section 3, the asset price model incorporating stochastic volatil-
ity and interest rates is presented and a nested approach to implementing the
LR method in the context of the model is described. A stylized VA product of
GMWB type is presented in Section 4 and the details of the various estimation
methods for the Greeks are developed for this product. Section 5 compares the
accuracy and efficiency of all the estimators developed for the stylized VA prod-
uct in Section 4 under a number of different scenarios for the model parameters
and Section 6 concludes.

2. OPTION PRICE SENSITIVITY ESTIMATORS

We briefly review three standard approaches to estimating option price sensitiv-
ities by Monte Carlo: the “bump and revalue” (BnR) method, a natural finite-
difference approach that is often used by practitioners; the PW method; the
LR method. These methods were developed in the context of option pricing by
Broadie and Glasserman (1996); see also the textbook by Glasserman (2003).

LetY(θ) denote the discounted payoff of a path-dependent option expressed
as a function of a sensitivity parameter or risk factor θ . In the context of an
option on an equity index (which is effectively the situation with a VA product)
this sensitivity parameter could, for example, be the initial equity index level
or the initial interest rate. The price or value of the option is given by α(θ) =
E(Y(θ)), where the expectation is taken with respect to a risk–neutral or pricing
measure. We are interested in estimating α′(θ).

2.1. Bump and revalue approach

Under this approach we simulate the discounted payoff of the option un-
der some base scenario for the risk factor and then again under a so-called
“bumped scenario”, where the sensitivity parameter θ is increased by some
small perturbation �θ . We form a forward difference estimate in the sensi-
tivity parameter by first simulating n independent payoffs under the base sce-
nario (Y1(θ), . . . ,Yn(θ)) and n independent payoffs under the bumped scenario
(Y1(θ + �θ), . . . ,Yn(θ + �θ)) and then calculating

�̂B =
∑n

i=1Yi (θ + �θ) − ∑n
i=1Yi (θ)

n�θ
.
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It follows, by the strong law of large numbers, that, as n → ∞, we have

�̂B −→ E(Y(θ + �θ)) − E(Y(θ))

�θ
= α(θ + �θ) − α(θ)

�θ
≈ α′(θ).

A similar approach involving second-order finite-difference approximations can
obviously be applied to estimate second-order sensitivities.

The variance of the estimator �̂B can be significantly reduced if the same
random number stream is used to estimate the bumped and base option prices,
as opposed to using independent random number streams for each. Neverthe-
less, the BnR approach can incur fairly large sampling errors and it may also
be biased if the difference approximation to the derivative is poor. These prob-
lems are particularly acute for second-order sensitivity estimates. Note that the
bias can be reduced by using a central difference rather than the forward dif-
ference described above, although this introduces a further computational cost;
see Glasserman (2003) (from p. 378) for discussion.

2.2. Pathwise estimator

Under this approach we assume that the option payoffY(θ) may be analytically
differentiated with respect to θ to obtain Y′(θ). If an interchange of differentia-
tion and the taking of expectations is justified, then we have that

E(Y′(θ)) = d
dθ

E(Y(θ)) = α′(θ), (2.1)

and it follows that n−1 ∑n
i=1Y

′
i (θ) is an unbiased and strongly consistent esti-

mator of α′(θ) where (Y′
1(θ), . . . ,Y′

n(θ)) denote the values of the derivatives of
the payoff with respect to θ for each Monte Carlo simulation of the path of the
underlying asset price.

Sufficient conditions for the interchanging of expectations and derivatives
are derived in Broadie and Glasserman (1996) (see also Glasserman, 2003,
p. 393–396). The most important condition is that the payoff function should
be Lipschitz continuous with respect to θ . This is satisfied by many, but not all,
payoff functions that are common in option pricing and Glasserman suggests
that the “rule of thumb” that the payoff should be continuous in the parameter
of interest gives good guidance inmost problems (seeGlasserman, 2003, p. 396).
The PWmethod is certainly not applicable in the presence of discontinuous pay-
offs.

2.3. Likelihood ratio estimator

In this method, we assume that the discounted payoff may be expressed as a
function Y = f (S1, . . . , Sm) of a vector of asset prices at a series of ordered
times which, for the purposes of this paper, may be taken to be the regular times
t = 1, . . . ,m representing the policy anniversaries.
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CALCULATING VARIABLE ANNUITY LIABILITY “GREEKS” 243

To begin with, we also assume that the function f does not depend explicitly
on θ and that the dependence of Y on θ is through a parameter of the joint
density gθ of (S1, . . . , Sm) so that

α(θ) = E(Y(θ)) =
∫

Rm
f (x1, . . . , xm)gθ (x1, . . . , xm)dx1 · · · dxm. (2.2)

Since the densities that arise in applications are typically continuous functions
of θ , differentiation under the integral presents fewer problems than in the PW
case

α′(θ) =
∫

Rm
f (x1, . . . , xm)

d
dθ

gθ (x1, . . . , xm)dx1 · · · dxm

=
∫

Rm
f (x1, . . . , xm)

d
dθ
gθ (x1, . . . , xm)

gθ (x1, . . . , xm)
gθ (x1, . . . , xm)dx1 · · · dxm

= E

(
f (S1, . . . , Sm)

d
dθ

ln gθ (S1, . . . , Sm)

)
. (2.3)

Thus an unbiased estimator of α′(θ) may also be obtained by taking

1
n

n∑
i=1

Yi
d
dθ

ln gθ (Si,1, . . . , Si,m),

where (Si,1, . . . , Si,m), i = 1, . . . , n, represent Monte Carlo simulations of the
asset value vector andYi = f (Si,1, . . . , Si,m), i = 1, . . . , n, are the corresponding
discounted payoffs. The term d

dθ
ln gθ (x1, . . . , xm) is known in statistics as the

“score function” of the density gθ . In the Monte Carlo context it is referred to
as the LR weight, since it multiplies the discounted payoff function to give the
sensitivity estimator.

If the underlying asset value process is first-order Markovian, then, condi-
tional on a fixed starting value S0 = x0, the joint density is given by a product
of the form

gθ (x1, . . . , xm) = g1(x1|x0)g2(x2|x1) · · · gm(xm|xm−1),

and the LR weight is given by

d
dθ

ln gθ (S1, . . . , Sm) =
m∑
t=1

d
dθ

ln gt(St|St−1),

where we suppress the θ dependence of the conditional densities for notational
simplicity.

For later purposes we note that, if the function f in (2.2) has an explicit
dependence on θ then the expression for α′(θ) in (2.3) has to be amended
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accordingly and we obtain

α′(θ) = E

(
∂

∂θ
f (θ, S1, . . . , Sm)

)
+ E

(
f (θ, S1, . . . , Sm)

d
dθ

ln gθ (S1, . . . , Sm)

)
.

(2.4)
This will be relevant to the estimation of certain sensitivities in our application;
see also Example 7.3.7 in Glasserman (2003).

3. THE ASSET PRICE MODEL AND THE NESTED APPROACH

We will apply the estimators introduced in the previous section in the context of
an asset price model with stochastic volatility and stochastic interest rates. This
presents problems, in particular, for the LR method, since we need to obtain
the conditional distributions gt(xt|xt−1) of the asset prices to calculate the LR
weights. Broadie and Kaya (2004) provided a solution to this problem in the
context of Heston’s stochastic volatility model (Heston, 1993) and also consid-
ered the case of a stochastic volatility jump diffusion. By conditioning on the
volatility path, they developed a conditional LR method, which relies on the
fact that the LRweights are available in closed form for the basic Black–Scholes
model (see Glasserman, 2003, pages 403–405). We extend this approach to also
incorporate stochastic interest rates via the Cox–Ingersoll–Ross (CIR) model.

3.1. The model

The system of stochastic differential equations that governs our asset price dy-
namics is

dVt = κV(θV − Vt)dt + σV
√
VtdWV

t ,

drt = κr (θr − rt)dt + σr
√
rtdWr

t ,

dSt = rtStdt +
√
VtStdWS

t , (3.1)

where WS
t , W

V
t and Wr

t are Wiener processes under the risk–neutral measure.
Thus, the variance and interest rate both follow the same kind of stochastic
process. We note that, it would be possible to further extend the methodology
we describe below to consider an interest rate process with a larger number of
risk-factors; this could be useful for incorporating amore advanced interest rate
term structure.

We assume that the multivariate Wiener process (WV
t ,Wr

t ,W
S
t )� has instan-

taneous correlation matrix ρ, where ρ is a positive-definite matrix admitting the
Cholesky decomposition ρ = AA� for a lower-triangular matrix A= (ai j ).
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CALCULATING VARIABLE ANNUITY LIABILITY “GREEKS” 245

We can express the asset price dynamics in terms of the elements of the ma-
trix Aby

dSt
St

= rtdt +
√
Vt

(
a31dWt,1 + a32dWt,2 + a33dWt,3

)
,

where Wt,1, Wt,2 and Wt,3 are three independent Brownian motions and an ap-
plication of Ito’s lemma yields

d ln St = rtdt +
3∑

k=1

(√
Vta3kdWt,k − 1

2
Vta23kdt

)
.

Following the approach of Broadie and Kaya (2004), we observe that the log
asset price St may be written as

ln
(
St
Su

)
=

∫ t

u
rsds + a33

∫ t

u

√
VsdWs,3 − 1

2
a233

∫ t

u
Vsds + Yu,t,

where

Yu,t =
2∑

k=1

(
a3k

∫ t

u

√
VsdWs,k − 1

2
a23k

∫ t

u
Vsds

)
.

Hence we may write

St = Suξu,t exp
((

r̄u,t − 1
2
σ̄ 2
u,t

)
�u,t + a33

∫ t

u

√
VsdWs,3

)
, (3.2)

where �u,t = t − u and where

ξu,t = exp (Yu,t),

σ̄u,t =
√
a233
�u,t

∫ t

u
Vsds,

r̄u,t = 1
�u,t

∫ t

u
rsds.

3.2. Conditional estimators

Recall that the payoff is a function Y = f (S1, . . . , Sm) of the asset value at the
times t = 1, . . . ,m. Suppose, we condition on volatility and interest rates and
write Hm for the sigma algebra generated by the volatility and interest rate paths
up to time m.

For any interval [u, t] ⊂ [0,m], the quantities r̄u,t, σ̄u,t and ξu,t in (3.2) are
known functions of the information in Hm. In practice wewill approximate them
in terms of the volatility and interest rates sampled at a series of discrete times in
[u, t]. We will differ from Broadie and Kaya (2004) in that we will not generate
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∫ t
u Vsds randomly given the endpointsVu andVt butwill instead approximate the
integral by quadrature based on a sufficiently fine discretization; this approach
generalizes more easily to the complete set of integrals we require in our more
general model.

Conditional on Hm, we have a33
∫ t
u

√
VsdWs,3 ∼ N(0, σ̄ 2

u,t�u,t) so that St has
a conditional lognormal distribution given by

ln St ∼ N
(
ln(Suξu,t) + �u,t

(
r̄u,t − 1

2
σ̄ 2
u,t

)
, σ̄ 2

u,t�u,t

)
.

Thus St can be sampled given Su and Hm using the equation

St = Suξu,t exp
((

r̄u,t − 1
2
σ̄ 2
u,t

)
�u,t + σ̄u,t

√
�u,t Zu,t

)
, (3.3)

where Zu,t is an independent standard normal shock or innovation variable.
In the LR method, the expectation we are trying to estimate can be written

as

E

(
E

(
f (S1, . . . , Sm)

m∑
t=1

d
dθ

ln gt(St|St−1, Hm)

))
, (3.4)

where gt(St|St−1, Hm) denotes the lognormal density of St given St−1 and Hm.
The inner expectation is taken with respect to the multivariate distribution of
(S1, . . . , Sm) given Hm and can be estimated by a conditional application of the
LR method where the LR weights are straightforward to compute as explained
below. The outer expectation is estimated by averaging over volatility and inter-
est rate paths. The simulation setup is illustrated in Figure 1.

The conditional LR weights are easily computed by observing that

gt(St|St−1, Hm) = 1

Stσ̄t−1,t
√

�t−1,t
φ

⎛
⎝ ln

(
St

St−1ξt−1,t

)
− (

r̄t−1,t − 1
2 σ̄

2
t−1,t

)
�t−1,t

σ̄t−1,t
√

�t−1,t

⎞
⎠ ,

(3.5)
where φ represents the standard normal density function. Derivatives of
ln gt(St|St−1, Hm) with respect to key sensitivity parameters are mostly straight-
forward to compute.

The nested setup may also be used to implement both the PW and BnR
methods. It is not necessary to do this but it facilitates a comparison be-
tween methods. In the case of the former, we express the expectation (2.1) as
E(E(Y′(θ)|Hm)) and estimate the inner expectation by conditioning on volatility
and interest rate paths and averaging over asset value paths. A similar approach
may be taken to estimating both the bumped value E(E(Y(θ + �θ)|Hm)) and
the base value E(E(Y(θ)|Hm)) in the BnR method.
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CALCULATING VARIABLE ANNUITY LIABILITY “GREEKS” 247

FIGURE 1: The Greeks are estimated using a nested application of Monte Carlo. For each outer volatility and
interest rate scenario, multiple inner asset price paths are generated. Averaging over the inner scenarios gives a

conditional estimate of the sensitivity for a fixed volatility and interest rate scenario; averaging over outer
scenarios gives the unconditional estimate of the sensitivity. (Color online)

3.3. Generating model paths

There are various different numerical schemes for generating the volatility pro-
cess and the interest rate process. In this paper we will consider the case when
ρV,r = 0. This means that the two processes can be sampled independently and
allows us to use exact simulation algorithms for this purpose. In practice it is
often assumed that there is no correlation between volatility and interest rate
changes, since the correlations ρS,V (between asset-price changes and volatility
changes) and ρS,r (between asset-price changes and interest rate changes) are
viewed as more important. To sample dependent paths for volatility and in-
terest rates we could use simple bivariate Euler or Milstein schemes but these
generally introduce more biases into the calculations; an exact bivariate scheme
for generating volatility and interest rates jointly is not available.

We consider the following two univariate sampling schemes.

3.3.1. GQE: the gamma quadratic exponential scheme of Chan and Joshi (2013).
We will describe the process for the equity volatility path. The process for the
interest rate path follows similarly. Given Vu , Vt is sampled so that it satisfies

(Vt|Vu = vu)
d=�(αV, βV) +

Nλt∑
i=1

Expi (βV), (3.6)
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where

αV = 2κVθV

σ 2
V

, βV = σ 2
V

2κV

(
1 − e−κV(t−u)) , λt = 2κV

σ 2
V(eκV(t−u) − 1)

vu,

and where �(αV, βV) is a gamma random variable with mean αVβV and vari-
ance αVβ2

V, Nλt is a Poisson random variable with mean λt, and Expi (βV),
i = 1, . . . , Nλt , are independent and identically distributed exponential ran-
dom variables with mean βV. The second term in (3.6) is approximated using a
scheme similar to the QE scheme of Andersen (2008). More details of the GQE
scheme can be found in Chan and Joshi (2013).

3.3.2. GL: a scheme proposed inGlasserman (2003), see p. 123. This is a simple
method in which we sample Vt given Vu using the equation

(Vt|Vu = vu)
d= k1

((
Z(GL)
t +

√
k2vu

)2
+ χ2

2αV−1

)
, (3.7)

where Z(GL)
t is a standard normal variable, k1 = σ 2

V
1−e(−κV (t−u))

4κV
, k2 = e−κV (t−u)

k1
, and

αV is as previously defined. The method is only possible under the restriction
that 2αV > 1.

3.4. Quadrature approximation of integrated processes

To calculate terms like r̄u,t and σ̄u,t in (3.2) we require accurate estimates of
the integrated processes

∫ t
u Vsds and

∫ t
u rsds for the volatility and interest rate

paths. We also need to be able to approximate integrals like
∫ t
u

√
VsdWs,k for

k = 1, 2 to calculate ξu,t. For example, for k = 1 we need to compute an estimate
for ∫ t

u

√
VsdWs,1 = 1

σV

(
Vt − Vu − κVθV�u,t + κV

∫ t

u
Vsds

)
, (3.8)

which again involves
∫ t
u Vsds. In this paper, we will use simple quadrature ap-

proximations for all such integrals. For these approximation to be accurate, we
require fine time steps in the discretization of the volatility and interest rate
process. Suppose, we have p time steps between time u and time t, then the
approximations we use are of the form

∫ t

u
Vsds ≈

p∑
i=1

(0.5Vu+(i−1)�(p)
u,t

+ 0.5Vu+i�(p)
u,t

)�
(p)
u,t , (3.9)

where �
(p)
u,t = t−u

p . The method for estimating
∫ t
u rsds is analogous.
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4. VARIABLE ANNUITY LIABILITY SENSITIVITIES

4.1. Example variable annuity product

The methods for estimating option price sensitivities will now be applied to
the problem of estimating the sensitivities of a stylized VA liability. The idea
behind this stylized example product is that it should be simple enough both
in terms of tractability and ease of exposition, yet retain some of the key fea-
tures which make these products so popular in many markets. It should also
have liabilities which are path-dependent, as is typical of many VA products
on the market. The example product, based on a product described in Ledlie
et al. (2008), will be of the GMWB type, where the policyholder is entitled
to annual withdrawals from the underlying fund throughout the product life-
time, even if poor returns mean that the fund diminishes to zero (at which
point the insurance company must provide this income out of its own reserves).
The policyholder is entitled to the remaining fund value, if any, at product
maturity.

More details of this VA product and the policyholder will now be given.
Firstly the policyholder is a male who has just turned 65 and theGMWBoption
(or so-called guarantee rider) is initially active. This means that the policyholder
pays an extra ηguar of the guarantee base (which is introduced below) in charges
on top of the annual fund management charge; both are deducted from the VA
fund value. If the policyholder wishes to turn off this option, he is entitled to do
so and this cancels the extra guarantee charge, an event referred to as a customer
“lapse”. The modelling of the rate of policyholder lapsation is by no means a
trivial issue and we will make the simple assumption that there is a constant
annual lapse rate �. Incorporating dynamic policyholder lapsation will typically
increase the value of the guarantee, even if a relatively high penalty charge is
imposed (see Dai et al., 2008). However, embedding dynamic policyholder be-
haviour within a Monte Carlo framework can be computationally inefficient
and Bauer et al. (2008) have proposed a multidimensional discretization ap-
proach to address this issue.

With the GMWB option active the policyholder is guaranteed to receive
income at a fixed percentage level w of the guarantee base each year after his
65th birthday, until the contract expires after T years. The contract expires early
if the policyholder lapses or dies. The guarantee base is initially set at the amount
of the policyholder premium, but can increase in value with an increasing VA
fund level for the first α years after annuitization. After the end of this period,
the guarantee base remains at the same level for the remainder of the product’s
lifetime. This ratchet feature, where the guarantee base steps up to the fund value
if this is greater at the rebalancing date, is capped at a maximum year-on-year
increase c in the guarantee base. This will become clearer when the cash flows
are described mathematically shortly.

The underlying VA fund, which is initially funded by the policyholder pre-
mium, is invested wholly in a single equity index (St)with dynamics governed by
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the Heston–CIR model described by (3.1). Possible extensions of this analysis
include investing in a mixture of equities and bonds or in a portfolio of two
different equity indices.

To model the cash flows on this policy we denote the fund value and guar-
antee base at the end of year t by Ft and Gt, where time is measured in years
since annuitization. An income It is paid at time t in respect of year t. Note that
Ft refers to the fund value immediately before an income payment.

Also, let Rt denote the equity index return from time t−1 to time tminus the
management fees. That is, Rt = St/St−1−ηmc, where ηmc is the fundmanagement
charge, quoted as an annual percentage.

The policyholder invests in ψ units of the equity index with initial value S0
so that the initial fund value is F0 = ψS0. The guarantee base is initially set at
the level G0 = F0. At time t = 1 the fund value is given by

F1 = ψS0R1. (4.1)

The first income I1 is then paid as a percentage of the guarantee base as de-
scribed below. Thereafter we can track the fund value throughout the lifetime
of the policy using the equation

Ft = max((Ft−1 − It−1)Rt, 0), 2 ≤ t ≤ T. (4.2)

The guarantee base at the end of year t after annuitization can be expressed as

Gt =
{
min(max(Gt−1, Ft), (1 + c)Gt−1), 1 ≤ t ≤ α,

Gt−1, α < t ≤ T.
(4.3)

The income level the policyholder withdraws from the policy fund value at the
end of year t is given by

It = wGt. (4.4)

Here, w is a fixed parameter dictating the proportion of the guarantee base that
is withdrawn by the policyholder at each annual re-balancing date.

The liability the insurer faces from issuing this VA contract on the market,
measured at annuitization, can be expressed as

L =
T∑
t=1

Dt psurvt max(It − Ft, 0) (4.5)

where Dt is the discounting factor, psurvt is the probability of the policy remain-
ing in force until year t after annuitization (encompassing both mortality and
lapsation) and T is the maximum contract term.We have used the same mortal-
ity table as used in Ledlie et al. (2008), i.e. the probability of death in any year
is based on the RMC00 tables (medium cohort) with a minimum improvement
rate of 1% a year. Clearly, the insurer only faces a liability when the policyholder
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income cannot be met by the VA fund level. In other words, the shortfall an
insurer faces is greater than zero only if Ft drops below It at any time t ≤ T.

There are many ways for the insurer to charge for this liability. For exam-
ple, the insurer can impose a guarantee charge ηguar taken as a percentage of
the guarantee base each year. Suppose this charge is deducted directly from the
income paid to the policyholder, i.e. the policyholder receives net income of
(w − ηguar )Gt at the end of each year, and the insurer sets aside the guarantee
charge in an account A. The value of this asset can be expressed as

A=
T∑
t=1

Dt psurvt ηguarGt,

and the fair value of the contract would be the value ηguar that setsE(L) = E(A).
In the numerical analysis that follows, we will simply specify illustrative val-

ues ofw and ηmc, and report the resulting level ofE(L). We choose the following
values for the parameters. The maturity of the contract is T = 30. The income
withdrawal level is set at w = 4%. The lapse rate is assumed to be � = 4%. The
management charge is set at ηmc = 1.25%. The annual cap on the guarantee
base ratchet feature is c = 15% and the ratchet terminates at time α = 10.

4.2. Pathwise delta

Webegin by developing a PWmethod for estimating theVA liability sensitivities,
for the stylized VA product of the previous section. This method, proposed for
a simple VA product by Hobbs et al. (2009), is just the natural extension of the
PW approach for option sensitivities to the case of a VA product. The liability
of a VA product to the insurer is equivalent to the sum of a series of options
of increasing maturity. The payoff function in Equation (4.5) is a continuous
function of the initial asset price S0 and fulfils the conditions of Broadie and
Glasserman (1996) permitting the interchange of the order of differentiation
and integration in (2.1) and the application of the PW approach.

The payoff is

�PW := L′(S0) =
T∑
t=1

Dt psurvt
d
dS0

max(It − Ft, 0), (4.6)

=
T∑
t=1

Dt psurvt I(It > Ft) ·
( d It
dS0

− dFt
dS0

)
. (4.7)

The problem of estimating the delta sensitivity of the VA liability is now one
of estimating the derivative of the fund value, Ft, and income level, It, at each
time t after annuitization. Appealing to the structure of the product’s cash flows
these derivatives must be calculated recursively.
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Using (4.1), and noting that dRt
dS0

= 0 for all t, the recursion is initialized by

dF1
dS0

= ψR1,

and then continued by differentiating (4.2) to obtain

dFt
dS0

= I(Ft−1 > It−1)
(dFt−1

dS0
− d It−1

dS0

)
Rt, 2 ≤ t ≤ T. (4.8)

In view of (4.4) we have that d It
dS0

= w dGt
dS0

and using Equation (4.3) we obtain

dGt

dS0
= I(At)

dFt
dS0

+ (I(Bt) + (1 + c)I(Ct))
dGt−1

dS0
, 1 ≤ t ≤ α. (4.9)

Here, At, Bt and Ct are events given by

At = {Gt−1 ≤ Ft ≤ (1+c)Gt−1}, Bt = {Ft ≤ Gt−1}, Ct ={Ft >(1+c)Gt−1}.
Clearly, for t > α we simply have dGt

dS0
= dGt−1

dS0
.

4.3. Pathwise vega and rho

The PWapproach to estimating vega and rho is similar to the approach for delta
but the calculation of the derivatives is more intricate. The estimators, which we
denote by vPW and �PW, are given by

vPW =
T∑
t=1

Dt psurvt I(It > Ft) ·
( d It
dV0

− dFt
dV0

)
,

�PW =
T∑
t=1

Dt psurvt

(
I(It > Ft) ·

(d It
dr0

− dFt
dr0

)
− max(It − Ft, 0)�0,t

dr̄0,t
dr0

)
.

To compute these we need to derive recursions for dFt
dV0

, dFt
dr0

, dGt
dV0

and dGt
dr0

. We
concentrate here on the derivatives of the fund value Ft; similar arguments apply
to Gt.

Recursions are initiated by using (4.1) to obtain

dF1
dV0

= ψS0
dR1

dV0
,

dF1
dr0

= ψS0
dR1

dr0
.

We note that, in contrast to delta, the return variables Rt = St/St−1 − ηmc do
depend on initial volatility and interest rates. The equivalent recursion to (4.8)
now takes the form

dFt
dV0

= I(Ft−1 > It−1)
((dFt−1

dV0
− d It−1

dV0

)
Rt + (Ft−1 − It−1)

dRt
dV0

)
, 2 ≤ t ≤ T,
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for V0 and a similar equation applies for the sensitivity with respect to r0. Thus
we need to be able to compute the sensitivities for the returns Rt. It follows
from (3.3) that

Rt = ξt−1,t exp
( (

r̄t−1,t − 1
2
σ̄ 2
t−1,t

)
�t−1,t + σ̄t−1,t

√
�t−1,t Zt−1,t

)
− ηmc,

and hence, by applying the product and chain rules, we have

dRt
dV0

= ∂Rt
∂σ̄t−1,t

dσ̄t−1,t

dV0
+ ∂Rt

∂ξt−1,t

dξt−1,t

dV0

= St
St−1

(√
�t−1,t Zt−1,t − σ̄t−1,t�t−1,t

)dσ̄t−1,t

dV0
+ St
St−1ξt−1,t

dξt−1,t

dV0
.

where
dσ̄t−1,t

dV0
= a233

2σ̄t−1,t�t−1,t

d
dV0

∫ t

t−1
Vsds,

and

1
ξt−1,t

dξt−1,t

dV0
=

2∑
k=1

(
a3k

d
dV0

∫ t

t−1

√
VsdWs,k − 1

2
a23k

d
dV0

∫ t

t−1
Vsds

)
.

Similarly

dRt
dr0

= ∂Rt
∂ r̄t−1,t

dr̄t−1,t

dr0
+ ∂Rt

∂ξt−1,t

dξt−1,t

dr0

= St
St−1

(
d
dr0

∫ t

t−1
rsds + a32

d
dr0

∫ t

t−1

√
VsdWs,2

)
.

From (3.8) we see that

d
dV0

∫ t

t−1

√
VsdWs,1 = 1

σV

(
dVt
dV0

− dVt−1

dV0
− κVθV�t−1,t + κV

d
dV0

∫ t

t−1
Vsds

)
,

and d
dV0

∫ t
t−1

√
VsdWs,2 and d

dr0

∫ t
t−1

√
VsdWs,2 follow similarly.

Clearly we need to be able to evaluate or approximate terms like d
dV0

∫ t
u Vsds,

d
dr0

∫ t
u rsds,

dVt
dV0

and drt
dr0

. Using the quadrature scheme in (3.9) and assuming a

discretization of p time steps in the period t−1 to t we approximate d
dV0

∫ t
u Vsds

using

d
dV0

∫ t

t−1
Vsds ≈

p∑
i=1

(
0.5

dVt−1+(i−1)�(p)
t−1,t

dV0
+ 0.5

dVt−1+i�(p)
t−1,t

dV0

)
�

(p)
t−1,t,
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with �
(p)
t−1,t = 1/p. d

dr0

∫ t
t−1 rsds follows similarly. Calculation of dVt

dV0
and drt

dr0
at

different times t can be carried out recursively. For ease of exposition consider
a single discretization step in the period t − 1 to t. For the GL scheme of (3.7)
we have that

dVt
dV0

= k1k2

(
1 + Z(GL)

t√
k2Vt−1

)
dVt−1

dV0
,

initialising at dV0
dV0

= 1. The calculation of dVt
dV0

for the GQE scheme is described

in Appendix 6. Computation of drt
dr0

follows similarly.

4.4. Conditional LR method for delta, gamma, vega and rho

We first note that the loss function in (4.5) can be written as L = ∑T
t=1 Lt,where

each Lt represents a path dependent payoff function. The LR weights required
to implement an estimator of (3.4) for each of the Lt are the quantities

Wt =
t∑
j=1

d
dθ

ln g j (Sj |Sj−1, Ht), (4.10)

and the form of the conditional density is given in (3.5).
For delta it is clear that the only term in the sum in (4.10) that involves S0 is

the first term ln g1(S1|S0, Ht) and the derivative may be computed to be

d
dS0

ln g1(S1|S0, Ht) =
ln

(
S1

S0ξ0,1

)
− (

r̄0,1 − 1
2 σ̄

2
0,1

)
�0,1

S0σ̄ 2
0,1�0,1

.

Using (3.3), this may be expressed in terms of a standard normal shock Z0,1 to
obtain the weight

Wdelta
t = Z0,1

S0σ̄0,1
√

�0,1
.

The unbiased quantity on which the estimator is based is

�LR =
T∑
t=1

LtWdelta
t =

T∑
t=1

Dt psurvt max(It − Ft, 0)
Z0,1

S0σ̄0,1
√

�0,1
. (4.11)

This is a standard calculation for a path-dependent option and we also use the
standard conditional LR estimator �LR which is derived in similar way. For
more details see Glasserman (2003) and Broadie and Kaya (2004).

For the vega and rho estimators we again apply the chain rule and product
rule. The LR weight for vega is given by

Wvega
t =

t∑
j=1

(
∂ ln g j (Sj |Sj−1, Ht)

∂σ̄ j−1, j

dσ̄ j−1, j

dV0
+ ∂ ln g j (Sj |Sj−1, Ht)

∂ξ j−1, j

dξ j−1, j

dV0

)
,
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where

∂ ln g j (Sj |Sj−1, Ht)

∂σ̄ j−1, j
= Z2

j−1, j − 1

σ̄ j−1, j
− Zj−1, j

√
�t−1,t,

∂ ln g j (Sj |Sj−1, Ht)

∂ξ j−1, j
= Zj−1, j

ξ j−1, j σ̄ j−1, j
√

�t−1,t
.

For rho, the LR weight is given by

Wrho
t =

t∑
j=1

(
∂ ln g j (Sj |Sj−1, Ht)

∂ r̄ j−1, j

dr̄ j−1, j

dr0
+ ∂ ln g j (Sj |Sj−1, Ht)

∂ξ j−1, j

dξ j−1, j

dr0

)

= Zj−1, j

σ̄ j−1, j
√

�t−1,t

(
d
dr0

∫ t

t−1
rsds + a32

d
dr0

∫ t

t−1

√
VsdWs,2

)
.

However, the payoff also has an explicit dependence on r0 through the discount
factors Dt = exp(− ∫ t

0 rsds) and so this is a situation where formula (2.4) is
used to estimate the sensitivity. We require the partial derivative of the payoff
with respect to r0, which is given by

∂L
∂r0

= −
T∑
t=1

Dt psurvt max(It − Ft, 0)�0,t
dr̄0,t
dr0

.

Putting everything together, the conditional LR estimators for vega and rho,
denoted by vLR and �LR, are given by

vLR =
T∑
t=1

Dt psurvt max(It − Ft, 0)W
vega
t ,

�LR =
T∑
t=1

Dt psurvt max(It − Ft, 0)
(
Wrho
t − �0,t

dr̄0,t
dr0

)
.

4.5. Second-order mixed estimators

Now that we have the PW and LR estimators for the first-order sensitivities, we
can combine them to obtain second-order sensitivities. For example, in the case
of the gamma sensitivity to the initial stock price, applying the PW method to
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the conditional LR estimator in (4.11) yields

�LR–PW = d
dS0

( T∑
t=1

Dt psurvt max(It − Ft, 0)
(

Z0,1

S0σ̄0,1
√

�0,1

))

=
(

Z0,1

S0σ̄0,1
√

�0,1

) T∑
t=1

Dt psurvt I(It > Ft) ·
( d It
dS0

− dFt
dS0

)

−
(

Z0,1

S20 σ̄0,1
√

�0,1

) T∑
t=1

Dt psurvt max(It − Ft, 0).

Applying the LR weight for S0 to the PW estimator in (4.6) is trickier because
the PW estimator has an explicit dependence on S0. Moreover, in the context
of estimating gamma for a vanilla European option it is reported in Glasser-
man (2003) (Table 7.2) that the mixed estimator that is obtained by applying
the LR method followed by the PW approach (LR–PW) is more accurate than
the converse approach in which LR weights are applied to the PW estimator
(PW–LR).

For this reason we concentrate on the LR–PW strategy and also apply it
to the other second-order Greeks. Thus dvLR

dS0
represents the vanna sensitivity

estimator derived by applying the PW method for the sensitivity to S0 to the
LR estimator of vega; we also consider d�LR

dV0
, which is the vanna sensitivity es-

timator calculated by applying the PW method for the sensitivity to V0 to the
LR estimator of delta. Clearly, the estimates obtained in practice should agree
closely.

This should also be the case for d�LR
dS0

and d�LR
dr0

which represent the two alter-
native mixed estimators for the second order sensitivity with respect to S0 and
r0. The full set of estimators of this kind that we consider is

dvLR

dS0
=

T∑
t=1

Dt psurvt I(It > Ft) ·
( d It
dS0

− dFt
dS0

)
Wvega
t ,

d�LR

dV0
=

(
vPWZ0,1

S0σ̄0,1
√

�0,1

)
− �LRa233

2σ̄ 2
0,1�0,1

d
dV0

∫ 1

0
Vsds,

d�LR

dS0
=

T∑
t=1

Dt psurvt I(It > Ft) ·
( d It
dS0

− dFt
dS0

)(
Wrho
t − �0,t

dr̄0,t
dr0

)
,

d�LR

dr0
= �PWZ0,1

S0σ̄0,1
√

�0,1
.
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TABLE 1

FIVE SPECIFICATIONS (LABELLED A–E) FOR THE ASSET PRICE MODEL ARE CONSIDERED. REFER TO (3.1)
FOR EXPLANATION OF PARAMETERS.

Case κV θV σV κr θr σr ρS,V ρS,r ρV,r

A 2 0.04 0.15 1.5 0.04 0.1 −0.7 −0.3 0
B 1 0.04 0.3 1.5 0.04 0.1 −0.7 −0.3 0
C 2 0.04 0.15 0.75 0.04 0.2 −0.7 −0.3 0
D 1 0.04 0.3 0.75 0.04 0.2 −0.7 −0.3 0
E 1 0.04 0.3 0.75 0.04 0.2 −0.9 −0.3 0

5. NUMERICAL COMPARISON OF ESTIMATORS

In our experiments we use the GQE and GL simulation methods as described
in Section 3.3. Five specifications for the asset-price model are considered, la-
belledA–E inTable 1. These give different parameter settings for theHeston and
CIR processes and different correlations between the normal shocks driving the
variance, interest rate and equity processes.

The parameter choices are based on discussions with users of these models
in the economic scenario generation context. Since the volatility and mean re-
version rate parameters in the dynamics of volatility and interest rates are the
hardest parameters to calibrate, we experiment with different values.

Case A represents our base case. In case B we half the mean reversion rate
and double the instantaneous volatility of the equity volatility process. In case
C we half the mean reversion rate and double the instantaneous volatility of the
interest rate process. In case D we half the mean reversion rate and double the
instantaneous volatility for both processes. Case E is similar to case D except
that we use a higher value for ρS,V. Note that we have set ρV,r to be equal to
zero, which imposes the constraint that ρ2

S,V + ρ2
S,r < 1 to guarantee a positive-

definite correlation matrix ρ. In all cases we use the starting values V0 = θV and
r0 = θr .

We analyse the stylized VA product described in Section 4.1. The initial pol-
icyholder premium is set to be $100, invested in 1 unit of equity index, with
S0 = 100. In the BnR method the bump perturbation size is set at 0.5%. There
is a trade-off to be made here because smaller perturbations reduce the bias in
the estimator but increase its variance, particularly for the second-order sensi-
tivities. We use the conditional sampling setup described in Section 3.2 for all
methods to facilitate comparison.

5.1. Effect of varying annual time steps in discretization

First, we focus on case A where the parameters are relatively benign. Figure 2
shows how the expected liabilityE(L), the PWdelta estimate�PW and themixed
gamma estimate �LR–PW vary as we increase the number of time steps per year
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FIGURE 2: Estimates of expected liability E(L), PW delta �PW and mixed gamma �LR-PW using the GQE
and GL schemes with different numbers of time steps per year. Left pictures show results for 10 inner paths
and 10,000 outer paths; right pictures show results for 20 inner paths and 20,000 outer paths. (Color online)

in the discretization for both the GQE and GL schemes. We give results for
different numbers of inner and outer paths.

We see that both schemes produce similar result. The estimated expected
liability requires a larger number of time steps before the value stabilizes, due to
the use of quadrature approximation. The estimated delta and gamma seem to
be less affected by the number of time steps. The volatility of the estimator can
be reduced by increasing the number of paths, as can be seen by comparing the
graphs on the left with those on the right.

5.2. Comparison of estimation methods

We now turn to the comparison between the various estimation methods. Fig-
ures 3 and 4 show delta estimates obtained by the BnR, PW and LR meth-
ods and gamma estimates obtained by the BnR, LR and mixed LR–PW
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FIGURE 3: Estimates of delta and gamma using different estimation methods and different numbers of time
steps in the GQE scheme. The methods for delta are BnR, PW and LR; for gamma the methods are BnR, LR
and LR-PW. Left pictures show results for 10 inner paths and 10,000 outer paths; right pictures show results

for 20 inner paths and 20,000 outer paths. (Color online)

FIGURE 4: Estimates of delta and gamma using different estimation methods and different numbers of time
steps in the GL scheme. The methods for delta are BnR, PW and LR; for gamma the methods are BnR, LR
and LR-PW. Left pictures show results for 10 inner paths and 10,000 outer paths; right pictures show results

for 20 inner paths and 20,000 outer paths. (Color online)
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FIGURE 5: Boxplots of the estimates of the Greeks for the different estimation methods based on 20 inner
paths and 20,000 outer paths. Results are shown for the five different parameterisations A–E and both the

GQE and GL sampling schemes with 20 time steps per year. (Color online)

methods. The estimates are obtained for different numbers of time steps in the
discretization. In Figure 3 the GQE scheme is used while in Figure 4 the GL
scheme is used.

Consistent with the previous analysis, both the delta and gamma estimates
seem to be rather robust with respect to the number of time steps used in the
discretization.

The delta estimates obtained using the LR method are much more volatile
than those calculated using the PW and BnRmethods. Also, there is a small but
noticeable bias in the BnR when compared with the unbiased PW method.

For gamma, both the LR andBnRmethods produce estimates that aremuch
more volatile than the mixed LR–PWmethod. The volatility can be reduced by
using larger number of inner and outer paths. The bias in BnR values for gamma
is less evident as the estimates are dominated by the large volatility.

The differing variances of the various estimators can be seen more clearly
in the boxplots of Figure 5. For delta the BnR estimator has approximately

Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2014.31
Downloaded from https:/www.cambridge.org/core. The Institute and Faculty of Actuaries, on 25 May 2017 at 10:20:38, subject to the Cambridge

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2014.31
https:/www.cambridge.org/core


CALCULATING VARIABLE ANNUITY LIABILITY “GREEKS” 261

the same standard error as the PW estimator, whereas the LR estimator has a
much larger standard error. However, for gamma, the mixed LR–PW estima-
tor is clearly less volatile than both the BnR and LR estimators. For the cross
gammas, the estimators dvLR

dS0
and d�LR

dS0
seem to be more efficient. Figure 5 shows

results for the full set of Greeks considered in this paper. In general we con-
clude that the PWmethod is preferable for first-order sensitivities (although the
BnR method is also quite accurate) whereas the mixed LR–PW estimators are
preferred for second-order sensitivities.

Point estimates and standard errors for the expected liability E(L) and the
Greeks in all five cases are shown in Table 2 for reference. These results are for
the case where the sampling scheme is GQE with 20 inner paths and 20,000
outer paths and where 20 time steps are used in the discretization of each year.
As indicated in Figure 5, very similar results are obtainedwhen theGL sampling
method is used.

Note that the expected liabilityE(L) varies as wemove from caseA to case E.
In general, increasing the volatility of the equity volatility process or increasing
ρS,V will increase E(L), whereas increasing volatility of the interest rate process
will decrease E(L) (due to greater discounting).

It is natural to consider the question of how best to choose the number of
outer and inner simulations. Our experience suggests that using multiple inner
and outer paths is more efficient than using a single inner path. The optimal
choice depends on the quantity of interest, since more inner paths correspond
to more asset price paths, and more outer paths correspond to more interest
rate and volatility paths. Thus, if we are interested in computing the price and
the delta, we should generate more inner paths, and if we are more interested in
vega and rho, we should generate more outer paths.

5.3. Comparison of computational time

Finally we look at the computational time required for each of the schemes.
Table 3 shows the time taken in minutes to compute increasing number of
Greeks in both the GQE and GL schemes. The first-order Greeks are calcu-
lated using the PWmethod and the second-order Greeks by the mixed LR–PW
method and this approach is compared to the use of BnR for all Greeks. In
general, as the number of Greeks to be calculated increases, the more advanced
approach requires increasingly less time than the BnR method. The difference
in computing time is due to the difference in extra time required to compute an
additional path versus the extra time required to compute the estimator. The
separation is much clearer for the GQE scheme, as it is computationally more
expensive than the GL scheme.

6. CONCLUSION

With the increasing popularity of VA products it is essential that insurers can
employ an effective hedging strategy for mitigating the risks inherent in the
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TABLE 2

POINT ESTIMATES OF THE EXPECTED LIABILITY AND THE GREEKS FOR CASES A TO E. SIMULATIONS ARE CARRIED OUT USING THE GQE SCHEME WITH 20 INNER
PATHS AND 20,000 OUTER PATHS. 20 TIME STEPS PER YEAR ARE USED IN THE DISCRETIZATION.

Case A Case B Case C Case D Case E

E(L) 2.438 (0.00502) 2.733 (0.00620) 1.861 (0.00463) 2.170 (0.00590) 2.262 (0.00622)
�PW −0.0139 (0.00010) −0.0070 (0.00010) −0.0121 (0.00009) −0.0055 (0.00009) −0.0033 (0.00009)
�LR −0.0139 (0.00052) −0.0064 (0.00063) −0.0116 (0.00045) −0.0049 (0.00061) −0.0012 (0.00131)
�BnR −0.0137 (0.00010) −0.0068 (0.00010) −0.0120 (0.00009) −0.0054 (0.00009) −0.0032 (0.00009)
�LR 0.00096 (0.00006) 0.00071 (0.00009) 0.00072 (0.00005) 0.00049 (0.00009) 0.00031 (0.00042)
�LR-PW 0.00088 (0.00001) 0.00066 (0.00001) 0.00070 (0.00001) 0.00045 (0.00001) 0.00031 (0.00002)
�BnR 0.00089 (0.00005) 0.00066 (0.00004) 0.00071 (0.00004) 0.00051 (0.00004) 0.00030 (0.00004)
vPW 1.107 (0.00654) 2.754 (0.02628) 0.869 (0.00629) 2.239 (0.02221) 2.407 (0.02342)
vLR 1.136 (0.03344) 2.801 (0.12736) 0.858 (0.02912) 2.335 (0.12487) 2.683 (0.28393)
vBnR 1.107 (0.00654) 2.660 (0.02285) 0.868 (0.00629) 2.168 (0.01942) 2.312 (0.02147)
�PW −2.675 (0.00733) −2.440 (0.00755) −4.287 (0.01437) −3.908 (0.01490) −3.765 (0.01505)
�LR −2.667 (0.02677) −2.397 (0.03372) −4.264 (0.04520) −3.888 (0.05922) −3.645 (0.12324)
�BnR −2.679 (0.00740) −2.438 (0.00758) −4.161 (0.01459) −3.817 (0.01494) −3.69 (0.01499)
d
dS0

vLR −0.0524 (0.00056) −0.0838 (0.00168) −0.0449 (0.00054) −0.0710 (0.00167) −0.0708 (0.00354)
d
dV0

�LR −0.0536 (0.00111) −0.0903 (0.00393) −0.0473 (0.00100) −0.0776 (0.00379) −0.0832 (0.00848)
d
dS0

vBnR −0.0504 (0.00249) −0.0882 (0.00422) −0.0460 (0.00260) −0.0681 (0.00420) −0.0651 (0.00441)
d
dS0

�LR 0.0534 (0.00045) 0.0427 (0.00047) 0.0714 (0.00079) 0.0488 (0.00084) 0.0384 (0.00161)
d
dr0

�LR 0.0543 (0.00073) 0.0430 (0.00073) 0.0722 (0.00133) 0.0498 (0.00143) 0.0383 (0.00271)
d
dS0

�BnR 0.0531 (0.00311) 0.0423 (0.00298) 0.0724 (0.00594) 0.0514 (0.00496) 0.0397 (0.00430)
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TABLE 3

TIME TAKEN IN MINUTES TO COMPUTE DIFFERENT NUMBERS OF GREEKS USING THE GQE AND GL
SCHEMES, FOR PW AND LR METHOD AND BNR METHOD IN BRACKETS, SIMULATED USING 10 INNER PATHS

AND 10,000 OUTER PATHS, AND 20 TIME STEPS PER YEAR.

GQE GL

� 0.586 (0.559) 0.335 (0.332)
�,� 0.999 (1.059) 0.635 (0.613)
�,�, v 1.248 (1.553) 0.889 (0.912)
�,�, v, � 1.322 (1.591) 0.948 (0.951)
�,�, v, �, dv

dS0
1.368 (1.669) 1.001 (1.019)

�,�, v, �, dv
dS0

,
d�

dS0
1.437 (1.732) 1.033 (1.048)

liabilities arising from such products. The recent financial crisis has demon-
strated that under turbulent market conditions a hedging portfolio can require
much more frequent rebalancing. The widely adopted BnR approach for esti-
mating the Greeks has some shortcomings, such as an inherent bias and low
computational efficiency due to the necessity of running additional perturbed
simulations. The latter problem is particularly relevant when large numbers of
Greeks need to be estimated to implement hedging strategies based on both first-
order and second-order sensitivities. Improvements in computational efficiency
could be of great benefit to practitioners in managing a hedging strategy for
their VA books.

In this article alternative estimators for the VAGreeks based on the PW and
LR methods have been developed and implemented for a stylized VA product
in the context of an extended Heston model for the underlying asset price. The
model incorporates stochastic volatility and stochastic interest rates.

We conclude that for first-order derivatives, the PW method is preferable to
the BnR method because it is unbiased and the computational time required is
similar to the BnR method. For second-order sensitivities the mixed estimator
gives estimates withmuch smaller standard errors compared to the BnRmethod
in most cases. Furthermore, the bias-variance trade-off in choosing the pertur-
bation size in the BnR method is avoided. The computational gain in using PW
and mixed estimators increases as the required number of Greeks increases.

In future work it would be interesting to extend the setup to include a non-
zero correlation between volatility and interest rate shocks. While model paths
from such amodel could be sampled in a simple manner using Euler and related
schemes, it would be more accurate to use an exact bivariate sampling method
for arbitrary time steps that extends the univariate GQE and GL approaches;
to our knowledge, such a scheme is not currently available. A further topic of
interest would be the incorporation into our framework of more sophisticated
assumptions and models for lapsation behaviour, which may have a large effect
on the value of the expected liability and the sensitivities. The optimization of
the trade-off between the number of inner and outer paths is also a potential
topic for future research.
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APPENDIX A. CALCULATING dVt
dV0

IN THE GQE SCHEME

We assume a discretization of one time step per year and define

K0 = 2κV
σ 2
V(eκV/p − 1)

,

Kt,1 = K0(ωt − λ2
t e

−λt )
dVt−1

dV0
,

Kt,2 = λt(1 − ωt),

Kt,3 = (1 − PY(2)
t

)(1 + b2t ),

Kt,4 = Kt,2 − (1 − PY(2)
t

)(2 + Kt,2),

Kt,5 = �−1

(
UY(2)

t

1 − PY(2)
t

)
,

Kt,6 = �−1

(
UY(2)

t
− PY(2)

t

1 − PY(2)
t

)
.

Then we have
dVt
dV0

= dY(1)
t

dV0
+ dY(2)

t

dV0
,

where

dY(1)
t

dV0
=

(
μt

PY(1)
t

− 1

dPY(1)
t

dV0
+ ln

(
1 − PY(1)

t

1 −UY(1)
t

)
dμt

dV0

)
I(PY(1)

t
< UY(1)

t
≤ 1),

dY(2)
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=

(
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dV0
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(
dbt
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))
I(UY(2)

t
≤ ct,1)
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dKt,2

dV0
= K0
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dV0
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)
dbt
dV0
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