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“No modelled tail can reproduce 1974, 1987, 1998 and September 2001”

Jeremy Goford (2002)

Abstract

Analysts have used a variety of statistical distributions to model losses due to
operational risks [Embrechts, Cruz] or insurance claims [Hogg and Klugman]. In
contrast, the normal distribution is the undisputed queen of capital market models.

This paper examines an alternative family of distributions, the conic moment family,
for application to capital market models. We answer the following questions:

l What is the empirical evidence for normality or for other distributions in
financial data?

l For what financial questions do non-normal distributions have a large impact
on the answer?

l What tools and diagnostics are available for model calibration?
l How can I model many variables at once?
l How can I incorporate alternative distributions into financial time series

models?
l What are the implications for prices of options and of corporate bonds?
l What is the extra effort in deviating from normal assumptions, and is it worth

the trouble?

In our first section, we examine some empirical evidence, and fit some distributions.
Our conclusions (section 7) summarise the business issues arising from choice of
distributions. To get a brief overview of the paper, read just these two sections.

The interior covers the details. This is the meat that backs up our conclusions. We
assume that you are already familiar with the normal theory, including multi
dimensional problems, matrix manipulations and the logic behind Black and Scholes’
formula. We continually make use of parallels and contrasts, between the familiar
normal theory and the newer non-normal distributions.



1. Flypaper Models

A long and tall building has a west wall entirely covered with flypaper. A swarm of
flies is released, and each fly buzzes according to a three dimensional Brownian
motion. A breeze blows the flies gently in the direction of the building. Eventually
every fly is stuck somewhere on the flypaper. The picture might look like this:

This is an example of a bivariate conic moment distribution. Let us suppose in 3-
dimensional coordinates that the flies are released at the origin, and the flypaper
corresponds to the plane x = 1. Let us suppose also that the flies’ movements are
multivariate normal with mean m and variance-covariance matrix V per unit time.

Arrivals on the flypaper are described by the bivariate density function:
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Our plot of flies was in fact a plot of weekly changes in the Belgian and Singapore
stock markets. This paper aims to demonstrate that the conic moment distribution is
useful for describing these, and most other financial variables. To demonstrate this,
we look first to some data.
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The charts show the distribution of weekly changes in the log of (i) the FTSE 100
share index, (ii) the UK pound / Swiss Franc exchange rate, each measured over the
last 20 years. We have applied a kernel algorithm  to estimate corresponding densities.
On the same chart, we have shown the density of a normal distribution with the same
mean and standard deviation. We have used a log scale on the y-axis for clarity.

The historical distributions are clearly bell-shaped, and look superficially like normal
distributions. But a plot of empirical distributions next to normal densities, reveals a
few systematic deviations from normality. There are more extreme values than we
would expect from a normal distribution – the so-called fat tails effect. There are
more small moves, and fewer intermediate values – the thin peak effect. Sometimes
the historical density is asymmetric.

Until recently it was conventional to treat the large observations as outliers, that is,
freak observations that are excluded from a model calibration process, or at least, are
treated separately. This is a standard statistical approach, which would be justifiable if
these large movements were typographical errors or inaccurate records. But for the
financial market moves, this is clearly not the case. The large market moves are well
attested; real investors have gained or lost large sums of money. As capital markets
have become more skilled at using hedging tools to manage the risks of everyday
movements, the remaining exposure to large moves assumes a greater relative
importance.

In this paper, we will consider a wider class of distributions, the so-called Conic
Moment or Normal Inverse Gaussian distributions. Ole Barndorff-Nielsen first
described this class 1998. The one-dimensional Conic moment distribution has four
parameters. As well as a mean and standard deviation we can also fit two other
properties, for example skewness and kurtosis. Our idea is to use a single distribution
to fit all the data, rather then proposing separate modes for normal movements and
outliers. The charts below show the same historic densities, together with best-fit
estimates from the conic moment family.
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There is no magic to the improved fit – we can of course do better than with a normal
distribution just by having two additional parameters to select. We will explain what
the parameters mean in the next section.

 The literature on non-normal distributions in Finance starts with some observations
from Mandelbrot in 1963. Since this time, many authors have proposed various
families of distributions better to fit historic distributions. Mandelbrot (1963)
suggested the Lévy stable distributions; Walter (1990) and Finkelstein (1997) have
followed this up in the actuarial literature. Others have suggested log-F distributions
(Bookstaber and MacDonald, 1987) or Student t-distributions (Blattberg & Gonedes,
1974). Madan (1998) and others have suggested so-called variance gamma
distributions. Hardy (2001) advocates mixtures of normal distributions. Johnson and
Kotz (1970) provide a compendium of other univariate distributions. The use of non-
normal residuals has become a standard addition to the list of possible further work at
the end of papers based on the normal distribution; see for example Wilkie (1995),
Chan (2002).



2. Discrete Conic Moment Processes

This section describes a construction for the discrete conic moment distribution. We
derive key results, and compare these to classical results from the binomial
distribution. This builds important techniques and insights that are also relevant for
the continuous time case.

Binomial Model

We start with a familiar model – the binomial random walk. A particle starts at the
origin, and can move up or down with probabilities pu or pd respectively. At later
dates, the location of the particle will have a binomial distribution. The chart shows
two binomial paths, in red, stopped at time t=7 with values Z7 = 3 and Z7 = -3.
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The structure of possible paths is called a binomial tree.

Generalisation - Conic Moments

Our conic moment construction generalises this by allowing our particle to go
backwards as well as forwards in time, subject to a net forward drift. We retain the
property that future movements in the process are independent of any movements in
the past. We can contrast the possible movements under the two models:
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pu+pd =1

Conic Moment Tree
pbu+pbd+pfu+pfd=1
pfu+pfd > ½

In addition to the forward paths possible in the binomial tree, the conic moment tree
also allows paths to loop back on themselves. We observe the conic moment variable
Zt the first time that the particle hits a given barrier t.  Two possible paths are shown
in the chart below, with the barrier set at t = 7. We observe Z7 = 3 on the upper path
and Z7 = -5 on the lower path.
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In the binominal case, we could guarantee that |Zt| = t. In contrast, our conic moment
construction allows a range of Z from plus to minus infinity, although Zt must still be
an integer of the same parity as t. In this case, we can trivially observe that the conic
moment distribution is fatter tailed than the binomial, as the binomial tails vanish for
|Zt| > t but the conic moment tails do not.



Comparison: Conic Moment vs Binomial

The chart below shows a comparison of the binomial and conic moment distributions.
The horizontal axis is the random outcome, and the vertical axis is the probability.
Curve A is binomial while curve B is a conic moment distribution.
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Strictly speaking, we should not have joined the points on this chart, as Z can take
only even integer values. We chose two distributions with the same mean and
standard deviation. The conic moment distribution shows classic fat-tailed behaviour,
with greater likelihood attached to very small and very large values. This contrast is
clearer if we use a log scale for the probability:
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In passing, we also observe what seem to be linear asymptotes of the probability
function, which implies exponential tails on both the left and right.

Skew Distributions

We now move on to consider asymmetric distributions. One way of generating these
is to use Esscher Transforms. To effect an Esscher transform, we must multiply the
probability function p(k) by some exponential function uk and then re-scale so that the
probabilities add to 1. If we had started with a binomial distribution, then the
transform would produce another binomial distribution with different parameters. The
same is true for the conic moment distribution family. The Esscher transform, applied
to a conic moment distribution, produces another conic moment distribution.
Bühlmann et al (1998) discuss the use of Esscher transforms in option pricing – a
theme which we develop further in section 6 of this paper.

Starting from our base case B, we have applied an Esscher transform with u = 1.25 to
derive the curve C.  Curve C is conspicuously right-skewed.
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On a log scale, it appears we have derived curve C by adding a linear function to
curve B. This is a consequence of the Esscher transform.

To show the flexibility of the conic moment family, we have added two further
distributions.

• Curve D has the fattest of all tails, taking its left tail behaviour from curve B
and its right tail behaviour from curve C

• Curve E has the thinnest of all tails, taking the left tail of C and right tail of B.

The chart shows densities for all four of these conic moment distributions, this time
on a log scale. Once again the asymptotic exponential behaviour is clear.
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We generated these curves from the parameters in the table below:

steps Probabilities Moments
Curve T pbu pbd pfu pfd mean stdev skew kurt

A 16 0.0000 0.0000 0.5000 0.5000 0.00 4.00 0.00 -0.13
B 4 0.1875 0.1875 0.3125 0.3125 0.00 4.00 0.00 2.69
C 4 0.2675 0.1712 0.3422 0.2191 7.16 11.58 3.75 24.88
D 4 0.2527 0.2021 0.3029 0.2423 4.92 10.49 3.86 28.25
E 4 0.1846 0.1477 0.3709 0.2968 1.33 3.60 0.68 2.60

The skewness and kurtosis in this table are both normalised to unit standard deviation.

Probability Generating Function

This section can be skipped on a first reading. We derive the probability generating
function (pgf), as defined by the following formula:
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We will see that the pgf is tractable for both the binomial and conic moment
distributions. In the binomial case, we can read off the probabilities by repeated
differentiation of the pgf at ? =0. Unfortunately, we cannot follow the same procedure
for the conic moment distribution as the mgf is a doubly infinite sum and so is not
differentiable at ? =0. Nevertheless, the pgf is still useful, for example in calculating
moments.

I claim the following formula for the pgf of the conic moment variable Z at time t:
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This is valid provided ?  is in an annulus around the origin in the complex plane where
the appropriate expectation converges. For real ? , this is puts ? 2 in a range where the
radicand is positive. We know a band of such ?  exists as the radicand is negative at ?
= 0 and 8  but positive at ?  = 1. If there are no leftward jumps in the construction,
then pbu = pbd = 0 and we recover the probability generating function for a binomial
distribution.

A heuristic derivation of the moment generating function for Zt is as follows. We start
at the point (0,0). There are four possible movements from here. If particle jumps
forward in time, then the terminal value of Z will consist of a known upward or
downward movement, plus however the path moves in future over the remaining t-1
time periods. In the same way, if the particle jumps backward in time, Z will be the
first movement plus the future movements over the remaining t+1 periods. Therefore,
we have the following four cases:

? t ? k Probability Conditional distribution of Zt

-1 -1 pbd -1 + Zt+1

-1 +1 pbu +1 + Zt+1

+1 -1 pfd -1 + Zt-1

+1 +1 pfu +1 + Zt-1

These equations imply the following difference equation for the probability
generating function:
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It is easy to verify our claimed pgf does indeed satisfy this difference equation.
Unfortunately, the equation also has other solutions; for example, take our proposed
formula and take the negative root on the denominator. The proof that we have in fact
picked the correct solution is difficult, and not given here.

Mean, Variance and Higher Moments

We can use the pgf to derive moments of the conic moment distribution. We list the
first three here.
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Building a Process

We now extend out construction to build a process. Rather than looking at Zt for a
particular terminal value of t, we can consider the progression of the Zt collectively
over time t. We might use this for example as a model of log stock prices. We have
used red circles to outline possible paths of Zt in the charts below. While the particle
itself can visit the same t more than once, conventional stochastic processes do not
permit this. Therefore, we drop a red dot only the first occasion that the particle hits a
new time point. Subsequent visits do not count, until the path re-emerges at a new
maximum time.
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This path may appear to branch, but actually the path retraced its own steps. On the
lower path, we can see how the process Zt can jump by more than 1 over a single time
period. This happens when the particle goes backwards in time and re-emerges
somewhere completely different. From the particle’s internal perspective, it moves
continuously over the lattice. However, time travel is invisible to the outside observer,
who sees discontinuities at the point where the particle tunnels back in time. Thus,
while the mathematician can imagine the forward and backward paths, the trader can
act only on the subset of nodes that create new records on the horizontal axis. The
trader’s observed paths are shown in the chart below, dotted lines representing the
discontinuous jumps.
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The new path has the important property of independent increments. Let us suppose
that the path has just reached a new maximum t=4. Then, from here, the path follows
the same probability law as it did at (0,0), but commencing from a new starting point.
The future path has no memory of how it got to its starting point. This implies that the
increment Z7 – Z4 is independent of Z4, and has the same distribution as Z3. In
particular, Z7 has the same distributions as a sum of independent samples of Z3 and Z4.
We could also have deduced this fact from the form of probability generating
function, namely that m(? , t) = m(? , 1)t.

Lessons from Discrete Time

Here are some of the key lessons we learn from the discrete time model, which, we
will see, translate readily to the continuous case:

• There is a wide range of useful distributions showing fat tailed and skewed
behaviour, while retaining smooth, unimodal distribution functions.

• The chosen family includes the familiar binomial distribution as a special case.
When we move to continuous limits, we will see that the limiting normal
distribution retains a special place, but is supplemented by fat tailed and skew
distributions.

• The conic moment distribution has exponential tails, consistent with the
empirical literature on investment returns. The thickness of the left and right
tails can be adjusted by changing the model parameters.

• The greater generality comes at a price, that is, the loss of an analytical
formula for the probability function. However, we can still summarise the
probability generating function in closed form, and so derive expressions for
mean, variance and higher moments.

• The conic moment family of distributions can be used to describe the marginal
distributions of a random walk process with independent increments – and so
may be suitable for modelling the movements of log prices over time.



• The binomial lattice allows movements of ±1 at each step. When used as a
model of prices, this has important implications for risk management, as it
limits the extent to which prices can move before management action is taken.
In contrast, the conic moment processes impose no limit on price moves in a
single time period, and so expose risks arising from market jumps.

• In particular, the binomial model of option pricing relies crucially on price
movements being small. The classical hedge construction fails in the general
conic moment case. Additional assumptions are required in order to derive
option prices.



3. The Continuous Conic Moment Distribution

We now generalise the discrete conic moment distribution to continuous space and
time.

Our construction is as follows. Let us consider a bivariate random walk 
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V , which must be positive semi-definite. We define A as the first time a

when the first coordinate Wa
(0) hits 1, that is:

A = min{ a = 0; Wa
(0) = 1 }

We need to be sure that A is finite. This means one of the following must apply.

l either Wa
(0) has positive drift m0 > 0

l or Wa
(0) has zero drift m0 = 0 and positive volatility V00 > 0.

Let us consider the value of WA at time A. As the random walk has continuous paths,
we can be sure that WA

(0) = 1. The other coordinate WA
(1) defines the conic moment

distribution.

Figure 3.1:  Bivariate random walk and conic moment variable
We denote the cumulative distribution function by ? , where:
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This is a flexible distribution family. It is closed under translating and scaling, but we
can also set skewness and kurtosis subject to some constraints.

The conic moment distribution takes values on the whole real line, while asset prices
are positive. We therefore propose a log transformation to link our asset price model
to the conic moment distribution. We ensure asset prices are positive by writing:

S = F exp(X)
where F is the forward price and X has a conic moment distribution.

Figure 3.2: Density plots (log scale) for example distributions:

Bivariate Distribution

We also define a bivariate conic moment distribution. This will allow us to build joint
models of a share price and deflator. We derive the distribution from a three-
dimensional random walk Wa, with drift m and variance–covariance V per unit time.
As before, we wait for the first time A that the 0th component Wa

(0) hits 1, and read off
the other two components as the conic moment distribution.
Happily, the two dimensional conic moment distribution has a tractable density
function, as follows:
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Here:

l m is a 3 dimensional vector 
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l V is a 3 × 3 positive definite symmetric matrix 
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Barndorff-Nielsen (1998) gives evidence that this density integrates to 1, and that it
does indeed correspond to our random walk construction. It is also possible to build
limiting conic moment distributions where V is positive semi-definite. This limiting
cases include the normal distribution when V00 = V01 = V02 = 0 and m0=1. The
remaining elements of m and V then signal the mean and variance covariance matrix
of the bivariate normal distribution.

Under this bivariate distribution, the marginal distribution of X1 depends only on the
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 – a fact we will soon prove using moment

generating functions. We can therefore define the univariate conic moment

distribution as the marginal distribution of X1, given the parameters 
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The corresponding cumulative distribution function is as follows.
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Table  3.1   Properties of Univariate Normal and Conic moment Distributions

Property Normal distribution Conic moment distribution
Parameters µ, σ > 0
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If Z and Z’ are independent normal, then
( )22 )(,~ σσµµ ′+′+′+ NZZ

If Z and Z’ are independent Conic moment and satisfy some additional
constraints, then Z+Z’ = Z” ~ Conic moment(m”, V”)

Bivariate For any normal distributions Z, Z’ and
correlation ρ in (-1,1) we can construct a
bivariate normal distribution with marginals Z
and Z’.

For conic moment distributions Z, Z’ with 00
1

000
1

0 )( VmVm −− =′′  we can
construct a bivariate conic moment distribution with marginals Z and Z’,
but only for a restricted range of correlations ρ.

Option pricing Option prices are completely determined by the
parameter σ; the mean µ is irrelevant.

Option prices are determined by parameters [ x, y] and a third parameter
determining investor preferences. Given [ x and y ], the other two
parameters are irrelevant for pricing options



Moment Generating Functions

As in the discrete case, it is not simple to write down a formula for the density of a
univariate conic moment distribution. It is often more convenient to work instead with
moment generating functions. For a univariate random variable Z, the moment
generating function is defined as follows:

Moment generating function = ∫
∞

∞−

= dzzfepZ pz )()exp(E

Often, the integral diverges, for large positive or negative p. So there is a range of p
for which this moment generating function is defined. We can define the function not
only for real p but for complex numbers as well. At the very least, we know that the
moment generating function always exists when p is pure imaginary.

We can characterise a conic moment distribution as one whose log moment
generating function is a conic section (that is, a parabola, hyperbola, ellipse or two
straight lines). It turns out that the hyperbola can never happen, and the ellipse is a
general case. But before launching into the general case, let’s see some better known
examples of parabolas and straight lines. In this table, Φ is the cumulative standard
normal distribution function.



Table 3.2 Distribution Functions and Moment Generating Functions for Univariate Conic moment Distributions
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The formula for the log moment generating function of the conic moment distribution
looks like the most general conic section in two variables. We have the quadratic
terms, we have the linear terms – but where is the constant? It turns out that the
constant has to be zero. This is because, putting p = 0, we can see that exp(ψ) =
Eexp(0.Z) = E(1) = 1. This means that the conic section must pass through the origin
– and therefore the constant term can only be zero. From this representation it is
simple to verify our tabulated transformations for shifting, scaling, symmetry and
independent addition.

Tail Thickness

We lack closed formulas for the cumulative distribution function of a conic moment
random variable. What we can do is build some approximations, which are best for
large (positive or negative) values of Z.

For large values of Z, we have the following formulas:

[ ]
[ ]




∞↑−−
−∞↓−

zzz

zzz
VmzF

(...)exp1

(...)exp
~),|(

2/3

2/3

The corresponding inverse functions are as follows:





↑
↓

=−

1...
0...

),|(1

p
p

VmpF

The Multivariate Case

We have looked at a univariate case, but we often need to build multivariate models
too. The conic moment distribution has a natural multivariate version. In the n-
dimensional case, we say that a vector Z has a conic moment distribution with
parameters m and V if:
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This equation must hold for all vectors p (real or complex) where the expectation is
finite. This is a multivariate extension of the moment generating function. The matrix
V should be an (n+1)× (n+1) symmetric matrix and the vector m should have n+1
elements. We number the elements from 0 to n. Not all combinations of V and m will
give rise to valid distributions. Specifically, V should be positive semi definite, and m0

≥ 0, with strict inequality if V00 = 0.

Density Function

Another way of specifying distributions is by a probability density function. The
density for a conic moment variable takes a different algebraic form according to how
many dimensions we want to consider. This is inconvenient, particularly when it
comes to parameter estimation. Let us focus for a moment on the bivariate distribution
of a pair (Y, Z) of random variables – which illustrates the main issues arising. Figure
3.3 shows a plot of this bivariate density.



Figure 3.3: Plot of bivariate density:
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The two dimensional case (other than the limiting normal, inverse Gaussian and
Cauchy) distributions is as follows:
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V  is a positive definite symmetric matrix. Wherever possible, we

will use vector and matrix notation to spare us lengthy algebra. We can see that this
density is unchanged if we scale both m and V by a common scalar. Without loss of
generality therefore we might take m0 = 1. This leaves 8 parameters to this bivariate
distribution- twice as many as for the univariate case. The one thing we won’t prove
here is that this truly is a probability density function – you have to turn to Barndorff-
Nielsen (1998) for that, or integrate it yourself.



Moment Generating Function

Reconciling the Density

Here’s a chance for the eager reader to test their new knowledge. Try to verify that
our stated probability density function really does imply the moment generating
function we claim. Then you have to show that
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This quadratic will have 2 real roots, or none, for general choices of (py, pz). I claim
we have the right root if m0 – V00ψ + V01px + V02py > 0. To prove these results, we
need to show that for such a ψ:
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We won’t write out the full proof here, but here’s a hint for the keen reader.
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both sides over all y and z.



4.  Random Walks

The normal distribution is interesting because of the way we can build up normally
distributed processes in continuous time. The increments of a normal random walk (or
Brownian motion) are normally distributed. The mean is zero, and the variance of an
increment is proportional to the length of time over which the increment is measured.
Increments over non-overlapping periods are independent.

This construction works because of the reproductive property of the normal
distribution. The sum of two independent normal distributions is still normal. The
variance of the sum is the sum of the variances.

Conic moment distributions allow a similar construction. The increments of a conic
moment random walk have conic moment distributions. Increments over disjoint
intervals are independent. Intervals of a given length all share a common increment
distribution. A random walk like this, in continuous time, is called a Lévy process.
The standard reference on Lévy processes is the book by Sato (1999).

The conic moment random walk works because the sum of two or more independent
samples from a conic moment distribution still has a conic moment distribution,
although with different parameters. Conversely, for any conic moment distribution,
we can find some other conic moment distribution which, when added to itself (say)
61 times, gives the distribution we first thought of.



5.  Calibrating a Conic moment Distribution

How can we calibrate a suitable conic moment distribution, given a sample of data?

We offer two approaches. The method of moments is easy to execute, but has poor
sampling properties. Maximum likelihood has best sampling properties but requires
messy numerical methods to implement.

Let us start with the method of moments. Let Z be a random variable where E(Z4) is
finite. The first four semi-invariants are then defined as follows:
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For a univariate conic moment process, we can relate these to the matrix parameters m
and V. We can deduce the expressions by differentiating the moment generating
functions repeatedly.

Univariate Conic moment Distribution: Moments

To calculate m and V:
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Check that:  κ2 > 0 (this happens automatically)
κ4 ≥ 0
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The parameter λ is an arbitrary positive scalar.

Let us now consider the bivariate conic moment distribution. We now need to
estimate a three dimensional vector parameter m and a three-by-three matrix V. As far
as possible, we wish to populate these from the corresponding parameters from the
marginal distributions. But we encounter two problems. The first problem is that each
marginal distribution gives values for m0 and V00. The second problem is that we still
need to determine the cross term V12.

Let us tackle first the problem of common estimates for m0 and V00. We have freedom
to scale m and V by some constant λ. So our real problem is two estimates of the ratio
V00/m0. From our calibration equations, we know that each marginal distribution must
satisfy the following equation:
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This gives us a minimum value for the fourth semi-invariant, and also implies a
quadratic relationship between the third and fourth semi invariants. This same
quadratic curve must apply for all the marginals of a multivariate conic moment
distribution. We do not therefore have the flexibility to set marginals independently of
each other. In practice, for example, we might try to estimate the semi-invariants for
each component, and then re-estimate the fourth semi-invariant by choosing a best-fit
quadratic. In this case, we must bear in mind that the third semi-invariant should not
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Let us turn now to the calibration of the cross terms in the V matrix. Denoting our
conic moment vector by Z, we can show that (for i, j ≥ 1):
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This then gives us an expression for the whole matrix V, given the values in the row
and column zero.

One hurdle remains. Unfortunately, we do not have complete freedom to specify our
desired covariance structure. For example, if Y has a symmetric distribution and Z is
100% correlated with Y, then Z, too, must have a symmetric distribution. There is a
limit on how closely two variables can be correlated, depending on their relative
skewness. If we try do go beyond these limits, we face problems in the form of a
matrix V which is not positive definite.

To determine the limit, for each component i we define θi in (-π/2, π/2)  by
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Robust Calibration

Sampling error is the perennial challenge for any estimation technique. Estimating fat
tails is particularly error-prone, relying as they do on estimation of rare events. There
are more robust tools for model estimation, which seek instead to capture the thin
peak effect, and so calibrate the shape of a distribution.

The method of moments calibrates unambiguously to the expectations of the first few
powers of a variable Z. In the case of a conic moment distribution we fit the first four
powers – the so-called test functions. The sampling problem arises because powers, in



particular the fourth power, grow so quickly with Z, making any outlying observations
even more extreme.

In contrast, the robust estimation tools use test functions, which are better behaved for
large values of z. The complication is that we need to know the distribution before we
know which test function to choose. This leads to an iterative process – we start by
guessing a distribution, and calculate the test functions. We then use those test
functions to calibrate a new distribution, from which we recalculate the test functions.
And so the process continues until we find a distribution, which correctly replicates
the expected value of its own test functions.



6. Option Pricing

Classical option pricing theory assumes that log share prices perform a normal
random walk. The theory gives rise to elegant solutions; most notably Black &
Scholes’ famous option pricing formula.

How does this theory stand up if we replace the normal random walk with the conic
moment random walk? At first blush, we lose everything. The Black-Scholes
approach uses a hedging methodology. The hedge only works if share prices move
continuously. If the share price can jump, then the hedge breaks down. This is called
the “incomplete market” problem. We cannot price options in a conic moment world
by appeal to arbitrage arguments alone.

But all is not lost. In this section we will investigate pricing methods for conic
moment distributed variables. We use the idea of “no good deal”, developed by
Cochrane and Saa Requejo (2000). The approach gives us bounds on option prices
which are narrow enough to be useful, and collapse to the Black-Scholes formula in
the limit of normal distributions. Our findings challenge a popular actuarial prejudice,
exemplified by Wise (1999, surreally misquoting Cochrane in support), that pricing in
incomplete markets is necessarily arbitrary.

So how can we proceed? One approach is to assume a specific functional form for the
deflator, that is, for the stochastic discount factor. In a conic moment context, it is
natural to suppose that the log share price and the log deflator come from a bivariate
conic moment distribution.

Reasons why hedging may fail

There are many cashflows that we may wish to price, but for which exact hedging
instruments are unavailable. Particular issues that may cause difficulty in hedging
include:
l cashflows on insurance or savings products containing embedded options in

favour of the policyholder;
l cashflows subject to the discretion of a financial institution, for example

participation in insurance or pension fund profit sharing arrangements;
l cashflows due after the longest dated comparable bond has expired;
l cashflows depending on non-financial risks, including mortality, sickness,

natural catastrophes or operational risks;
l cashflows dependent on behaviour of customers, for example to cash in an

investment or pay down a mortgage;
l options or other derivatives on an underlying asset whose price exhibits jump

behaviour, thus invalidating hedging algorithms that depend on diffusion
processes; and

l cashflows contingent on non-traded macroeconomic quantities such as
inflation in wages or retail prices.

For all these cashflows, it is possible to estimate their statistical distribution and
correlations with other assets, to some degree of accuracy. What we lack is a market
price. The idea shown here is to identify the relationship between price and
distribution for traded cashflows, and then to extrapolate this to the non-traded
situation.



Consequences of hedge failure

If we remove the ability to trade continuously, or we relax the assumption of
normality, then the classical framework falls apart. Dynamic hedging is no longer
capable of replicating options. Well-constructed pricing models can still avoid
arbitrage, but this constraint is now insufficient to force a unique option price.
Arbitrage arguments are still valid, but inconclusive. These points have generated
some criticism of the wider applications of option-pricing theory, particularly in
applications where the theoretical ideals of normal distributions and continuous
frictionless trading are hard to support.

 This chapter introduces deflators as a tool for cashflow pricing, focusing specifically
on the pricing of options. Our option prices are consistent with market prices where
these are observable. Classical option prices are recovered as a limiting case, but our
tools require neither normal distributions nor continuous trading. The techniques are
useful in many situations where no exact replicating hedge exists, but real world
distributional assumptions can be estimated. This extends not only to options, but also
to the valuation of illiquid liabilities such as can arise in insurance and pension work.

Deflators

We are now in a position to define a deflator. We focus on a single period model,
starting now at time 0 and terminating at time 1. A deflator is a positive random
variable D such that, for any future cashflow X at time 1, the value today is E(DX).
This is an established technique for analysing market prices and their relationship to
cashflow distributions. The existence of a deflator is equivalent to the absence of
arbitrage, see Harrison and Kreps (1979) or the opening chapter of Duffie (2001).

In situations where a cashflow has an exact replicating hedge, the deflator will
reproduce the price deduced from hedging arguments. See Cochrane (2001) for more
on the basics of deflators.

The beauty of the deflator technique is that we can use the same formal expression
E(DX) whether X is traded or not. This is the key template, which we can use to
extrapolate market prices to other cashflows.

Fundamentals of Option Pricing

Notation

All our analysis considers options of a one-year maturity, on a stock S, which may pay
dividends. The time now is t=0. The price at time zero of a one-year zero-coupon
bond is v.

The forward price of the stock is F. In other words, there are counterparties who will
agree now to buy or sell the stock for a price F on one year’s time. While nobody
knows the value of the stock S in one year’s time, the forward price F is fixed at time
zero. In what follows, we shall assume that v, F and the distribution of S are known
inputs to the modelling process.



We will use the following notation throughout the chapter:
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Based on our earlier observations on the non-normality of returns, and with the
objective of seeing the effect of skewness and kurtosis, we will follow these four
examples in the rest of this chapter:

Normal Case I Case 2 Case 3 Case 4
µS 0.01
s S 0.1
?S 0 0 0 -1 -1
?S 0 2 5 2 5

Table 6.1:  Example parameters for quarterly return distributions: Normal
distributions and four alternative cases.

In later parts of this paper, we will use F  to denote the cumulative standard normal
distribution, and ?  to denote the cumulative function for the conic moment
distribution, which we shall later define.

Option Prices

In this chapter, we consider only European-style options, which cannot be exercised
early. A call option is an option to buy the stock for a price K in three month’s time.
The value of the option in one year is then max{ 0, S – K }. The price of the call
option today is some function Call(K). K is called the “strike price”.
A put option is an option to sell the stock for K >0 in three month’s time. The future
value is max{ 0, K – S }, and today’s market value of the put option is some function
Put(K).



Figure 6.1: Call and put prices for distribution Case 3.

In some markets, the functions Call(K) and Put(K) are observable or partially
observable. In such a situation, analysts may seek to calibrate their pricing models to
known option prices. In this chapter, however, we treat the situation where no option
prices are observable and we have to propose formulas on the basis of a known
distribution of S. An important test of the theory is whether our formulas describe the
option prices we really observe.

Arbitrage Bounds on Option Prices

In the Black–Scholes model, hedging arguments lead to option prices. For other
distributions, particularly those arising from jump processes, such dynamic hedging
arguments do not apply. Nevertheless, there are some weaker bounds that arise from
static arbitrage arguments, and which apply irrespective of the distribution of S.
Merton (1973) first proposed the arguments in this section.

We will argue one of these bounds; we have tabulated the others, which arise from
similar logic. We assume there is no bid–ask spread, so that option prices are the same
for buyers and for sellers. For our example, we explain why, always:

Put(K) = v max{0, K-F}
Consider two investors. The first investor has a put option. He can decide at time 1
whether to sell a stock S for a price K. He will exercise this option to sell, provided
that S ends up below the strike K. Otherwise the option expires worthless. We know
that this option is worth Put(K).

Our second investor also has an option to sell the share for K at time 1. This investor,
however, must make his decision at time 0 not at time 1. He can make this decision
not on the basis of the unknown future price S but on the current forward price F. Our
second investor has a worthless option if K < F, as he would be better off selling the
share forward for F. On the other hand, if K > F then the option is worth the
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discounted different between strike and forward. Thus, taking all the cases, our second
investor has an asset worth v × max{0, K-F}.

It is plain that the first investor has an advantage relative to the second. He has the
advantage of time, and he waits another year before deciding to exercise the option.
Our claimed inequality reflects the fact that the first investor has a stronger position.
The difference between the two sides is sometimes called the “time value” of the
option.

These and other familiar option-pricing results are summarised in Table 6.1.
Call Option Put Option

Payoff max{ 0, S-K} max{ 0, K-S}
Price Bounds v max{0, F-K} = Call(K) = vF v max{0, K-F} = Put(K) = vK
Put-Call
Parity

Call(K) = v(F-K) + Put(K) Put(K) = v(K-F) + Call(K)

Black
Formula
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Table 6.2: Properties of Option Prices

Implied Volatility

Finally, we define the implied volatility a(K) for a strike price K. Let ?  be the
cumulative normal distribution function. The implied volatility a(K) is then defined as
the value of a to solve the following implicit equation:
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The right-hand side, called the “Black Formula”, is a strictly increasing function of a,
moving from v max{0, F-K} to vF as a moves from 0 to infinity. As the right-hand
side covers the feasible range for Call(K), so there must be a unique positive implied
volatility a(K). Conversely, any positive implied volatility gives a feasible option
price.

This implied volatility a(K) is also the unique solution to
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We can deduce this result from put–call parity and the fact that ? (-z) = 1- ? (z).
Classical option-pricing theory seeks to prove the Black Formula, or rather, seeks to
prove that a(K) = s S for all K, based on restrictive assumptions about the stochastic
process governing S. But in this chapter, we allow more general process for S, and
treat the Black Formula merely as a convention for quoting prices. Instead of quoting
a dollar price for a call or put option, a trader will quote the implied volatility a(K).
Actual prices reveal that a(K) does, in fact, depend on K, contrary to the classical
predictions.



Using Deflators to Price Options

We can use deflators to price options. The relevant formulas are as follows:
Call(K) = E[ D max{0, S-K} ]
Put(K) = E[ D max{0, K-S} ]

Put-call parity requires that
E(D) = v

E(DS) = vF

In general, there may be very many possible deflators. The challenge then is to find a
deflator, which is, in some suitable sense, the best for pricing a particular option.

Finding A Deflator

Having developed a distribution for S, we now look for a deflator D. Our strategy will
be as follows:

1. assume a functional form for S and D;
2. solve for parameters ensuring put–call parity;
3. eliminate redundant parameters; and
4. apply equilibrium constructions.

Each of these steps is discussed in turn.

Functional Form for Deflators

We now generalise our model for the share price, to include the rest of the economy
and, in particular a deflator. Let us suppose that the log prices of all assets in the
economy are drawn from some huge multivariate conic moment distribution. In this
situation, it is natural to suppose also the log deflator would also be a component of
this multivariate family. While the parameters for observable assets would be
empirically calibrated, we must apply more economic theory to suggest parameters
for the deflator.

We assume therefore that the log price and log deflator are drawn from a bivariate
conic moment distribution (xS, xD). To simplify subsequent algebra, we apply the
distribution to ln(S/F) and ln(D/v), so that

S = Fexp(XS)
D = vexp(XD)

The variables XS and XD are assumed to have a joint conic moment distribution with
parameters:
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Notice that the parameters m0, mD, V00, V0D and VDD relate to the distribution of the
deflator, which is a function of the economy as a whole. We should not expect to
choose the deflator distribution based only on the distribution of S.
To ensure put–call parity, we need to verify that,

E(D) = v
E(DS) = vF



This we can ensure using the moment generating function for a bivariate conic
moment distribution. The conditions on m and V are that:
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Written out long-hand, these are:
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and V must be positive definite. We now need to evaluate when these conditions
together have a solution.

We dismiss the positive definite constraint first. Given that 
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definite by construction, we can achieve positive definiteness of the larger matrix
simply by ensuring VDD is sufficiently large. This would affect mD, but as both mD and
VDD occur only in the first equation, we can adjust them without affecting other
variables.
Thus, we have boiled down the put–call parity equations to the following constraints:
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This plainly has infinitely many solutions, provided we choose a V0D that is big
enough.
Figure 6.2: Share prices (horizontal axis) and deflators (vertical axis) from a typical
model with 1-year horizon
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Option-Pricing Formulas

We are now in a position to derive option-pricing formulas for our deflator model,
expressed in terms of the univariate conic moment distribution. Let us focus first on
put options. We know that
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Now finally we can evaluate the integrals in terms of the univariate distribution:
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We notice that mS, mD and VDD have disappeared from the option-pricing formula. We
have substituted for V12 from the moment generating function. Our free choice then
relates to V0D, which must merely be chosen large enough.
We can use put–call parity to determine the price of call options
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We notice that this has two expressions of the form (1-? ). We can turn these into
expressions of the form ?  by changing the sign of the implied underlying distribution.
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We can now see some symmetry in the analysis; the call option formula looks like the
put option but with K and F interchanged. Traders tend to quote option prices using
implied volatilities. The corresponding implied volatility charts are shown in Figure 8.

Figure 6.3: Implied quarterly volatilities for the normal distribution and four conic
moment distributions.

The Final Optimisation

We have developed formulas for options on a stock, given a conic moment
distribution for that stock. These option-pricing formulas introduced a new parameter
V0D. Any value of V0D could give consistent option prices. There are a wide range of
possible prices. This choice widens further if we had used a wider class of functional
forms for D. In the limit, we get back to Merton’s arbitrage bounds. So, reducing the
class of D’s under consideration is crucial.

Portfolio Selection and Optimal Deflators

The Incomplete Market Problem

There is an extensive literature on how to pick a pricing law out of many alternatives.
The most popular technique uses the “minimal martingale measure”, defined by
Follmer and Schweizer (1986). Picking a pricing law is equivalent to picking a utility
function. This makes the process seem arbitrary.

However, this arbitrariness is not necessarily a problem, because many utility
functions could imply the same prices. For example, Cochrane (2001) shows how all
quadratic utilities would lead to Ross’s APT model. However, the literature does
present a number of practical problems, including the following:

1. Prices based on quadratic hedging error may give rise to negative option
prices.
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2. Optimisation for jump processes often results in singular solutions. For
example, the optimal portfolio under a log utility often results in zero holdings
for some asset classes; these asset classes are not then priced to market by the
utility gradient.

3. With exponential utility and jump process, the prices of options often become
infinite.

4. Most risk measures require specification of an accounting currency, which is
necessarily arbitrary. Log utility is an exception.

5. Most of the literature is concerned with one risky asset. The proposed deflator
is then a function of that asset only. But in a multi-asset world, the optimal
deflator would be a function of a market portfolio that is not necessarily the
underlying for the option you wish to price.

6. There are practical difficulties in solving the equations numerically for many
realistic models, especially those involving jumps.

The other extreme is to insist on analytical tractability – this leads for example to
Esscher transform methods (Buhlmann et al., 1998). In a single asset case this could
be equivalent to power law utilities, but in a multiple asset case this breaks down
because real portfolios are arithmetic means but Esscher transform gives a deflator
that is a product of powers of prices.

In this chapter we have tried to steer a middle course between tractability and
economic coherence. This is why we have combined an analytical formula with free
parameters subject to constraints on maximum utility.

Good Deal Bounds

Cochrane and Saá-Requejo (2000) develop the crucial concept we need to complete
our option-pricing example. They develop the concept of good deal bounds. The idea
is to place a limit on investors’ ability to earn high rewards with low risk. In this note
we achieve this by placing bounds on the utility achievable by the logarithmic
investor. This takes us into the realms of portfolio optimisation.

Logarithmic utility

Let us step back a little and consider an investment with initial wealth L0. The investor
wishes to invest for one year, after which time the terminal wealth will be L1. We
assume that the investor’s objective is to maximise the utility function Elog(L1-c),
where c is the minimal acceptable wealth. For this to make sense, the investor must at
least be capable of ensuring the minimal wealth, so that vc < L0. To model the
portfolio process, we need to allow an economy with more than one stock. We
therefore give our investor complete flexibility, to invest in any asset in the economy,
to hold cash at the risk-free rate, to buy or sell the assets forward, or even to trade in
options on other assets, assuming these are priced according to some specified
deflator.

One thing we can say for sure is that E(DL1) = L0. This applies for all investments in
the economy, from zero coupon bonds and forwards through to call and put options.
As this is a linear constraint, it follows that it also applies to portfolios.



Constraints on Optimised Utility

The focus is now shifted to proving the following simple inequality:
Eln(L1-c) = ln(L0-vc) – Eln(D)

which claims that the expected log deflator puts a constraint on investors’ utility. If
Eln(D) is large and negative, then a high utility may be possible. On the other hand, if
Eln(D) is closer to zero then the opportunities for enhancing utility are more limited.
The inequality is deceptively easy to prove, for we know that

E[ D(L1-c) ] = L0-vc
As the natural logarithm is a concave function, Jensen’s inequality (see Williams,
1991) applies and we can see that

Eln(L1-c) + Eln(D) E ln[D(L1-c)] = ln E[D(L1-c)] = ln(L0-vc)
Incidentally, similar inequalities would apply had we originally chosen a different
utility. The logarithm is the easiest to deal with, but we could also have chosen
quadratic or power law utilities.

Market Efficiency

We now revert to our problem of choosing between different models that share a
distribution of S but have different deflators. Our idea is to choose a deflator that
provides a meaningful market efficiency constraint.

Market efficiency is difficult to define, but one if its characteristics is the limitation of
the return opportunities from a given level of risk. If markets permit arbitrage, then
free lunches allow unbounded expected utility. Inefficient markets provide the
possibility of high returns with low risk, which lead to high utility. Thus, we could
seek to define market efficiency in terms of the bounds on achievable utility. This
would ensure that the derived option prices were not out of line with returns available
on other investments. Equivalently, given our previous inequalities, if we wish to
model efficient markets we need to ensure ElogD is sufficiently high.

We recall that v = E(D), so the mean of D is fixed. By Jensen’s inequality,
Eln(D) = lnv. The gap depends on the variability of D. If we want to place a lower
bound on ElogD, we must place an upper bound on the variability of D. If we had
selected some other utility function, we would still need to control the variability of D
but we would be using a different definition of variability.

Controlling the variability of D has another incidental benefit, for applications where
Monte Carlo simulation is used.. A large deflator variance would be inconvenient as it
implies large sampling errors, and so large numbers of simulations are needed to
achieve a desired accuracy. The constraints we will place on the variability of D also
control sampling errors so underpin the efficiency of Monte Carlo pricing tools.

We now return to the option-pricing example. The mean log deflator corresponds to
the mean of our conic moment distribution, and is given by

Eln(D) = lnv + mD/m0 = lnv – VDD / (2m0)

Now, as V is positive semi-definite, we know that
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Three cases can now occur:
In Case I, the usual case, there is a range of possible V0D that give acceptable values
for ElogD. This range would lie either side of the value in the equation above. The
option price based on distributions alone is indeterminate; further information is
required.

In Case II, the range of permissible V0D is so narrow that it collapses to a point. This
happens in the limit of a lognormal distribution, in which the model collapses to Balck
and Scholes’ formula. In many examples, the range of V0D is so narrow that the
possible option prices lie within a narrow band.

In Case III, it is possible that there is no value of V0D giving an acceptably high value
of ElogD. This can occur if the distribution has a very high return in relation to risk,
or if the distribution is very fat-tailed. While this is rare in the univariate case, it is
much more frequently a problem for multivariate models. Special calibration tools are
required in order to derive consistent risk and return assumptions to obviate the
problem.
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Figure 6.4. Market Efficiency and Implied Volatilities.

For our example distributions, Figure 9 summarises the relationship between option
prices and marekt efficiency. Towards the top of the chart, we have the less efficient
marekts. The risk premium of 5% per quarter means that an investor with a
logarithmic utility function could achieve 5% per quarter abovce the risk free rate – an
assumption most economists would regard as on the high side. These are achievable
either when implied volatilities are low (in which case our investor puys options) or
when they are high (when the investor sells).

So efficiency constraints limit option implied volatilities to a central range. Financial
theory has not delivered a unqiue price for options, but has at least excluded a whole
range of unreasonable values.



7. Conclusions

There is no perfect financial forecasting model. Real markets show a huge range of
phenomena, and a model will only capture some of them. Traditional normal-based
tools capture all sources of variability into a single parameter: σ. Unpicking different
effects is messy – we often need to use different values of σ for different problems,
depending what part of the distribution we are interested in. Why not capture the
variability by using conic moment distributions instead? This better describes the
shape of many historic return distributions. This solves some, but not all, of the
calibration problems faced by normal distributions. Devising models that work
adequately at all time scales remains challenging.

There are many applications where normal distributions may continue to be used
confidently. The effect of fat tails is most noticeable over short time horizons, of less
than 5 years. Fat tailed distributions shed little light on the distributions of returns
over many years, nor on prices of long dated options and guarantees. In these cases,
there is often room for debate regarding the correct volatility assumption; adding
further complexity to the shape of the distribution does not overcome this basic
calibration problem.

The commercial area where normality is most crucial is also the area where it is least
likely to be challenged – that is, economic capital. Using conic moment distributions
instead of normal ones, could increase the economic capital by (10x) as measured
weekly with an acceptable failure frequency of 1 in 2000 years. This vast difference
generates a debate about the right way to extrapolate observed distributions, and
indeed over whether anyone could reliably estimate such extremes of a distribution. In
the meantime, management are likely to prefer the lower economic capital numbers,
which come from the assumption of normal distributions.

The use of fat tailed distributions does hold out a hope of reconciling the credit
spreads in corporate bonds to their probability of default and to their likely recovery
rates. The difficulty arises because deflators must be very large in the event of default.
Indeed, one of the longstanding theoretical puzzles in corporate bond defaults is to
understand why defaults happen at all. Would shareholders not optimally reduce the
risk in a company as it approached insolvency, thus postponing indefinitely the day
when control passes to bondholders? This strategy would fail only if there are jumps
in the net assets of a firm – an effect that conic moment distributions capture well.

Many statistical tests rely on normality. In particular, evidence for time-varying
volatility and for auto-regressive effects, is typically assessed using tests based on
normal distributions. One or two outliers in a data sample may force complicated
additional terms into a model. If we switch to fat tailed distributions, then more
outliers are allowed before we have to complicate the model. We should not expect fat
tailed distributions to result in more complex models overall. We may have more
complex error distributions, but this is usually offset by simplifications in a model’s
structure.

For the time being, the normal distribution retains her crown as the queen of capital
market models. But as her frailty becomes more apparent, attention is likely to focus
increasing on a suitable heir – the conic moment distribution family.
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