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Abstract

We present a savings plan for retirement that removes risk by fix-
ing a constraint on a life–long pension so that it has an upper and a
lower bound. This corresponds to the ideas of Nobel laureate R.C.
Merton whose implementation has never been published. We show
with an illustration that our proposed practical algorithm reproduces
the theoretical results after a savings period of around thirty years by
using daily, monthly, weekly or yearly updates of the investment po-
sitions. We calculate the percentiles of the final accumulated wealth
distribution for the adjusted implementation. In the simulated illus-
tration we observe that the adjusted values converge to the theoretical
values of the percentiles when the frequency of update increases. We
conclude that monthly adjustments result in a practical way to imple-
ment theoretical results that were obtained under the hypothesis of a
continuous process by Donnelly et al. (2015). This method is easy to
use in practice by pension savers and fund managers.
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1 Introduction and motivation

Nobel laureate Robert C. Merton’s vision in his 2014 Harvard Business Re-

view paper (Merton, 2014) was a new communication framework for pensions,

where the individual customer has only three parameters to consider: their

target pension, their worst case scenario pension and the associated probabil-

ities. Merton suggests that the communication with the pension saver could

for example be as follows: if you are interested in a target pension of $10,000

per annum, then there is 2/3 chance of actually reaching it. If you do not

reach your target pension, then $7,000 per annum is the lowest pension that

you will get.

Merton stressed the need for a real income in retirement, and the need to

focus the investment strategy around providing a real income1. Yet pension

investment strategies are often aimed at maximising a nominal amount at

retirement. Moreover, there is often a mismatch between the hurried, day-to-

day approach to investments in many investment departments and the long

term goal of providing a real income in retirement.

In our work, we provide a possible implementation of Merton’s vision.

However, we do not believe that it fully coincides with its implementation

by the investment manager, Dimensional Fund Advisors, because it probably

does not involve the type of investments that we propose.

In a recent contribution, Donnelly et al. (2015) design strategies to con-

trol wealth at retirement, so they focus on the analysis of the stochastic

1Merton is involved with the leading global investment manager Dimensional Fund
Advisors and one can actually see the structure of a real-life version of Merton’s vision
when consulting Dimensional’s website. However, the technical details behind Dimen-
sional’s implementation of Merton’s vision is not revealed. It is quite properly considered
proprietary material.
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distribution of terminal wealth. These authors propose ways to guarantee

the stability of accumulated wealth after a certain horizon. This is easily

generalized to the upside and downside terminal wealth constraints, which

constitute a way to automatically smooth the feasible retirement annuities,

which are proportional to the wealth accumulated during the savings period.

The mechanism is based on compensating the elimination of large losses by

the elimination of large gains. The pension has a target value, which cannot

be exceeded. Giving up the possibility of having a larger pension than the

target pays for the control of the downside, meaning that the pension cannot

fall below a stated minimum amount.

Since the practical implementation of these new methods was originally

not discussed by Donnelly et al. (2015), here we carry out a presentation of

the algorithm. The practical implementation of investment strategies for re-

tirement turns out to be straightforward, and similarly to Merton’s proposal,

the investor establishes an upper and a lower bound on the annuity pension.

The results are a generalization of those that were initially proposed by Don-

nelly et al. (2015). The latter authors solve the portfolio selection problem

of an investor with a deterministic savings plan who is constrained to have

no more than a target wealth at retirement (an upper bound). Here we ex-

tend the results by adding a lower bound to the terminal wealth that can

be expressed in terms of constraints in the life annuity. So, we assume that

investors are willing to give up large gains if a minimum lifetime pension is

guaranteed.

The proposed practical mechanism results in a transparent and auto-

matic pension savings product where the portfolio during the savings phase

is regularly rebalanced, so that the accumulated wealth at any moment is
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constrained by the lower and upper bounds.

This paper suggests a simplification of the pension saver decision process

when deciding how much risk to take. It focuses on strategies designed to buy

an annuity, by tailoring Merton’s vision. We deliberately leave out inflation,

as we consider our problem in nominal values. We assume that the control

of inflation is carried out by investment experts who can obtain risk-free

investments that will have a real return at least larger than inflation in the

long run. Individuals should only focus on a lower and an upper bound for

their pension at current prices2.

The paper is organized as follows. In Section 2 the background is shown.

In Section 3 we present the mathematical problem to solve and the practical

algorithm is shown in Section 4. In Section 5 we carry out the numerical

illustration. Section 6 concludes and discusses the implications.

2 Background

The idea that funds which aim to accumulate savings for retirement should be

under some form of control is not new. There are many authors introducing

some constraint on the portfolio or the terminal wealth. For instance, Korn

and Trautmann (1995) set a constraint on the expected value of the final

wealth.

Many contributions point into that direction and analyze the stochas-

tic distribution of retirement wealth for proposing investment strategies.

Greninger et al. (2000) conclude that nine-tenths of the experts who partici-

2Many authors have shown that financial literacy enhances peoples likelihood of con-
tributing to their pension saving (Behrman et al., 2012; Lusardi and Mitchell, 2007).
Therefore, we can enhance financial literacy and make the decision process simpler. Both
are ways to help people build personal wealth.
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pated in their study agreed that families should have achieved 50-60% of their

retirement savings goal by age 50 and 85-90% by age 60. Regarding asset

allocation, over 60% of experts feel that it is prudent to start moving toward

more conservative investments about 3-5 years before retirement. However,

as noted by Basu et al. (2011) such deterministic switching rules produce

inferior wealth outcomes for the investor compared to strategies that dy-

namically alter the allocation between growth and conservative assets based

on cumulative portfolio performance relative to a set target.

Grossman and Zhou (1996) impose the constraint that the terminal wealth

must be at least some fraction of the initial wealth, and consequently find

that risk aversion rises when stock prices fall. Browne (1999) finds the strat-

egy that maximizes the probability of reaching a given wealth level by a given

fixed terminal time, for the case where an investor can allocate his wealth

at any time between investment opportunities given by a collection of risky

stocks, as well as a risk-free asset that has a positive return.

Recently, Donnelly et al. (2015) found that by constraining the final

wealth by using an upper bound, the investor increases their chance of at-

taining the desired target retirement wealth, and even if he fails to reach it,

he still has a higher wealth than if he has no such upper bound. Note that

Donnelly et al. (2015) proposed a different formulation compared to Dhaene

et al. (2005), in which at least the target capital is attained with maximum

probability. Donnelly et al. (2015) have also a different approach compared

to Browne (1999), as Browne (1999) maximizes directly the probability of

reaching the target retirement wealth. Here we consider the same approach

as Donnelly et al. (2015) but adding also a lower bound for the final wealth.

Note that our approach is also different from Gerrard et al. (2014) who an-
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alyze the lowest part of the terminal wealth distribution after savings and

consumption.

Here we concentrate on the savings phase (by choosing a saving period

of thirty years) and we constrain the terminal wealth by using an upper

and a lower bound. We also provide the corresponding values of the lifetime

annuities that the pension saver could receive during the consumption period.

Additionally, we show how to implement daily adjustments to investment to

obtain results that replicate the theoretical optimal strategies.

Other relevant contributions where some constraint on the terminal wealth

is introduced can be found in Van Weert et al. (2010) who generalize port-

folio selection problems to the case where a minimal return requirement is

imposed. They derive an intuitive formula that can be used in provisioning

and terminal wealth problems as a constraint on the admissible investment

portfolios, in order to guarantee a minimal annualized return. Bouchard

et al. (2010) deal with target constraints on stochastic processes and Gaibh

et al. (2009) consider optimal selection of portfolios for utility maximizing

investors under joint budget and shortfall risk constraints, where shortfall

risk is measured in terms of the expected loss. Hainaut and Devolder (2007)

maximize the utility of dividends and of terminal surplus under a budget

constraint.

Boyle and Tian (2007) investigate the portfolio selection problem for an

investor who desires to outperform some benchmark index with a certain con-

fidence level. The benchmark is chosen to reflect some particular investment

objective and it can be either deterministic or stochastic. However, this ap-

proach is about short-term investment rather than savings in the long term.

Cuoco (1997) examines the intertemporal optimal consumption and invest-
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ment problem in the presence of a stochastic endowment and constraints on

the portfolio choices and, in the same spirit, Zariphopoulou (1994) focuses on

consumption-investment models with constraints. Bernard et al. (2014) con-

struct optimal strategies explicitly and show how they outperform traditional

diversified strategies under worst-case scenarios.

3 Optimizing annuities with constraints

In this section, we assume investment in a continuous-time financial market

model over a finite time horizon [0, T ] for an integer T > 0. Sometimes we

refer to T as the terminal time. In our context, time 0 is the start of the

savings phase and T is the retirement date.

The market consists of one risky stock and one risk-free bond. At time t,

the risk-free bond has price S0(t) and the risky stock has price S1(t). Their

price dynamics are

dS0(t) = rS0(t) dt, dS1(t) = S1(t) (µdt+ σdW (t)) , (3.1)

in which W is a Brownian motion, σ > 0, S0(0) = 1 and S1(0) being a fixed,

strictly positive constant. We assume that µ > r, where µ is the mean stock

return and r is the risk-free return.

The information Ft available to investors at time t is the information

generated by the Brownian motion up to time t. The market price of risk is

θ := (µ− r)/σ.

3.1 Investor

An investor starts with an initial wealth x0 > 0 and plans to make a sequence

of known future savings, each of amount a > 0. Define C(t) to be the sum
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from time 0 to time t of the investor’s planned discrete savings, with

dC(t) =

{
a if t = 1, 2, . . . , T − 1
0 otherwise.

In other words, at the end of each unit time period, the investor pays an

amount a > 0 into their fund.

A portfolio process π = {π(t); t ∈ [0, T ]} is a square-integrable, {Ft}-

progressively measurable process. The investor follows a self-financed strat-

egy, investing at each instant t ∈ [0, T ] a monetary amount π(t) in the stock

such that π = {π(t); t ∈ [0, T ]} is a portfolio process.

The wealth process Xπ = {Xπ(t); t ∈ [0, T ]} corresponding to a portfolio

process is the {Ft}-adapted process given by the wealth equation

dXπ(t) = (rXπ(t) + π(t)σθ) dt+ π(t)σ dW (t) + dC(t), Xπ(0) = x0 a.s.

(3.2)

We define the savings plan g of the investor, i.e. the discounted sum of

the future savings by the investor by

g(t) :=

∫ T

t

e−r(s−t)dC(s), ∀t ∈ [0, T ]. (3.3)

Then the set of admissible portfolios for the investor’s initial wealth x0 > 0

is defined to be

A := {π : Ω×[0, T ] → R : Xπ(0) = x0, a.s. and Xπ(t)+g(t) ≥ 0, t ∈ (0, T ] a.s.}.

We say that a portfolio process π is admissible if π ∈ A.

The state price density process is H(t) := exp
(
−
(
r + 1

2
θ2
)
t− θW (t)

)
,

for each t ∈ [0, T ]. A portfolio π must satisfy the budget constraint that

E (H(T )Xπ(T )) ≤ x0 + g(0). (3.4)
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The utility function of the investor is the power utility function

U(x) :=
1

γ
xγ, x > 0,

for a fixed constant γ ∈ (−∞, 1) \ {0}. The investor seeks to maximise the

expected utility of their terminal wealth, subject to constraints on the range

of values of the terminal wealth.

Define the constant

A :=
θ

σ(1− γ)

and the process

Z(t) = exp

((
r + θσA− 1

2
σ2A2

)
t+ σAW (t)

)
, ∀t ∈ [0, T ]. (3.5)

Z(t) represents the wealth of an investor at time t who has no constraints

on their investment strategy or wealth process, and invests 1 at time 0 with

no savings plan.

3.2 Problem with a lower and an upper bound

Donnelly et al. (2015) introduce the constrained problem with an upper

bound only, in which the investor seeks to maximize the expected utility

of their terminal wealth, subject to the wealth being bounded above by the

upper bound KU > 0.

Here we extend the problem to include a lower bound KL, below which

the terminal wealth must not fall. Combined with the upper bound KU , this

means that the investor’s terminal wealth lies in the range [KL, KU ]. Addi-

tionally, one can have an equivalence between the upper and lower bounds

of terminal wealth and those of the annuities or pensions.

The addition of a lower bound has already been well studied in the liter-

ature (for example, see Basak (1995)).
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In order to avoid both the uninteresting case that the investor can imme-

diately be assured of maximizing the terminal utility and to avoid the need

to breach the non-arbitrage condition, we assume that

Assumption 3.1. KL < (x0 + g(0)) erT < KU .

Problem 3.2. Find π ∈ A such that

E (U(Xπ(T ))) = sup
π∈A

{E (U(Xπ(T )))},

and Xπ(T ) ∈ [KL, KU ], a.s.

The next proposition gives an expression for the optimal terminal wealth

for Problem 3.2, when there is both a lower and upper bound constraint on

the terminal wealth.

Proposition 3.3. A solution to the constrained problem at the terminal time

T is

X⋆(T ) =(y0 + g(0))Z(T )−max {0, (y0 + g(0))Z(T )−KU}

+max {0, KL − (y0 + g(0))Z(T )} ,
(3.6)

with the shadow wealth y0 > 0 chosen so that the budget constraint (3.4) is

satisfied with equality by X⋆(T ), given the investor’s initial wealth X⋆(0) =

x0, a.s. and savings plan g.

Proof. The proof is found in Appendix A.

The value at time t of the maturity value max {0, (y0 + g(0))Z(T )−KU}

was shown in Donnelly et al. (2015) to be c(t, Y (t);KU) with the process

Y (t) := (y0 + g(0))Z(t)− g(t),
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and, using Φ to denote the cumulative distribution function of the standard

normal, the real-valued function

c(t, y;KU) := yΦ(d+(t, y;KU))−KUe
−r(T−t)Φ(d−(t, y;KU)),

in which

d±(t, y;K) :=
1

σA
√
T − t

(
ln
( y

K

)
+

(
r ± 1

2
σ2A2

)
(T − t)

)
, (3.7)

for all y > 0 and for all t ∈ [0, T ], for each K > 0. Next we derive

the value and replicating portfolio of the put option with maturity value

max {0, KL − (y0 + g(0))Z(T )}.

Lemma 3.4. The price at time t ∈ [0, T ] of a European put option with

maturity value max {0, KL − (y0 + g(0))Z(T )} is given by p(t, Y (t);KL) with

p(t, y;KL) := KLe
−r(T−t)Φ(−d−(t, y;KL))− yΦ(−d+(t, y;KL)).

The replicating portfolio for the put option is to hold in the risky asset at

time t the amount πp (t, Y (t);KL), with

πp (t, y;KL) := −AyΦ(−d+(t, y;KL)), ∀t ∈ [0, T ], y > 0 (3.8)

and the remaining amount p(t, Y (t);KL) − πp (t, Y (t);KL) in the risk-free

bond.

Proof. The proof is found in Appendix A.

The optimal strategy for Problem 3.2 is given in the next proposition.

Proposition 3.5. An optimal investment strategy for Problem 3.2 is to in-

vest the amount

π(t) := A [1− Φ(d+ (t, Y (t);KU)− Φ(−d+ (t, Y (t);KL))] Y (t) (3.9)
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in the risky stock and the amount Xπ(t)− π(t) in the risk-free bond.

The wealth process corresponding to this optimal investment strategy is

Xπ(t) = Y (t)− g(t)− c(t, Y (t);KU) + p(t, Y (t);KL). (3.10)

In particular, the relationship between the investor’s initial wealth Xπ(0) =

x0 and the shadow initial wealth y0 is

x0 = y0 − c(0, y0 + g(0);KU) + p(0, y0 + g(0);KL). (3.11)

Proof. The proof follows trivially from the previous lemmas.

The relative value of the shadow initial wealth y0 over the investor’s actual

initial wealth x0 has a concrete interpretation when there is only an upper

bound, i.e. KU > 0, and no lower bound, i.e. KL = 0. For the p-quantiles

of the constrained terminal wealth that fall below the target wealth KU , it

gives their uplift over those for the unconstrained terminal wealth.

To see this, we calculate the p-quantiles under the constrained strategy.

For the constrained strategy, there is a probability mass at the target wealth

KU and at the lower bound KL. For this reason we use the following gener-

alised definition of the p-quantile.

Definition 3.6. The p-quantile for a random variable X is

qp(X) = inf {y ∈ R : P [X ≤ y] ≥ p} ,

with the convention that inf {∅} = ∞.

A result on the quantile can also be derived in this framework.

Proposition 3.7 (p-quantiles). Suppose an investor has initial wealth x0 > 0

and follows the savings plan g. Define

βp := σA
√
T Φ−1(p) +

(
r + θσA− 1

2
σ2A2

)
T. (3.12)
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If the investor follows the optimal constrained strategy, i.e. the terminal

wealth is constrained to lie in the range [KL, KU ], then the p-quantile of the

investor’s terminal wealth X(T ) is

Qp(X(T ); (KL, KU)) = max
{
KL,min

{
KU , (y0 + g(0))eβp

}}
. (3.13)

Proof. The proof is found in Appendix A.

4 Practical implementation

In order to implement an algorithm that can utilize the theoretical results

from the previous section, we have assumed that information on the parame-

ters is available, where r is the risk-free rate, µ is the average return of risky

assets, σ is volatility, A has to do with risk aversion, T is the time horizon,

g is the payment stream or savings plan, x0 is the initial wealth and KL

and KU are lower and upper bounds which can either be expressed in terms

of the terminal wealth X(T ) or as constraints on the yearly pensions. The

uplift exists, but it is not a simple constant proportion, when both lower and

upper bounds apply, i.e. when 0 < KL < KU .

The algorithm introduces a new constraint on the investment strategy.

The investor is not permitted to short-sell the stock, or borrow from the

bond in order to invest in the stock. These are realistic restrictions for

pension savers.

In the first step, we compute y0 from equation 3.11, i.e. x0 = y0−c(0, y0+

g(0);KU) + p(0, y0 + g(0);KL). As Y (0) = y0, this allows us to calculate the
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amount to be held in the risky stock at time 0, namely

π(0) = max

{
min

{
A [1− Φ(d+ (0, Y (0);KU)− Φ(−d+ (0, Y (0);KL))] Y (0),

x0

}
, 0

}
.

(4.1)

The maximum and minimum bounds ensure that the investor does not short-

sell the stock, nor borrow from the bond in order to invest in the stock.

Define RealWealth(t) to be the sum of what the investor has in the stock

and the bond at time t, with RealWealth(0) = x0. The investor puts π(0)

in the risky stock and the remaining wealth, RealWealth(0) − π(0), in the

bond at time 0. Note that, due to the investment restrictions on the amount

in the stock, the value of RealWealth(t) may deviate from the theoretical

wealth value obtained by not having the investment restrictions.

Next, for each t = 1, . . . , T we roll forward the values of the investment in

the stock and bond, which were made at time t−1. The amount in the stock

will increase by S1(t)/S1(t−1) and the amount in the bond by S0(t)/S0(t−1).

To update the strategy at time t, we calculate the amount to be invested

in the risky stock as

π(t) = max

{
min

{
A [1− Φ(d+ (t, Y (t);KU)− Φ(−d+ (t, Y (t);KL))] Y (t),

RealWealth(t)

}
, 0

}
,

(4.2)

where Y (t) = (y0+g(0))Z(t)−g(t). The value invested in bonds is whatever

the current real wealth less the amount in stocks, namely RealWealth(t) −

π(t).

When implementing this algorithm in practice, the adjustments can be

done yearly, monthly or at higher frequencies. In the following illustration
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we have also considered weekly and daily time periods. The implementation

is available in the software package R (R Core Team, 2014).

5 Numerical illustration

In this section, we show how the practical implementation approximates the

theoretical results on the quantiles of the stochastic distribution of terminal

wealth or annuities. This allows us to examine the effect of the investment

strategy constraints on the investment strategy. We perform 2, 000 simula-

tions in order to compare the quantiles from the practical implementation

with the theoretical quantiles of the distribution of terminal wealth X(T ).

The parameter values are r = 0, µ = 0.0343, σ = 0.1544, A = 1, T = 30,

g = 0 and x0 = 100. The choice of the parameters implies that the investor’s

risk aversion constant is γ = −0.44.

The values of µ and σ (equal to 0.0343 and 0.1544 respectively) are the

same as those used in Guillen et al. (2013), where the authors calculate the

parameter σ based on historical volatility. Namely, to estimate parameter

σ the authors refer to the data found in Dimson et al. (2002) that provide

an overview of the long-term performance of individual market for each of

16 countries, and estimate total returns on equities, bonds, bills, currencies,

inflation and risk premia for all 101 years from 1900 to 2000.

The values of KL and KU are set to 83.3 and 138.3, respectively. The

reason for choosing these values is that they correspond to quantiles of an

unrestricted investment over 30 years. This has a meaning. In implementing

a savings mechanism with bounds the investor would avoid extremes. Other

possible values would depend on the preferences and needs of the consumers.

We have analyzed other cases for illustration, but the final conclusions do
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not change. For these values of KL and KU , we calculate the shadow initial

wealth y0 satisfying equation (3.11), which results in y0 = 100.7542. We

implement the practical algorithm outlined in Section 4, that calculates the

real wealth accumulated by the investor at the end of the investment period

subject to realistic constraints on the investment strategy. 2, 000 simulations

are done.

When the algorithm is implemented, we calculate the quantiles of the real

wealth at T = 30. The quantiles, obtained by simulating the final wealth,

can be compared to the theoretical ones, i.e. those resulting from expression

(3.13).

Table 1 shows the distribution of the terminal wealth at T = 30 for

KL = 83.3 and KU = 138.3, for an initial investment of x0 = 100. The first

column shows the values of p for the p-quantiles. The second column shows

the theoretical quantiles obtained by evaluating expression (3.13) for the

given parameters. The next four columns are the practical approximation,

which does not allow the investor to either short-sell the stock or the bond.

They show the quantiles of the simulated final wealth at T = 30 for different

periodicity of updates: yearly, monthly, weekly and daily. The results are

also shown in Figure 1. Note how the values of the quantiles converge to the

theoretical values as the frequency of the update increases. When we use

daily adjustments, the resulting quantiles of the approximated distribution

are almost identical to the theoretical distribution.

The results shown in Table 1 indicate that daily adjustments of the in-

vestment strategy algorithm presented in Section 4 lead to almost identical

results to the distribution of the theoretical quantiles of the annuities. This

fact implies that pension savers can use this method to achieve a pension that

17



Table 1: Table showing the p-quantiles of the final wealth assuming that
there is a limit to the amount invested in stocks (it must be between 0%
and 100 % of your wealth). The table shows the theoretical distribution and
the simulated practical implementation of the algorithm to calculate the p-
quantiles of real wealth at T = 30 for an initial investment equal to 100 with
a lower bound KL = 83.3 and an upper bound KU = 138.3. Adjustment for
updates every year, month, week and day are showed. A = 1, σ = 0.1544,
γ = −0.438797 and 2,000 runs.

Update: Theoretical Yearly Monthly Weekly Daily
p Qp(X(T ))
1% 83.33333 80.17465 83.17181 83.33126 83.33333
2.5% 83.33333 82.09886 83.29689 83.33306 83.33333
5% 83.33333 82.86170 83.32686 83.33333 83.33333
10% 83.33333 83.31933 83.33333 83.33524 83.42745
15% 83.33333 88.70095 86.70011 84.65608 87.26625
20% 96.77111 100.70636 99.09463 94.15900 98.64572
25% 111.46257 113.53729 112.30679 107.83877 111.17772
30% 126.54739 123.51811 121.35666 120.95667 121.44944
35% 138.33333 128.49514 129.22923 130.14370 130.06487
40% 138.33333 134.36787 134.71747 134.65568 134.95528
45% 138.33333 137.39339 137.61355 137.13569 136.95310
50% 138.33333 138.34122 138.28491 137.98363 137.93459
55% 138.33333 138.39816 138.33333 138.29803 138.28054
60% 138.33333 138.49614 138.33334 138.33129 138.32695
65% 138.33333 138.65471 138.33340 138.33333 138.33300
70% 138.33333 138.88566 138.33359 138.33333 138.33332
75% 138.33333 139.20983 138.33412 138.33333 138.33333
80% 138.33333 139.70091 138.33517 138.33333 138.33333
85% 138.33333 140.43500 138.33834 138.33333 138.33333
90% 138.33333 141.55925 138.34572 138.33334 138.33333
95% 138.33333 143.94659 138.38002 138.33340 138.33333
97.5% 138.33333 146.14455 138.46271 138.33363 138.33333
99% 138.33333 150.78650 138.70002 138.33449 138.33333

Prob. hit KU 66.24%
Prob. hit KL 15.42%

Mean 124.4784 124.2103 123.518 124.0124
Variance 464.4581 438.4045 464.1564 441.5995
Skewness -0.9605834 -1.126778 -1.056107 -1.102459
Kurtosis 2.339606 2.555299 2.351169 2.487232
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Figure 1: Graph showing the p-quantiles of the final wealth for the theoretical
distribution and simulated values for the yearly, monthly, weekly and daily
updates, also showed in Table 1.
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lies between an upper and a lower level, as presented in the introduction.

The table corresponds to an initial investment of x0 = 100, lower bound

KL = 83.3 and upper bound KU = 138.3. If we multiply all three of these

parameters by the same constant, then the values shown in the table would

also be scaled by that constant. In fact, this is a general result. So, this table

covers a whole range of possibilities.

However, in the next subsections we extend our numerical example in

order to compare the results that we get in different scenarios.

5.1 Comparing the case where there is a limit to the
amount invested in stocks (between 0% and 100%
of your wealth) and the case without this limit

In this section we compare the case where there is a limit to the amount in-

vested in stocks (between 0% and 100% of your wealth) and the case without

this limit. In order to do that, we have calculated the p−quantiles of the final

wealth for the case where A = 1.5, and compare the results with and without

this limit. The values of the rest of parameters are the same as those used to

produce Table 1. The corresponding results are shown in Tables 3 and 5 in

the Appendix and also in Figure 2 where we represent the p-quantiles of the

final wealth for the monthly updates. We observe that the p−quantiles are

very similar in both cases, only small differences are observed for quantiles

between 20% and 45%. In the case that A = 0.5 or A = 1, the values of the

p−quantiles are the same with and without this limit.
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Figure 2: Graph comparing the p-quantiles of the final wealth for the simu-
lated values for the monthly updates for the case where there is a limit to the
amount invested in stocks (between 0% and 100% of your wealth) and with-
out this limit. We consider T = 30, an initial investment X0 = 100, a lower
bound KL = 83.3 and an upper bound KU = 138.3. A = 1.5, σ = 0.1544,
γ = −0.438797 and 2000 runs. These results are also provided in Tables 3
and 5 in the Appendix.

21



5.2 Comparing results with different values of A (there-
fore, different γ)

Now we compare the p−quantiles obtained with different values of A, namely

A = 0.5, A = 1 and A = 1.5. We consider again that there is a limit to the

amount invested in stocks (between 0% and 100% of the investor’s wealth).

The results are shown in Table 4 in the Appendix (case A = 0.5), Table 1

(case A = 1) and Table 3 in the Appendix (case A = 1.5). Additionally,

the results for all three values of A using weekly updates are represented

in Figure 3. We observe that the results are quite similar for A = 1 and

A = 1.5, but very different to the case where A = 0.5. For A = 0.5 the

upper bound is reached at higher quantiles and the lower bound is reached

at lower quantiles, unlike the cases where A = 1.5 or A = 1. As the value of

A decreases, risk aversion increases, it becomes less likely that the investor

reaches the upper wealth constraints (around 50% for A = 0.5 versus 66%

for the other two values of A) . However, correspondingly, the investor is less

likely to reach the lower wealth constraint (9% for A = 0.5 versus 15% for

the other two values of A).

5.3 Comparing results with different values of the up-
per and lower bounds

In Table 6 in the Appendix we show the p-quantiles of the final wealth for

the simulated practical implementation of the algorithm with A = 1 and

different values of KL and KU . We consider again that there is a limit to the

amount invested in stocks (between 0% and 100% of the investor’s wealth).

Adjustment for weekly updates are showed. Namely, on the one hand we

compare the case where KL = 83.3 and KU = 183.3 with the case where
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Figure 3: Graph comparing the p-quantiles of the final wealth for the sim-
ulated values for the weekly updates for different values of A. We consider
T = 30, an initial investment equal to 100 with a lower bound KL = 83.3
and an upper bound KU = 138.3. σ = 0.1544, γ = −0.438797 and 2000 runs.
These results are also provided in Tables 1, 3 and 4 in the Appendix.
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KL = 83.3 and KU = ∞.

As expected, when the upper wealth is unbounded (i.e. KU = ∞), the

terminal wealth is also unbounded. Thus the values of the p-quantiles sharply

increase as p increases, rather than being capped. In the simulation, they

reach the value of 884.62 for p = 99%. Imposing an upper bound on the

terminal wealth (i.e. KU = 183.3), the p-quantiles reach the target wealth

of 183.3 for p >= 60%. However, for nearly all p-quantiles below p = 60%,

the upper bounded wealth has higher quantiles than the unbounded wealth.

This illustrates the advantage of imposing an upper bound, as the investor

increases the certainty of higher wealth values below the bound.

We also consider the case where there is no lower bound on the terminal

wealth (KL = 0) but there is an upper bound (i.e. KU = 183.3). In that

case, as expected, we observe lower values for the lower quantiles, namely the

1%-quantile equals 45.79. The target wealth KU = 183.3 is more likely to be

reached than in the other cases, namely at p = 40% instead of at p > 50%.

Moreover, without the lower bound on the terminal wealth, the values of

the lower p-quantiles, i.e. for p < 40%, are higher in the two cases that do

have a lower bound. This shows the cost to the investor of imposing a lower

bound: while the investor gains certainty about the minimum value of their

wealth at retirement, this comes at the cost of a potential loss in investment

performance.

5.4 Comparing quantiles with different volatilities

In this section we compare the p-quantiles of the simulated final wealth for

different volatilities. We consider the example shown in Table 1 for the

theoretical quantiles, where σ = 0.1544 and A = 1 (which results in γ =
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−0.4388). In Table 7 in the Appendix we have considered two alternative

values for the volatility σ, namely 0.0772 and 0.3088 (so half and twice the

corresponding original volatility). The values of A are now equal to 4 and 0.25

respectively. We consider again that there is a limit to the amount invested in

stocks (between 0% and 100% of the investor’s wealth). We observe that the

higher the volatility, the higher the probability to hit KL for the theoretical

distributions.

5.5 Simulated quantiles with real returns

In that section we have used real S&P500 yearly returns (for the period

1982 − 2012) to simulate by bootstrap the p-quantiles. For comparative

purposes, we have subtracted 0.0599 from the real S&P500 returns, so that

they have the same average as considered in our previous examples (µ =

0.0343). The results are showed in Table 2 for yearly updates. In that sense,

0.164585 is the volatility of the real returns. Results for different volatilities

are available upon request. We consider A = 1, KL = 83.3 and KU = 138.3

and we assume that there is a limit to the amount invested in stocks (between

0% and 100% of the investor’s wealth). The results are again very similar to

the theoretical expressions.

6 Conclusion

Investing for retirement involves many sources of uncertainty that go be-

yond the traditional maximization principles which characterize short-term

investment operations. For short-term investments the main issue is to maxi-

mize risk-adjusted expected returns. In contrast, pension savers need to cope

with long-term market evolution and their own possibilities of providing a
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Table 2: Table showing the p-quantiles of the final wealth assuming that
there is a limit to the amount invested in stocks (between 0% and 100 %
of your wealth). The table shows the p-quantiles of real wealth at T = 30
for an initial investment equal to 100 with a lower bound KL = 83.3 and
an upper bound KU = 138.3, which have been obtained by bootstrap (real
S&P500 yearly returns are used). Adjustment for updates every year are
showed. γ = −0.438797 and 2,000 runs.

Volatility: 0.164585
A: 0.88
p Qp(X(T ))
1% 75.47249
2.5% 79.50944
5% 81.86599
10% 82.98719
15% 83.32139
20% 92.58196
25% 108.08713
30% 117.46558
35% 124.86705
40% 130.95368
45% 135.01826
50% 137.48824
55% 138.33549
60% 138.35237
65% 138.38561
70% 138.43482
75% 138.50233
80% 138.58564
85% 138.73133
90% 138.94680
95% 139.53966
97.5% 139.87565
99% 140.63185
Mean 122.1897

Variance 491.4568
Skewness -0.9332336
Kurtosis 2.179552
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sustained contribution to the savings fund. The fear of losing their accumu-

lated wealth just before retirement may explain why investors are generally

very conservative. Indeed, the prevailing attitude is to reduce investment risk

when approaching the age of retirement in favor of positions that invest the

majority of savings in risk-free assets or bonds. Fees for managing the saving

funds also reduce the potential gains. So, we advocate moving towards sav-

ing strategies that guarantee a smoothed pension while concentrating on the

choice of profitable investment opportunities, rather than reducing invest-

ment risk to near zero. This is automatically done by the algorithm shown

in this paper.

We have investigated the practical implementation of an investment strat-

egy that has the advantage of constraining the pension annuities, or equiva-

lently final wealth accumulated after the investment period, which should be

located between a lower and an upper bound. The practical implementation

is illustrated in an extensive numerical example where different scenarios are

considered and where we have also used real returns.

The main advantage of the proposed strategy is that the pension saver is

protected against extreme values, by providing an smoothing savings mech-

anism which includes an embedded guarantee on the retirement pension.

Additionally, the portfolio is easily rebalanced in practice so that the accu-

mulated wealth at any moment is constrained by the lower and upper bounds.

Then, the accumulated wealth can be easily translated into a life-long an-

nuity that the investor will receive (as the annuity values are proportional

to the retirement values), which is easy to understand and communicate,

increasing the transparency of the investment mechanism. Results showing

values expressed as life-long annuities are available upon request. Other re-
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tirement smoothing mechanisms for the payout phase can be found in the

literature, like the contribution by Maurer et al. (2016) and other previous

research (see, Guillen et al. (2006)).

Everything has been presented in nominal values, rather than real values,

because we do not want to introduce the uncertainty of inflation. The pension

saver could choose to invest everything inflation-hedged. However, over the

long run most pension savers are better off taking on some more risk to get

a higher expected return.

We follow Merton and develop a spread defining the possible outcomes

of the future annuity of the customer. There is an upper bound or a target

giving the highest possible pension income the pensioner wishes to achieve.

And there is a lower bottom describing the lowest possible outcome. The

suggested mechanism of this paper is to sell any upside above the highest

possible pension income and to buy the downside below the lowest possible

income.

The spread indicates the risk the pension saver wishes to take. If the

spread is high, then the pension saver is risk-seeking and vice versa if the

spread is low. The lowest possible spread is of course, when the pension

savers entire income is inflation-hedged and, in that case, the upper bound

equals the lower bound.

Notice that we distinguish between the risk in the control of inflation and

the risk of more risky investments. Our point of view being that the risk of

the inflation control is best monitored by investment experts, while the risk

involved in the more risky assets should be defined from a pension saver’s

individual risk preferences. Longevity or future mortality play a similar role:

there is a risk involved, but it is most likely too expensive to control over the
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long run rather than allow the saver to bear. The individual pension saver is

probably better off with some conservative, deterministic mortality forecasts.

This paper suggests a solution to Merton’s pension vision when the inflation

hedge and future mortality are not guaranteed, but cautiously estimated for

the long run by the investment experts and the actuaries.
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A Appendix

Proof of Proposition 3.3

Proof. The proof is an adaption of the proof of (Donnelly et al., 2015, Propo-

sition 4.3).

Assume that we have chosen y0 > 0 so that the budget constraint (3.4)

is satisfied with equality by X⋆(T ).

For the investor’s utility function, the first derivative U ′(x) = xγ−1, which

is a strictly decreasing function, has a strictly decreasing inverse I(y) := y
1

γ−1 ,

for y > 0. We can show that for the constant

y := (y0 + g(0))γ−1e(γr+
1
2

γ
1−γ

θ2)T ,

we have (y0 + g(0))Z(T ) = I(yH(T )).

We work with I(y(y0)H(T )) in the proof, rather than with (y0+g(0))Z(T )

due to the properties of I(x) and U ′(x): they are both strictly decreasing

functions of x.

LetX(T ) ∈ [KL, KU ], a.s. be any attainable final wealth so that E (H(T )X(T )) ≤

x0. We show that

E (U(X(T ))) ≤ E (U(X⋆(T ))) ,

in which

X⋆(T ) =


KL I(yH(T )) ≤ KL

I(yH(T )) if I(yH(T )) ∈ (KL, KU)
KU I(yH(T )) ≥ KU .

As I and U ′ are strictly decreasing functions we can write:

X⋆(T ) =


KL yH(T ) ≥ U ′(KL)
I(yH(T )) if yH(T ) ∈ (U ′(KL), U

′(KU))
KU if yH(T ) ≤ U ′(KU)
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As U is a concave function then for any a, b ∈ R, U(a) − U(b) ≤ U ′(b) ·

(a− b). In particular,

U(X(T ))− U(X⋆(T )) ≤ U ′(X⋆(T )) · (X(T )−X⋆(T )), a.s.

Take expectations:

E (U(X(T ))− U(X⋆(T )))

≤E (U ′(X⋆(T )) · (X(T )−X⋆(T )))

≤E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | yH(T ) ≥ U ′(KL)) · P [yH(T ) ≥ U ′(KL)]

+ E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | yH(T ) ∈ (U ′(KL), U
′(KU)))

· P [yH(T ) ∈ (U ′(KL), U
′(KU))]

+ E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | yH(T ) ≤ U ′(KU)) · P [yH(T ) ≤ U ′(KU)] .

Observe that on the event [yH(T ) ∈ (U ′(KL), U
′(KU))],

U ′(X⋆(T )) = U ′(I(yH(T ))) = yH(T )

so that

E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | yH(T ) > U ′(KU))

=E (yH(T ) · (X(T )−X⋆(T )) | yH(T ) > U ′(KU)) .

Next observe that on the event [yH(T ) ≤ U ′(KU)], as X(T ) ∈ [KL, KU ] a.s,

then

X(T )−X⋆(T ) = X(T )−KU ≤ 0

and

U ′(X⋆(T )) = U ′(KU) ≥ yH(T ).

The negative sign of X(T ) − X⋆(T ) reverses the inequality U ′(X⋆(T )) ≥

yH(T ), giving that on the event [yH(T ) ≤ U ′(KU)],

U ′(X⋆(T )) · (X(T )−X⋆(T )) ≤ yH(T ) · (X(T )−X⋆(T )).
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On the event [yH(T ) ≥ U ′(KL)], as X(T ) ∈ [KL, KU ] a.s, then

X(T )−X⋆(T ) = X(T )−KL ≥ 0

and

U ′(X⋆(T )) = U ′(KL) ≤ yH(T ).

Due to the positive sign ofX(T )−X⋆(T ), the inequality U ′(X⋆(T )) ≤ yH(T )

is maintained, giving

U ′(X⋆(T )) · (X(T )−X⋆(T )) ≤ yH(T ) · (X(T )−X⋆(T )).

In summary, we find that

E (U(X(T ))− U(X⋆(T ))) ≤ E (yH(T ) · (X(T )−X⋆(T ))) .

As both solutions satisfy the budget constraint (3.4), the last line in the

above inequality can be evaluated as

E (yH(T ) · (X(T )−X⋆(T ))) ≤ y · ((x0 + g(0))− (x0 + g(0))) = 0,

which means

E (U(X(T ))− U(X⋆(T ))) ≤ 0.

Hence

E (U(Xπ(T ))) = sup
π∈A

E (U(Xπ(T ))) ≤ E (U(X⋆(T ))) ≤ E (U(Xπ(T ))) ,

i.e. Xπ(T ) = X⋆(T ), a.s.
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Proof of Lemma 3.4

Proof. From (Donnelly et al., 2015, Lemma 4.4), a European call option with

maturity value max {0, (y0 + g(0))Z(T )−KL} is given by c(t, Y (t);KL) with

Y (t) := (y0 + g(0))Z(t), (A.1)

and

c(t, y;KL) := yΦ(d+(t, y;KL))−KLe
−r(T−t)Φ(d−(t, y;KL)),

in which the functions d±(t, y;KL) are defined by equation (3.7) and Φ de-

notes the cumulative distribution function of the standard normal.

Thus by put-call parity, the value of the put option with the same strike

price KL satisfies

p(t, y;KL) = c(t, y;KL) +KLe
−r(T−t) − y.

To find the replicating portfolio, we differentiate the put pricing function p

to get

pt(t, y;KL) = −yϕ(d+(t, y;KL))σA

2
√
T − t

+ rKLe
−r(T−t)Φ(−d−(t, y;KL))

py(t, y;KL) = Φ(d+(t, y;KL))− 1, pyy(t, y) =
ϕ(d+(t, y;KL))

yσA
√
T − t

,

where ϕ denotes the density function of the standard normal. By Ito’s for-

mula,

dp(t, Y (t)) = pt(t, Y (t))dt+ py(t, Y (t))dY (t) +
1

2
pyy(t, Y (t))d [Y ] (t),

in which

dY (t) = (r + θσA)Y (t)dt+ σAY (t)dW (t).

Substituting for: the derivatives of the pricing function p, the dynamics of Y

and the candidate replicating portfolio πp (t, Y (t)) := −AY (t) Φ(−d+(t, Y (t))),
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we find that the dynamics of the pricing function c satisfy the wealth equa-

tion (3.2). Hence πp (t, Y (t)) is the amount to be invested in the risky stock

at time t in order to replicate the payoff of the European put option.

Proof of Proposition 3.7

Proof. Fix p ∈ (0, 1). From (Donnelly et al., 2015, Lemma 4.9), with no

lower bound on the terminal wealth,

Qp(X(T ); (0, KU)) = min
{
KU , (y0 + g(0))eβp

}
.

It is useful to consider another investor who has the same savings plan

g and the same upper bound KU as the first investor. However, this second

investor has no lower bound on the terminal wealth, i.e. KL = 0, and starts

with an initial wealth x̃0 that satisfies

x̃0 = y0 − c(0, y0 + g(0);KU).

This second investor follows the optimal constrained strategy. Then, as

g(T ) = 0, the wealth at time T of the second investor is

X̃(T ) = (y0 + g(0))Z(T )− g(T )− c(T, Y (T );KU) = min {KU , Y (T )} .

Thus the terminal wealth of the constrained investor, who has a lower bound

KL on their terminal wealth, is related to that of the second unconstrained

investor by

X(T ) =

{
X̃(T ) if X̃(T ) ≥ KL

KL if X̃(T ) < KL.

The desired expression (3.13) follows by consideration of the last expression.
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Tables showing the p-quantiles of the final wealth
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Table 3: Table showing the p-quantiles of the final wealth assuming that
there is a limit to the amount invested in stocks (between 0% and 100 % of
your wealth). The table shows the theoretical distribution and the simulated
practical implementation of the algorithm to calculate the p-quantiles of real
wealth at T = 30 for an initial investment equal to 100 with a lower bound
KL = 83.3 and an upper bound KU = 138.3. Adjustment for updates every
year, month, week and day are showed. A = 1.5, σ = 0.1544, γ = 0.04080199
and 2,000 runs.

Update: Theoretical Yearly Monthly Weekly Daily
p Qp(X(T ))
1% 83.33333 79.25979 82.85410 83.29327 83.33333
2.5% 83.33333 81.34530 83.17938 83.32866 83.33333
5% 83.33333 82.59842 83.29971 83.33253 83.33333
10% 83.33333 83.26829 83.33231 83.33333 83.33333
15% 83.33333 87.31451 83.92049 83.33454 83.63007
20% 91.37880 100.66369 96.15858 90.40232 95.80645
25% 112.95890 113.14663 112.12271 110.01784 112.22006
30% 136.64906 125.08663 127.12600 124.86529 126.76942
35% 138.33333 133.76457 136.30685 135.54658 136.07359
40% 138.33333 138.33729 138.31336 138.03036 137.97336
45% 138.33333 138.40325 138.33335 138.33188 138.31536
50% 138.33333 138.48542 138.33343 138.33333 138.33282
55% 138.33333 138.62542 138.33365 138.33333 138.33333
60% 138.33333 138.82722 138.33424 138.33333 138.33333
65% 138.33333 139.07707 138.33531 138.33333 138.33333
70% 138.33333 139.44093 138.33754 138.33334 138.33333
75% 138.33333 139.85662 138.34153 138.33335 138.33333
80% 138.33333 140.52679 138.34999 138.33340 138.33333
85% 138.33333 141.30976 138.36885 138.33359 138.33333
90% 138.33333 142.61292 138.41234 138.33486 138.33333
95% 138.33333 145.78683 138.56135 138.34209 138.33335
97.5% 138.33333 148.78242 138.87002 138.36747 138.34283
99% 138.33333 154.74549 139.24570 138.51981 138.46564

Prob. hit KU 69.66%
Prob. hit KL 18.02%

Mean 125.0987 124.6741 123.9752 124.5647
Variance 477.086 471.5026 494.0435 472.9278
Skewness -1.00435 -1.156079 -1.089866 -1.157075
Kurtosis 2.442129 2.53458 2.356418 2.53052
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Table 4: Table showing the p-quantiles of the final wealth assuming that
there is a limit to the amount invested in stocks (between 0% and 100% of
your wealth). The table shows the theoretical distribution and the simulated
practical implementation of the algorithm to calculate the p-quantiles of real
wealth at T = 30 for an initial investment equal to 100 with a lower bound
KL = 83.3 and an upper bound KU = 138.3. Adjustment for updates every
year, month, week and day are showed. A = 0.5, σ = 0.1544, γ = −1.877594
and 2,000 runs.

Update: Theoretical Yearly Monthly Weekly Daily
p Qp(X(T ))
1% 83.33333 82.81976 83.33285 83.33333 83.33392
2.5% 83.33333 83.16889 83.34647 83.34120 83.35246
5% 83.33333 83.46679 83.90047 83.67652 84.16334
10% 84.73825 88.13798 88.42933 87.46825 88.35256
15% 93.99234 95.23440 95.52606 92.44702 94.80911
20% 102.06277 102.30967 102.36081 100.58670 101.64058
25% 109.53654 107.62390 108.76488 106.90476 107.19857
30% 116.71350 113.05368 113.73322 112.22709 112.31763
35% 123.78313 118.48225 118.90061 117.45895 117.36652
40% 130.88707 123.20098 122.97422 121.91823 122.22605
45% 138.14803 125.85596 126.55433 125.33162 125.61700
50% 138.33333 128.38313 129.57067 128.26388 129.28298
55% 138.33333 133.03336 132.12571 130.81282 131.93706
60% 138.33333 135.10055 134.09859 133.24881 134.20397
65% 138.33333 136.95559 135.70275 135.03484 135.71900
70% 138.33333 138.01713 136.81220 136.50118 136.78255
75% 138.33333 138.35250 137.58112 137.41605 137.50255
80% 138.33333 138.49353 138.04016 137.93683 137.91562
85% 138.33333 138.75090 138.27295 138.20927 138.19840
90% 138.33333 139.28073 138.32826 138.30999 138.30282
95% 138.33333 140.55778 138.33334 138.33174 138.33161
97.5% 138.33333 141.96687 138.33347 138.33330 138.33326
99% 138.33333 143.69872 138.33557 138.33333 138.33333

Prob. hit KU 54.87%
Prob. hit KL 9.32%

Mean 121.9003 121.5239 120.6361 121.1621
Variance 367.0499 340.8041 356.3196 346.2624
Skewness -0.7918588 -0.8662866 -0.8003593 -0.8130811
Kurtosis 2.247702 2.341994 2.194669 2.23058
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Table 5: Table showing the p-quantiles of the final wealth assuming that
there is no limit to the amount invested in stocks. The table shows the
theoretical distribution and the simulated practical implementation of the
algorithm to calculate the p-quantiles of real wealth at T = 30 for an initial
investment equal to 100 with a lower bound KL = 83.3 and an upper bound
KU = 138.3. Adjustment for updates every year, month, week and day are
showed. A = 1.5, σ = 0.1544, γ = 0.04080199 and 2,000 runs.

Update: Theoretical Yearly Monthly Weekly Daily
p Qp(X(T ))
1% 83.33333 79.13370 82.81977 83.29327 83.33333
2.5% 83.33333 81.34530 83.17223 83.32866 83.33333
5% 83.33333 82.59842 83.29688 83.33250 83.33333
10% 83.33333 83.26619 83.33224 83.33333 83.33333
15% 83.33333 86.98702 83.80212 83.33439 83.62090
20% 91.37880 100.46435 95.01082 89.08127 92.98095
25% 112.95890 113.38143 113.67972 110.07663 113.76190
30% 136.64906 125.32347 128.93706 127.50702 127.42419
35% 138.33333 134.05483 136.33295 135.54826 136.07359
40% 138.33333 138.33832 138.31336 138.02161 137.97336
45% 138.33333 138.40374 138.33335 138.33188 138.31536
50% 138.33333 138.48854 138.33343 138.33333 138.33283
55% 138.33333 138.62649 138.33365 138.33333 138.33333
60% 138.33333 138.83166 138.33424 138.33333 138.33333
65% 138.33333 139.07707 138.33533 138.33333 138.33333
70% 138.33333 139.44381 138.33754 138.33334 138.33333
75% 138.33333 139.85991 138.34153 138.33335 138.33333
80% 138.33333 140.54260 138.35015 138.33340 138.33333
85% 138.33333 141.31485 138.36887 138.33359 138.33333
90% 138.33333 142.63295 138.41220 138.33486 138.33333
95% 138.33333 145.78917 138.56154 138.34209 138.33335
97.5% 138.33333 149.18815 138.87002 138.36747 138.34283
99% 138.33333 154.89843 139.24261 138.51981 138.46563

Prob. hit KU 69.66%
Prob. hit KL 18.02%

Mean 125.0987 124.7075 124.0687 124.5565
Variance 477.086 474.9692 497.4288 476.9988
Skewness -1.00435 -1.166679 -1.106821 -1.162015
Kurtosis 2.442129 2.546029 2.375452 2.527153
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Table 6: Table showing the p-quantiles of the final wealth assuming that
there is a limit to the amount invested in stocks (between 0% and 100% of
your wealth). The table shows the theoretical distribution and the simulated
practical implementation of the algorithm to calculate the p-quantiles of real
wealth at T = 30 for an initial investment equal to 100 with extreme values of
KL and KU . Adjustment for weekly updates are showed. A = 1, σ = 0.1544,
γ = −0.438797, 2,000 runs.

KL = 83.3 83.3 0
KU = 138.3 ∞ 138.3
p Qp(X(T ))
1% 83.33126 81.86124 45.79079
2.5% 83.33306 83.15933 61.54184
5% 83.33333 83.30431 76.40540
10% 83.33524 83.33200 104.67869
15% 84.65608 83.33323 122.05609
20% 94.15900 83.33333 133.51267
25% 107.83877 83.33333 137.33683
30% 120.95667 83.33333 138.17799
35% 130.14370 89.41482 138.32645
40% 134.65568 100.62401 138.33325
45% 137.13569 111.52557 138.33333
50% 137.98363 124.24076 138.33333
55% 138.29803 139.54255 138.33333
60% 138.33129 158.23515 138.33333
65% 138.33333 177.66412 138.33333
70% 138.33333 198.59055 138.33333
75% 138.33333 221.70645 138.33333
80% 138.33333 259.38729 138.33333
85% 138.33333 306.67557 138.33334
90% 138.33334 362.51863 138.33334
95% 138.33340 494.02651 138.33343
97.5% 138.33363 631.33028 138.33383
99% 138.33449 884.61634 138.33631
Mean 123.518 189.1122 130.1689

Variance 464.1564 32008.75 408.0251
Skewness -1.056107 4.645594 -2.879772
Kurtosis 2.351169 42.77573 10.97964
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Table 7: Table showing the theoretical distribution of real wealth at T = 30
for an initial investment equal to 100 with a lower bound KL = 83.3 and an
upper bound KU = 138.3. γ = −0.438797, and 2,000 runs. The theoretical
distribution is shown for different volatilities (and different A).

p− quantiles: Theoretical
A = 4 A = 0.25

p σ = 0.0722 σ = 0.3088
1% 83.33333 83.33333
2.5% 101.80991 83.33333
5% 138.33333 83.33333
10% 138.33333 83.33333
15% 138.33333 83.33333
20% 138.33333 83.33333
25% 138.33333 84.69090
30% 138.33333 90.23995
35% 138.33333 95.70601
40% 138.33333 101.19860
45% 138.33333 106.81259
50% 138.33333 112.64155
55% 138.33333 118.78861
60% 138.33333 125.37841
65% 138.33333 132.57391
70% 138.33333 138.33333
75% 138.33333 138.33333
80% 138.33333 138.33333
85% 138.33333 138.33333
90% 138.33333 138.33333
95% 138.33333 138.33333
97.5% 138.33333 138.33333
99% 138.33333 138.33333

Prob. hit KU 96.23% 31.35%
Prob. hit KL 1.88% 23.8%
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