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Background

Mortality projections are essential for the actuarial profession for
the quantification and management of longevity risk.
Existing methods typically fail to coherently account for all sources
of uncertainty. Addressing this would allow

improved pricing and assessment of longevity risk transactions

greater understanding of and confidence in quantification of
the tail of longevity risk

improved management of longevity risk, ultimately to the
benefit of consumers
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Data and notation

{yxt} – England/Wales male deaths in year t aged x last birthday
{ext} – corresponding average population in year t

Here, we focus on pensioner ages so x represents 60, 61, . . . , 89
Observed time window is for years 1971, . . . , 2009 ≡ T
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A standard model

The Poisson Lee-Carter model (with random-walk period effects)

yxt ∼ Poisson(extµxt)

logµxt = αx + βxκt

κt = η + κt−1 + εt

εt ∼ N(0, σ2)

We will use this model as a reference to discuss some key concepts.
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Sources of uncertainty

yxt ∼ Poisson(extµxt)

logµxt = αx + βxκt

κt = η + κt−1 + εt

εt ∼ N(0, σ2)

1. Natural uncertainty

2. Parameter uncertainty

3. Model uncertainty

a. rate model
b. projection model
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Alternative models (rate)

Following Dowd et al (2010), we focus on the following 6 models

M1: logµxt = β
(1)
x + β

(2)
x κt (Lee-Carter)

M2: logµxt = β
(1)
x + β

(2)
x κt + β

(3)
x γt−x (Lee-Carter + cohort)

M3: logµxt = β
(1)
x + κt + γt−x (Age period cohort )

M5: logit qxt = κ
(1)
t + κ

(2)
t (x − x̄) (Linear in age)

M6: logit qxt = κ
(1)
t + κ

(2)
t (x − x̄) + γt−x (Linear + cohort)

M7: logit qxt = κ
(1)
t + κ

(2)
t (x − x̄) (Quadratic + cohort)

+κ
(3)
t (x − x̄)2 + γt−x

Models must be stochastic, and we have restricted to models of
fixed dimensionality (excluding semiparametric models).
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Alternative models (projection)

Many possible time-series models for period effects, κt or cohort
effects γc , typically based on the ARIMA family, including

ARIMA(0,1,0) – random walk (with drift)

γc = η + γc−1 + N(0, σ2)

ARIMA(1,1,0)

γc = η + γc−1 + φ(γc−1 − γc−2 − η) + N(0, σ2)

. . .

Here, we assume ARIMA(0,1,0) for κt and restrict model
uncertainty for γc to ARIMA(0,1,0) v. ARIMA(1,1,0).
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Bayesian statistical inference

All uncertainty is quantified through probability distributions,
including

1. Natural uncertainty

2. Parameter uncertainty

3. Model uncertainty

For a given model m with associated likelihood pm(y |θ), our prior
probability distribution pm(θ) for the model parameters θ is
updated to a posterior probability distribution through Bayes’s
theorem

pm(θ|y) ∝ pm(y |θ)pm(θ)
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Bayesian coherence

The posterior probability distribution pm(θ) simultaneously
represents uncertainty about all model parameters, e.g. for the
Lee-Carter model above,

θ =
(
{αx}, {βx}, {κt}, η, σ2

)
Hence rate model and projection model are fully integrated,
through (here)

p(y |θ) = p (y |{αx}, {βx}, {κt}) p
(
{κt}|η, σ2

)
Posterior p(θ|y) is computed and summarised (marginalised) using
Markov chain Monte Carlo (MCMC).

e.g. Czado et al (2005), Girosi and King (2008)
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Bayesian predictive inference

The Bayesian approach is particularly natural for projection, as all
posterior uncertainty is naturally integrated into a posterior
predictive probability distribution, e.g. for
yf = {yxt , t = T + 1, . . .}

pm(yf |y) = Epost [pm(yf |θ)]

Projections are typically based on means or medians of pm(yf |y),
with associated intervals derived from its quantiles.
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Bayesian inference under model uncertainty

1. Natural uncertainty

2. Parameter uncertainty

3. Model uncertainty

Our prior probability distribution p(m), representing our prior
beliefs concerning (3), is similarly updated as

p(m|y) ∝ p(y |m)p(m)

where p(y |m) is the marginal likelihood

p(y |m) = Eprior [pm(y |θ)]

It is typical to assume prior neutrality between models, so models
are compared using p(y |m) or log p(y |m)
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Computed marginal likelihoods (log scale)

ARIMA(0,1,0) ARIMA(1,1,0)

M1: −10101.2
M3: −7886.4 −7888.3
M5: −11803.1
M6: −7360.4 −7364.1
M7: −7347.8 −7352.9

Computational problems with M2, so this model omitted.
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Projection under model uncertainty

Under model uncertainty, the posterior predictive probability
distribution incorporates model uncertainty, as

p(yf |y) =
∑

p(m|y)Epost [pm(yf |θ)]

which is a mixture of the individual model projections weighted by
their posterior probabilities.

The individual model projections are computed using MCMC.
The weights p(m|y) can be awkward to compute – we use the
bridge sampler of Meng and Wong (1996).
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Forecast mortality for age 75 (median and 90% intervals)
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M7, ARIMA(0,1,0)
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M7, ARIMA(1,1,0)
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M6, ARIMA(0,1,0)
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M6, ARIMA(1,1,0)

M6: logit qxt = κ
(1)
t + κ

(2)
t (x − x̄) + γt−x

M7: logit qxt = κ
(1)
t + κ

(2)
t (x − x̄) + κ

(3)
t (x − x̄)2 + γt−x
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Forecast mortality for age 75 (median and 90% intervals)

1980 2000 2020 2040 2060
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Model-averaged
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Forecast mortality for 2030 (median and 90% intervals)
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M6, ARIMA(0,1,0)
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M6: logit qxt = κ
(1)
t + κ

(2)
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Forecast mortality for 2030 (median and 90% intervals)
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Summary and next steps

We have established a framework for fully integrating uncertainty
into mortality forecasts, including model uncertainty.

Further research directions:

Accounting for overdispersion should bring more models into
play in the integrated forecast. Lack of fit (as illustrated by
Dowd et al, 2010) accentuates differences in posterior
probability.

Expanding the range of models used:

Other rate models (semiparametric?)
Other projection models (straightforward)

Integrating prior information (e.g. concerning smoothness)
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