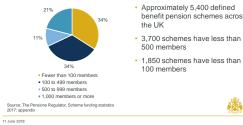


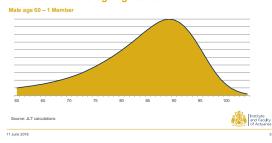
11 June 2018

Introduction

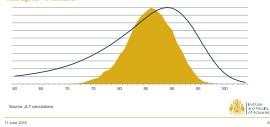

Idiosyncratic risk

- Idiosyncratic (or non-systematic) mortality risk arises through random fluctuations in a population
- Even if we know the 'correct' mortality distribution for a particular population, we do not know when each individual will die
- Though this risk can be diversified away through pooling, this is not possible for many pension schemes or for individuals

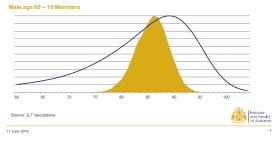
Pension scheme size


Scheme size by number of members

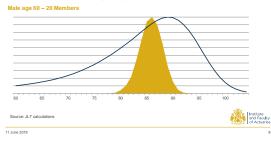
Appioxin	natery a	5,400	ueni	ieu
benefit p	ension	sche	mes	across
the UK				


Institute and Faculty of Actuation

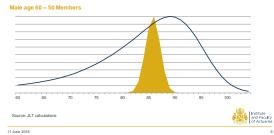
Distribution of average age at death


Distribution of average age at death

Male age 60 – 5 Members

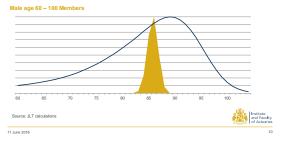

2

Distribution of average age at death

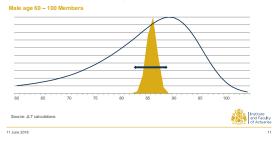


_

Distribution of average age at death



Distribution of average age at death



3

Distribution of average age at death

Distribution of average age at death

Example of simulation output

Mortality assumptions

"the mortality tables used and the demographic assumptions made must be based on **prudent principles**, having regard to the main characteristics of the members as a group and expected changes in the risks to the scheme"


Occupational Pension Schemes (Scheme Funding) Regulations 2005 Regulation 5(4)(c)

	Institute and Faculty of Actuaries
1 June 2018	13

Mortality assumptions

Source: The Pensions Regulator, Scheme funding statistic 2017: appendix 11 June 2018

 No evidence that more prudent life expectancy assumptions are being adopted for smaller pension schemes

Institute and Faculty

The problem

- Idiosyncratic mortality risk is a real and material risk for a large number of defined benefit pension schemes
- The problem is exacerbated by concentration risk where the majority of the liability sits with a small number of members
- For an individual member or a small pension scheme, the only standalone 'solution' is through an annuity
- A possible future solution is through some of the different forms of aggregation being considered, but not all involve pooling of mortality risks

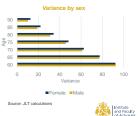
A proposal

- In the absence of a 'solution', the key is to help trustees (and their advisors) understand and quantify the risk being run
- This will help improve decision making, and highlight the true value of different strategies
- It is reasonably straightforward to carry out simulations for a pension scheme to allow the risk to be quantified and understood
- However, smaller pension schemes will often be the ones who do not have the resources or support available to help them to do this
- We have developed a simplified approach to help

and Facul of Actuari

Institute and Faculty

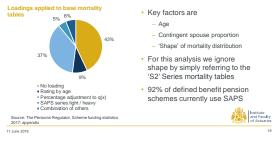
The goal


11 June 2018

- The goal is to be able to quantify idiosyncratic mortality risk on an approximate basis without the need to carry out scheme specific simulations
- The output will identify a range of possible liabilities, or average life expectancies, with different levels of confidence
- · This will allow pension scheme trustees to
 - consider the amount of idiosyncratic mortality risk the pension scheme is exposed to; and / or
 - incorporate explicit margins for prudence in actuarial valuations if required

11 June 2018

Variance of life expectancy


- Use variance as our initial risk
 measure
- The variance of any individual mortality distribution can be calculated analytically
- Consider what factors drive the variance to allow us to produce a parsimonious model
- For example, sex is not a material factor even at higher ages

11 June 2018

June 2018

Key factors

Approximating variance of (joint) life expectancy

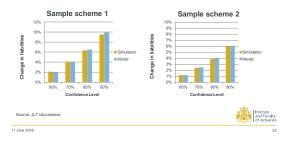
Applying to data

- We require the following member data for each member $i=1 \dots n$ Age (A_i)
 - Amount of pension (P_i)
- We calculate the variance for each member (V_l) by reference to age and a simple linear approximation, for example V_l = $150 1.5 \times A_l$
- The variance for each member is weighted by the amount of pension Weighted average variance = $\frac{\sum_{i=1}^{n} P_i^2 V_i}{\left(\sum_{i=1}^{n} P_i\right)^2}$

Institute and Faculty of Actuaries

Using the variance

11 June 2018


- · We can then use the weighted average variance to produce scheme specific confidence intervals
- For example, assume the weighted average life expectancy is 20 years
- The average variance is calculated to be 5
- · We can calculate a confidence interval by reference to a normal distribution, so for example with 95% confidence average life expectancy for the population will be no more than

 $20 + 1.6445 \times \sqrt{5} = 23.7 \text{ years}$

<u> 68</u> 9	Institute and Faculty of Actuaries
	22

22

Our model compared to a full simulation

Impact on small scheme funding

- Consider aggregate funding position of schemes with less than 100 members
- · Assume these schemes will need to eventually target self-sufficiency if they do not buyout
- Apply 90% confidence level as need to allow for idiosyncratic risk
- Almost doubles the funding shortfall

11 June 2018

	No allowance for idiosyncratic risk	With allowance for idiosyncratic risk (90% confidence)
Assets	£16.1bn	£16.1bn
Liabilities	£17.9bn	£19.5bn
Surplus / (Deficit)	(£1.8bn)	(£3.4bn)
Funding level	90%	83%
	s Regulator, Scheme f ndix; The Purple Book	

Outcome

- We have arrived at a quick and straightforward method for calculating the value of idiosyncratic mortality risk for a pension scheme
- The impact of this risk can then be communicated to trustees and employers and included in funding reserves if desired
- This provides support for long-term strategy discussions. For example:
 - What value does a scheme buy-in / buyout provide?
 - If we target self-sufficiency how do we allow for this risk?
 - How could annuity top slicing benefit the pension scheme?
- This could also be used by financial advisors to help model this risk
 when providing advice to individuals

11 June 2018

 Questions
 Comments

 We serve the first of t